
The Pitfalls in Achieving Tagged Causal Delivery
Georges Younes, Paulo Sérgio Almeida and Carlos Baquero ∗

HASLab / INESC TEC
Universidade do Minho

Braga, Portugal

ABSTRACT
Causal delivery middleware respect causality when delivering mes-
sages, but do not provide information about it to the client process.
When two messages,m1 andm2 are delivered in sequence to a given
process, either they are concurrent orm1 happens-beforem2, but
the client application is not told which is the case. In some domains,
like operation-based CRDTs, this information is useful, and previ-
ously we have proposed exposing it in the API of a Tagged Causal
Delivery middleware. One could think this would be just a ma�er
of taking some current middleware and exposing the vector-clocks
which are internally kept. In this paper we identify some obstacles
in doing so, and describe how to overcome them. �e essence lies in
the role of current middleware, allowing it to tag as ordered some
messages that are concurrent, and we describe how it can happen
in several interaction models between middleware and client code,
either callback-based or with independent threads/processes. �is
means that vector-clocks in current middleware are not precise to
describe happens-before, and cannot be simply exposed in the API.

CCS CONCEPTS
•�eory of computation→ Distributed algorithms;

KEYWORDS
Causal delivery; Tagged Causal Delivery; Operation-based CRDTs;
Distributed Computing

1 CAUSAL DELIVERY
Classical Causal delivery has been widely and frequently used in
distributed systems [2]. Introduced by Birman in [3, 4] as an ab-
straction used to guarantee that messages are delivered in an order
respecting happens-before causality relation. For any processes
i, j,k , if an event sendi (m1) → sendj (m2), the causal delivery ser-
vice guarantees that deliverk (m1) → deliverk (m2) in the same
process k , where the happens-before (→) relation is the one intro-
duced by Lamport in [5]. Concurrent operations can be delivered in
di�erent orders in di�erent processes, but whether two messages
are concurrent or causally related, this knowledge is not provided
by the service to the client application. �is may be enough for
some applications, that just need a combination of exactly-once
delivery and session guarantees, e.g., a replicated commutative
∗�e research leading to these results has received funding from the European Union’s
Horizon 2020 - �e EU Framework Programme for Research and Innovation 2014-2020,
under grant agreement No. 732505, project LightKone.
Copyright held by the authors. �is work is licensed under the Creative Commons
A�ribution-NoDerivatives 4.0 International License. To view a copy of this license, visit
h�p://creativecommons.org/licenses/by-nd/4.0/ or send a le�er to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

data-type, where concurrent operations commute, producing the
same outcome regardless of the order in which they are applied.

2 TAGGED CAUSAL DELIVERY
For other applications, e.g., con�ict-free replicated data-types [6]
having non-commutative data-type operations, the semantics is
de�ned based on the happens-before relation between mutator
operations. Let us consider the case of an Add-Wins Set, where the
mutator operations are add(e) (adding an element to the set) and
rmv(e) (removing an element from the set). �e remove operation
would override an add (of the same element) that happened-before
it, but if the operations are concurrent, the add wins, making the
element present in the set. To implement such a replicated data-
type, the happens-before relation between mutator operations is
needed.

�e implementor of such data-types, tends to rely on o�-the-
shelf causal delivery middleware, to obtain an exactly-once delivery
respecting happens-before. However, the happens-before informa-
tion, which is needed by the data-type, is not exposed in the causal
delivery middleware API. �is makes the data-type implementa-
tion explicitly add timestamping information (e.g., vector-clocks or
globally-unique tags) to the state and messages in order to track
the happens-before relation. �is means more data-type state and
more information in the message payload, which is a waste and a
duplication of e�ort, considering that the causal-delivery middle-
ware must be somehow tracking happens-before, but not exposing
it to the client application.

To improve e�ciency and spare data-type implementors from a
duplication of e�ort, we have previously proposed [1] exposing in
the causal delivery API the operation timestamps that characterize
happens-before. �is allowed more elegant and e�cient operation-
based CRDTs to be de�ned.

3 THE PITFALLS OF EXPOSING
MIDDLEWARE TIMESTAMPS

At �rst glance, it might seem trivial to implement tagged causal
delivery, by using any classical causal delivery middleware service
and exposing to the client code the timestamps (e.g., vector-clocks)
that are used internally to ensure causal delivery. However, when
considering concrete implementations, some unexpected problems
arose. We show how naively exposing the timestamps would lead
to an incorrect characterization of causality, in either of the two
typical interaction models between middleware and client code:
callback-based and with independent threads/processes.

Callback-based. In an event-driven architecture with a single
process, the application code runs as callbacks invoked from the
middleware code when messages need to be delivered to the ap-
plication logic to be processed, e.g., deliver(m, t) for message m



PaPoC’18, April 23, 2018, Porto, Portugal Georges Younes, Paulo Sérgio Almeida and Carlos Baquero

tagged by t timestamp. To avoid reentrancy problems, when a send
is invoked inside the deliver callback, the send simply adds the
message to a queue, to be handled by middleware code when the
callback �nishes. It can happen that the middleware has a set of
messages ready to be delivered, and invokes the deliver callback
for each one, before handling sends which have been enqueued. If
the middleware creates timestamps for messages to be sent only
upon dequeing them, then a message will be tagged as causally in
the future of all messages that were delivered a�er the send action
by client code and before dequeing occurred. �is means that some
messages that are actually concurrent are tagged as causally related,
making timestamps re�ect a larger relation than happens-before,
over-ordering some events. While this does not break causal deliv-
ery, it means that these timestamps cannot be exposed as precisely
characterizing happens-before.

Independent threads/processes/actors. In other architectures we
have two independent processes, a client process and a middleware
process. Here, in addition to the queue of messages to be sent,
as above, we will typically also have a queue of messages ready
to be delivered. �e middleware tags and enqueues messages to
the deliver queue, while the client dequeues and processes them.
When doing a send, the client enqueues a message to the send
queue. �is message will be tagged by the middleware process
as in the future of other messages not yet delivered by the client
(namely, those that are still in the delivery queue but have already
been tagged), when they are in fact concurrent. Note that what
de�nes the happens-before is the total order of send and deliver
events as observed by each client process; other events, e.g., when
a message was enqueued or dequeued by the middleware process,
are irrelevant (i.e., events which happen in the system, but invisible
to the API).

4 CORRECT TAGGING OF HAPPENS-BEFORE
To correctly characterize happens-before, a message being sent
must be tagged re�ecting the causal knowledge according to all
delivery events at the client, up to the send event (at the client).

In the single process callback-based model, this can be achieved
by making the middleware update the causal timestamp (e.g., vector-
clock) just before invoking each deliver callback, and either making
the send function tag the message before enqueuing, or making
the middleware process all messages enqueued to be sent before
invoking the next deliver callback.

As for the two independent processes model, the client process
will need to maintain the causal timestamp, update it at each deliver
event and use it to tag each message. �e middleware process keeps
a causal timestamp as before and uses it for the causal delivery order.
�e only di�erence is that now messages are tagged at the client
process and not at the middleware process.

5 A WELCOME SIDE-EFFECT
In classical causal delivery middleware, some concurrent messages
are tagged as in happens-before relation to each other. �is un-
necessary over ordering, while not contradicting causal delivery,
has the adverse e�ect of inducing extra delays on delivery, making
some message wait for another when it should be possible to deliver
it earlier.

In tagged causal delivery middleware, which characterizes happens-
before in a precise way, as we discussed above, each message will
be able to be delivered as early as semantically possible.

6 CONCLUSION
In this short paper, we address the fact that some applications
require happens-before causality information, and would bene�t
from causal delivery middleware which exposed such information,
what we have called tagged causal delivery, and present the lessons
from actually implementing such a middleware. Although starting
from some classic causal delivery middleware and adpating it to
achieve correct tagging is not di�cult, if proper care is not taken one
can easily end up with an incorrect implementation. We present the
reasons of why simply exposing current internal tags will not work
and provide a solution for a correct implementation of tagged causal
delivery. Also, we would like to note that an Erlang implementation
of this tagged causal delivery middleware exists publicly at h�ps:
//github.com/gyounes/trcb base.

REFERENCES
[1] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. 2014. Making operation-

based CRDTs operation-based. In IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer, 126–140.

[2] Kenneth Birman, Andre Schiper, and Pat Stephenson. 1991. Lightweight causal
and atomic group multicast. ACM Transactions on Computer Systems (TOCS) 9, 3
(1991), 272–314.

[3] Kenneth P Birman and �omas A Joseph. 1987. Reliable communication in the
presence of failures. ACM Transactions on Computer Systems (TOCS) 5, 1 (1987),
47–76.

[4] Kenneth P Birman, Robbert van Renesse, and others. 1994. Reliable distributed
computing with the Isis toolkit. Vol. 85. IEEE Computer society press Los Alamitos.

[5] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (1978), 558–565.

[6] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A com-
prehensive study of Convergent and Commutative Replicated Data Types. Technical
Report. 50 pages. h�p://hal.upmc.fr/inria-00555588/

https://github.com/gyounes/trcb_base
https://github.com/gyounes/trcb_base
http://hal.upmc.fr/inria-00555588/

	Abstract
	1 Causal Delivery
	2 Tagged Causal Delivery
	3 The pitfalls of exposing middleware timestamps
	4 Correct tagging of happens-before
	5 A welcome side-effect
	6 Conclusion
	References

