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Towards autonomic workload

aware NoSQL databases

In order to attain the promises of the Cloud Computing paradigm, systems need

to transparently adapt to environment changes. NoSQL databases, which are

pivotal systems in nowadays cloud infrastructures, exhibit the highly desirable

scalability and availability properties. Scalability achieved by these databases

is anchored on data independence; there is no clear relationship between data,

and atomic inter-node operations are not a concern. Such assumption over data

allows a paradigm shift on how to achieve the best performance. Unfortunately,

current solutions put the burden on the application’s developer to handle and

master the specificities of each system that is hindering a broader adoption.

In this dissertation, we tackle the several shortcomings in current implemen-

tations of cloud-based NoSQL databases at four di↵erent levels. First, we present

a cloud-enabled framework for the automatic and heterogeneous reconfiguration

of NoSQL databases. This framework enables NoSQL databases to become au-

tonomously elastic while providing a new load balancing component that takes

into account data access patterns. Secondly, we propose a novel mechanism to

partition data that takes into account the system workload. It estimates, in an

autonomous way, a splitting point that leads to optimal load balancing in terms

of requests. Then, we develop a mechanism to accurately predict the resource us-

age of NoSQL databases resorting to an o✏ine trained model. It can accurately

estimate in real time the database resource usage for any request distribution

only by knowing two parameters: i) cache hit ratio; and ii) incoming through-

put. This mechanism is su�ciently simple and generic so it can be used with

several databases. Finally, we leverage the work on the resource usage prediction

to design and implement a novel load balancer mechanism that maximizes the

resource usage across the cluster.
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Rumo a bases de dados NoSQL

autonomamente adaptáveis à

distribuição dos pedidos
De modo a alcançar as promessas do paradigma da computação na nuvem, os

sistemas têm de ser capazes de adaptar-se às mudanças de uma forma transpar-

ente. Os bancos de dados NoSQL que são sistemas cruciais nas infra-estruturas

da nuvem, possuem as propriedades de escalabilidade e elevada disponibilidade.

A escalabilidade está assente na independência de dados; pois não existe uma

relação clara entre os mesmos, e operações atómicas que envolvam mais que

um nó não são uma preocupação. Tal pressuposto permite uma mudança de

paradigma na forma de alcançar o melhor desempenho. Infelizmente, as soluções

atuais requerem responsabilidades adicionais a quem desenvolve as aplicações,

nomeadamente a necessidade de manipular e dominar as especificidades de cada

sistema. Esta situação está a dificultar a adoção do paradigma.

Nesta dissertação, abordamos várias lacunas das atuais implementações de

bases de dados NoSQL a quatro diferentes ńıveis. Primeiro, apresentamos um

sistema que permite a reconfiguração automática e heterogénea de bases de dados

NoSQL, que permite que essas bases de dados se tornem autonomamente elásticas

e simultaneamente balancear a carga tendo em conta os padrões de acesso. Em

segundo lugar, propomos um novo mecanismo de particionamento de dados que

dado o estado atual do sistema, estima de forma autónoma qual o ponto ideal de

divisão baseado nos pedidos. Desenvolvemos, ainda, um mecanismo para prever

com precisão o uso de recursos pelas bases de dados NoSQL com base num modelo

constrúıdo em modo o↵-line. Esse modelo permite estimar com elevada precisão

e em tempo real o uso de recursos da base de dados para qualquer distribúıção

somente conhecendo dois parâmetros: i) a taxa de acessos com sucesso da cache e

ii) o desempenho. O mecanismo é suficientemente simples e genérico podendo ser

utilizado em várias bases de dados. Finalmente, tirámos partido do trabalho sobre

a previsão de uso de recursos para projetar e implementar um novo mecanismo

de balanceamento de carga que maximiza o uso de recursos em todo o cluster.
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Chapter 1

Introduction

The constant technology evolution, wired as the optical fiber, or wireless such

as the WiMAX and LTE are turning Internet access more and more ubiquitous,

faster, better and cheaper. The proliferation of Internet access allows users to

consume services directly provided over the Internet, which results in a change of

paradigm for the use of applications and how users communicate, popularizing

the paradigm known as cloud computing. This paradigm presents itself as the

successor to the Grid Computing and Utility Computing, combining the features

of resource sharing from the former with the business model established by the

latter. In a cloud computing environment, the majority of applications, as well

as data, do not need to be installed or stored on the user’s computer, as they are

provided by the cloud through dedicated service providers, also known as Cloud

Providers (CPs). The Cloud Provider is responsible, for example, for the storage,

maintenance and backup of all user information. The user just has to access the

platform provided by the CP and only pay for the services she uses and when she

needs them - a concept known as pay-as-you-go.

The cloud is a complex environment composed of various subsystems that,

although di↵erent, are expected to exhibit a set of fundamental features: high

availability, high performance and elasticity. While high availability and high

performance are common goals to all systems, elasticity is specific to the cloud

environment and closely tied to the pay-as-you-go model. Elasticity can be de-

fined as the ability of a system to grow or shrink its resource consumption ac-

cording to demand. It is still an open challenge and a topic of a considerable

amount of recent research [Owens 2010, Vaquero et al. 2011].

1



2 1 Introduction

The ability to adjust resource consumption according to demand, favors the

pay-as-you-go model and improves resource utilization. In addition, current CPs

make their cloud platforms available in three main ways [Armbrust et al. 2010],

namely:

• Infrastructure-as-a-Service (IaaS): provides virtualized hardware resources

such as computing, storage and networking. The resources are allocated

on demand and in a pay-per-use fashion. An example of IaaS is Amazon

EC2 [EC2] (for computing) and Amazon S3 [S3] (for storage);

• Platform-as-a-Service (PaaS): o↵ers an encapsulation of a development en-

vironment abstraction that can be used to develop, deploy and run applica-

tions. Examples include the Google App Engine [AppEngine] and Microsoft

Azure [Azure];

• Software-as-a-Service (SaaS): features full applications or generic software

like databases, which are o↵ered as a service and accessible as a web service

or through a web browser. SalesForce.com and the Google Apps like Gmail

are some well known instances of this type.

Regardless of the cloud platform type, they are shared by multiple customers

in a multi-tenant environment. Therefore, optimal resource utilization becomes

an even greater concern, since if one customer is using more resources than

needed, it may impact the performance of other customer’s applications, re-

sulting in poorer overall performance. From a CP perspective, the ability to

dynamically optimize resource usage according to the contracted level of service

is fundamental to the business model.

Applications provided by the cloud imply the access of millions of users to

the same application and partly as a result, storage of digital data has reached

unprecedented levels[Skillicorn 2002] with the ever increasing demand for infor-

mation in electronic formats by individuals and organizations, ranging from the

traditional storage media for music, photos and movies, to the emergence of mas-

sive applications such as social networking platforms.

Relational Database Management System (RDBMS), which have been the

norm in data management systems, are not well suited for these environments.
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Consequently, the major online players researched alternatives into building ex-

treme large scale storage systems and the result is a great set of di↵erent dis-

tributed key-value data stores: Dynamo [DeCandia et al. 2007], PNUTS [Cooper

et al. 2008], BigTable [Chang et al. 2006], HBase [George 2011], Cassandra [L.

and M. 2009], DataDroplets [Vilaça et al. 2010], among others. Such data stores

are also known as NoSQL databases due to their lack of SQL query language

interface as opposed to RDBMS. NoSQL databases provide high availability and

scalability in a distributed environment composed by a set of commodity hard-

ware, avoiding the need to invest in very powerful and expensive servers to host

the database. In addition, these data stores automatically provide replication,

fail-over, load balancing and data distribution. Nevertheless, when compared to

the much mature RDBMS, NoSQL databases have some fundamental limitations

that should be taken into account. They provide high scalability at the expense of

a more relaxed data consistency model and only provide primitive querying and

searching capability. Thus, data abstraction and consistency becomes responsi-

bility of the application developers. In addition, although NoSQL databases can

handle elasticity, they are not autonomously elastic: an external entity is required

to control when and how to add or remove nodes. As a consequence, many ap-

plications cannot be easily ported to cloud computing environments, which may

result in poor quality of service..

1.1 Problem statement and objectives

One of the major challenges associated with cloud computing is to provide data

persistency services, which, simultaneously, o↵er ease of programming, data con-

sistency and elasticity. Although NoSQL databases were designed with the cloud

computing paradigm in mind, they add an extra degree of complexity due to their

di↵erent requirements, ranging from primitive querying and searching ability, to

a huge number of di↵erent tunable parameters that a↵ect the performance and

behavior of the database, as well as elasticity management, data balancing and

data partitioning. All of these features, therefore, have to be managed by the

application developer, which makes it more di�cult for non-experts to include

NoSQL databases in their application stack. While, at the same time it raises

novel challenges and opens space for improving current proposals beyond the
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state-of-the-art.

The main objective of this thesis is then to tackle the several shortcomings

in current implementations of cloud-based NoSQL databases at three di↵erent

levels: i) by enabling NoSQL databases to become autonomously elastic with

automatic tuning of performance related parameters; while ii) simultaneously

providing optimized load balancing and iii) improved data partitioning mecha-

nisms.

1.2 Contributions

Along the dissertation we present four novel contributions. Firstly, we devised a

framework called MeT that provides automated elasticity for NoSQL databases.

Current approaches to automated elasticity for NoSQL databases look at the

di↵erent cluster nodes as identical entities. Therefore, elasticity is limited to

the decision of adding or removing nodes from the cluster according to demand.

Introducing the possibility of having cluster nodes configured heterogeneously

proved to allow for better performance and resource usage. An outcome that

is only possible when taking the workload into account. We achieve this by

leveraging on an existing IaaS system as the basic provider of elasticity. We

expose new database engine metrics regarding workload’s access patterns, which

are constantly monitored along with the IaaS nodes. This information feeds the

decision component that then performs online cluster reconfiguration as needed.

The prototype is compatible with HBase and OpenStack [OpenStack Foundation]

as the underlying IaaS.

As a second contribution, we propose a novel automated mechanism to parti-

tion data that takes into account the system workload. The mechanism proposed

estimates, in an autonomous way, a splitting point that leads to optimal load

balancing in terms of requests. We show that the algorithm is as simple as ef-

fective and it is a good complement to MeT. However, it is a generic approach

applicable to di↵erent NoSQL databases.

The third contribution of this thesis is a mechanism to accurately predict the

resource usage of NoSQL databases. We observed that the majority of the NoSQL

systems make use of bu↵er caching mechanisms to improve performance. More-

over, the e↵ectiveness of such mechanisms is directly related to the performance
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and, as a consequence, to the resource utilization of the database. This e↵ec-

tiveness can be measured in terms of the hit ratio that the caching mechanism

exhibits. The higher the cache hit ratio the more e↵ective the cache mechanism

is, and thus more performant is the database. We propose that instead of a spe-

cific workload that is characterized by the three common parameters, namely: i)

data size; ii) distribution of requests and iii) incoming throughput, a workload

can be characterized by the incoming throughput and by its cache hit ratio, as

the latter is a reflection of the i) data size and of the ii) distribution of requests.

By taking advantage of this relationship we can use the cache hit ratio and the

throughput to build a server usage model based on the uniform distribution of

requests, that can then be used to predict the resource utilization of any work-

load only by knowing those two parameters. Both input values can be observed

in real time or synthesized for request allocation decisions. This novel approach

is su�ciently simple and generic so it can be used with several NoSQL, such as

HBase and Cassandra, while simultaneously being suitable for other practical

applications.

One of such applications is a resource usage load balancer that can be inte-

grated in MeT framework. This is the fourth and final contribution, the new

load balancer maximizes the resource usage of every node composing the clus-

ter, which in turn minimizes the number of nodes needed to meet the desired

performance.

1.3 Results

The work discussed in this thesis resulted in a number of publications in distinct

international conferences:

• Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo,

José Pereira, and Ricardo Vilaça. MeT: Workload Aware Elasticity for

NoSQL. In Proceedings of the ACM European Conference on Computer

Systems (EUROSYS). ACM, 2013

• Francisco Cruz, Francisco Maia, Rui Oliveira and Ricardo Vilaça. Workload-

aware table splitting for NoSQL. In Proceedings of the 29th Annual ACM

Symposium on Applied Computing (SAC), 2014
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• Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo,

José Pereira, and Ricardo Vilaça. Resource usage prediction in distributed

key-value datastores. In Proceedings of Distributed Applications and Inter-

operable Systems (DAIS), 2016

Also, preliminary work has been published that greatly improved our knowl-

edge of NoSQL databases:

• Ricardo Vilaça, Francisco Cruz and Rui Oliveira. On the expressiveness and

trade-o↵s of large scale tuple stores. In Proceedings of the On the Move to

Meaningful Internet Systems (DOA), 2010

• Francisco Cruz, Pedro Gomes, Rui Oliveira and José Pereira. Assessing

NoSQL databases for telecom applications, In Proceedings of the IEEE 13th

Conference on Commerce and Enterprise Computing (CEC), 2011

Additionally, the result of collaborations paving the way for this thesis or

leveraging its research appear in the following publications:

• Ricardo Vilaça, Francisco Cruz, José Pereira and Rui Oliveira. An e↵ective

scalable SQL engine for NoSQL databases. In Proceedings of Distributed

Applications and Interoperable Systems (DAIS), 2013

• Fabio Coelho, Francisco Cruz, Ricardo Vilaça, José Pereira and Rui Oliveira.

pH1: A Transactional Middleware for NoSQL. In Proceedings of 33th IEEE

International Symposium on Reliable Distributed Systems (SRDS), 2014

• Ricardo Jimenez-Peris, Marta Patino-Martinez, Bettina Kemme, Ivan Brondino,

José Pereira , Ricardo Vilaça, Francisco Cruz, Rui Oliveira and Yousuf Ah-

mad. CumuloNimbo: A Cloud Scalable Multi-tier SQL Database. In IEEE

Data Engineering Bulletin, 38(1): 73-83, 2015

1.4 Outline

The rest of the document is structured as follows. We begin by providing some

background and context in Chapter 2 specifically on NoSQL databases with a par-

ticular emphasis in two databases, namely HBase and Cassandra. We also survey
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related work on elasticity of NoSQL databases as well as autonomous data par-

titioning and on resource usage prediction. Chapter 3 introduces MeT a cloud-

enabled framework that can automatically manage, configure and re-configure

a NoSQL cluster in a heterogeneous fashion, according to its access patterns.

Equipping the underlying NoSQL database with the ability to be autonomously

elastic, by the addition or removal of nodes specifically configured to the load

they are expected to serve. In Chapter 4 we describe an automated mechanism

to partition data that takes into account the system workload. In Chapter 5 we

propose a mechanism to predict the resource usage of NoSQL databases based

on the cache hit ratio. This novel mechanism is su�ciently simple and generic so

it can be used with several NoSQL systems, such as HBase and Cassandra, while

simultaneously being suitable for other practical applications. One of such appli-

cations is a resource usage load balancer for NoSQL databases that is described in

Chapter 6. Finally, Chapter 7 concludes the thesis and discusses possible future

work.



8 1 Introduction



Chapter 2

Background

This chapter focuses on providing some context for the work described in sub-

sequent chapters. Considering that our goal is to tackle several shortcomings in

current implementations of cloud-based NoSQL databases we center the chap-

ter around them, beginning by providing an overview of the most important

instances. We then focus on two of most popular and representative NoSQL

databases HBase and Cassandra by laying down all their features and di↵erences

in architecture, and the di↵erent components that serve as the main motivation

for this work. Subsequently, we provide a brief historical overview over elasticity

and more specifically on state-of-the-art systems that aim to bring autonomous

elasticity to NoSQL databases, which is the foundation for the MeT framework.

We also include some background on autonomous data partitioning. And, finally

we provide some background on resource usage prediction and its importance to

achieve optimized load balancing and thus optimized resource utilization through-

out the cluster specially in the context of a cloud environment.

2.1 NoSQL databases

With the demand for elastic and scalable distributed databases for managing

large volumes of data, major companies like Google, Amazon, Yahoo! and Face-

book came up with their own designs of shared-nothing large scale distributed

databases (also known as NoSQL databases) respectively: BigTable [Chang et al.

2006], Dynamo [DeCandia et al. 2007], PNUTS [Cooper et al. 2008] and HBase [George

2011], and Cassandra [L. and M. 2009].

9
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Amazon’s Dynamo is a highly available key-value store. It is not accessible

as a service, but it is used as a building block to some of Amazon’s most popular

web services such as S3 or EC2.

Designed to be highly scalable, PNUTS is shared by Yahoo!’s multiple ap-

plications. It allows for concurrent queries and data updates. In fact, PNUTS

makes part of a service called Sherpa, which also encompasses the Yahoo! Mes-

sage Broker (a topic based publish-subscribe system).

HBase is the open-source implementation of Google’s BigTable, which is a

distributed database used internally at Google for web indexing, Google Earth,

Google Finance and it is also used to support Google’s App Engine. Nonethe-

less, there are some di↵erences between the two systems: BigTable is built on

top of the Google File System [Ghemawat et al. 2003] while HBase relies on

the Hadoop distributed file system (HDFS) [Apache]; BigTable’s uses Google’s

Chubby [Burrows 2006] as its distributed coordination service, while HBase uses

Zookeeper [Hunt et al. 2010].

Initially developed at Facebook to support the social networking application,

Cassandra is now an Apache open-source project. It is a distributed database

that encompasses concepts from the Dynamo’s architecture and the data model

from BigTable.

NoSQL databases run in a distributed setting with hundreds or thousands

of machines. Enabling distributed processing over this kind of massive-scale

storage poses several challenges: problems of data placement and replication,

distributed processing and aggregation. Furthermore, dependability becomes,

once again, a major challenge in face of massive distributed data management.

Due to the highly dynamic membership inherent to these systems, not only global

agreement is usually unreachable but also the overhead caused by state update

on readmissions can be unbearable. All of the aforementioned NoSQL databases

share a similar approach, however they have significant di↵erences on both the

data model and on the architecture proposed.

2.1.1 HBase and Cassandra

In the context of this thesis we will now focus on two of the most popular and

widely used NoSQL databases, namely: HBase and Cassandra. According to

their architecture, NoSQL databases may be categorized in two main types: fully
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decentralized and hierarchical. Cassandra is a representative example of a NoSQL

database that follows a fully decentralized architecture, while HBase falls in the

hierarchical category.

In the fully decentralized type physical nodes are kept organized on a logical

ring overlay. Each node maintains complete information about the overlay mem-

bership, being therefore able to reach every other node. Each node composing

the cluster is identical.

In the hierarchical type, a small set of nodes is responsible for maintaining

data partitions and coordinate processing and storage nodes. HBase organizes

tuples into Regions : horizontal partitions of tuples. HBase is composed of three

di↵erent types of servers: master, RegionServers, and lock servers. Master servers

coordinate the RegionServers by assigning and mapping Regions to them, and

redistributing tasks as needed.

When compared to the relational model, the implemented data model in a

NoSQL database is usually rather simple. Both Cassandra and HBase are based

on BigTable’s data model that can be thought of as a multi-dimension sorted map.

The Keyspace is a namespace for ColumnFamilies, which in turn map rows to a

set of columns. In fact, there is a rough correspondence between a ColumnFamily

and a table in the relational model, but they di↵er on the property that within

a ColumnFamily each row can have a completely di↵erent set of columns. As

a result, there is no pre-defined schema so columns can be added dynamically.

Within a ColumnFamily columns can be ordered according to their names, using

one of the following supported criteria: ASCII, UTF-8, Long, UUID or binary

ordering. Actually, Cassandra extends BigTable’s data model by adding a higher

data structure: SuperColumnFamilies where each of its attribute columns (in this

structure named SuperColumns) can have a list of ordinary columns.

Also Contrasting with RDBMS, these databases only provide a simple key-

value interface to manipulate data by means of put, get, delete, and scan opera-

tions and they do not o↵er strong consistency criteria. Complex operations like

joining and aggregation are not present and data is denormalized.

Despite having di↵erent designs, the mentioned NoSQL databases share com-

mon components like request routing and processing, storage and use common

distributed systems techniques such as partition, replication and failure detec-

tion. In the following, it is highlighted the similarities and di↵erences between
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each database regarding those components.

Request routing

Due to the multiple nodes used and the partition of data, every time a request

is issued to the database, that request has to be routed to the responsible node

for that piece of data. In Cassandra any incoming request can be issued to any

node in the system. Then, the request is directly routed to the responsible node.

HBase uses a client library that caches regions locations and therefore clients send

the requests directly to the proper RegionServer. When the client starts, and thus

its cache is empty, the client has to contact the master server and scan a special

table called hbase:meta in order to know the RegionServer that is responsible for

the piece of data.

Consistency model

According to the CAP theorem[Gilbert and Lynch 2002] it is impossible to have

simultaneously strong consistency and high availability in the presence of network

partitions. Consequently, in order to meet the high availability requirements and

at the same time cope with network partitions, some NoSQL databases chose

to relax the consistency criteria. Cassandra makes use of eventual consistency:

a relaxed consistency criteria where the updates are propagated to all replicas

asynchronously, which means that stale data can be read and conflicts may occur.

On the other hand, HBase chose not to tolerate network partition in order to

o↵er a stronger consistency criteria, thus it supports atomic operations on data

stored under a single row key which can be used to perform read-modify-write

operations, but yet not transactions across several row keys.

Data partitioning and load balancing

The characterization of the architecture is directly related to the way databases

realize data partition, which is a major aspect of these distributed databases.

In the fully decentralized based architectures, data partition is done in a fully

decentralized manner through consistent hashing [Karger et al. 1997], while in

the hierarchical based architectures a small set of nodes is responsible for main-

taining the data partitions. As it could be expected, Cassandra by default uses
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consistent hashing in order to dynamically assign tuples to the available nodes.

However, it can also use an ordered partitioning scheme. In HBase, a region split

is automatically triggered whenever it reaches a certain threshold in size. When

the decision to split is made, the database will split it into two regions of roughly

the same size. As an alternative, the splitting procedure can also be done man-

ually. By manual we mean that it requires a human manually choosing splitting

points. The assignment of regions to RegionServers resorts to a randomized data

placement component. The strategy followed by this component is to evenly dis-

tribute the load of the cluster based on the number of regions, i.e. ensuring every

RegionServer has a similar number of regions.

Bu↵er caching

In NoSQL datasbases, caching mechanisms are key for improving the overall

performance. HBase has a block cache implementing the LRU replacement al-

gorithm [Sleator and Tarjan 1985]. Several key-values are grouped into block

of configurable size and these blocks are the ones used in the cache mechanism.

The block size within the block cache is a parameter but defaults to 64KB. In

addition, HBase update requests are written to memory - the memstore - before

being flushed to disk. When the number of files reach a certain threshold the

compaction process starts, which chooses some files and combine them into fewer

but larger files. Both the block cache and the memstore have configurable sizes in

terms of the total java heap size allocated to a RegionServer. Like HBase, Cas-

sandra uses caching to speed up the performance of each node that composes the

cluster. However, its implementation di↵ers from HBase in the sense that instead

of being block oriented, is oriented towards the row. Therefore this cache, used

for read operations, is called row cache and also operates under the LRU replace-

ment algorithm with a configurable size. Finally, Cassandra update requests are

also first written to memory - the memtable - before being flushed sequentially

to disk.

Persistent storage

In a NoSQL database the persistency component ensures that writes are made

durable. While Cassandra relies on local disks for persistency, HBase uses a

storage service, namely the Hadoop distributed file system (HDFS). Each region
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is stored as an append-only file in HDFS, whose instances are called DataNodes.

Usually, RegionServers are co-located with DataNodes to promote the locality of

the data being served by the RegionServer.

Replication

Another important and mandatory component of these type of databases is repli-

cation, which is used not only to ensure fault-tolerance but also to improve perfor-

mance of read operations by means of load balancing. In Cassandra, replication

is done by the node responsible for data, as determined by consistent hashing, by

replicating it to the R-1 clockwise successors - with a replication factor of R. In

HBase replication is done only at the storage layer by HDFS, with a configurable

replication factor of R.

Failure detection

NoSQL databases usually provide failure detection of the nodes that compose

the system. In the Cassandra failure detector, each node locally determines if

any other node in the system is up or down using an � Accrual Failure Detec-

tor[Hayashibara et al. 2004]. In HBase, the master server is responsible for the

failure detection. Moreover, when a RegionServer fails, the master server informs

other RegionServers, and the regions of the failed RegionServer are distributed

across the set of available RegionServers. It is worth noting, that the same be-

havior occurs when a RegionServer is properly shutdown, that is the regions it

was serving are distributed across the set of available RegionServers.

Metrics

HBase and Cassandra export several important metrics related to the database’s

performance through JMX and their web-interface, for instance: the total number

of read, write and scan requests, the number of requests per second, and the cache

hit ratio. It is also easy to implement and export new metrics, which is important

for both system administrators and management tools like the ones described in

this work.
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Configuration and homogeneity

NoSQL databases often require extensive fine tuning. Both Cassandra and HBase

have many configuration parameters that have a great impact on the performance

of the database. One of such parameters is the bu↵er caching size and the mem-

store/memtable size that allow one to give more privilege to read or write opera-

tions, in a continuous fashion. Other parameters allow to adjust the behavior of

the garbage collector, the write bu↵er sizes or the number of threads available to

answer incoming requests In addition, HBase and Cassandra allow for the use of

compression algorithms that greatly reduce the disk I/O and network tra�c be-

tween the servers and the persistent storage layer. These configuration tasks are

typically manual and dependent on the administrator’s expertise. Usually, the

system administrator will analyze the expected workloads and homogeneously

configure the cluster nodes to cope with the expected load with best perfor-

mance. Such a configuration takes into account the overall cluster performance

and each node in the cluster is configured identically. In this thesis, particularly

in Chapter 3, we show that by configuring the cluster heterogeneously the per-

formance can be greatly improved. However, cluster management becomes even

more complex, thus an automated management tool becomes mandatory.

2.2 Elasticity

According to NIST’s definition [Mell and Grance 2011], elasticity can be defined

as follows: ”Capabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly outward and inward commensurate with demand.

To the consumer, the capabilities available for provisioning often appear to be

unlimited and can be appropriated in any quantity at any time.” In addition, in

order to achieve elasticity and the illusion of infinite capacity available on demand

autonomous allocation and management is required [Armbrust et al. 2010]. As a

result, there is a significant amount of research work related with dynamic scale

of Cloud applications. A good range of this research work is present in [Vaquero

et al. 2011] where many of the current state-of-the-art e↵orts towards an elastic

Cloud are referred.

However, in this thesis we focus on automated elasticity for NoSQL databases.

In this regard, there are some works worth mentioning. In [Lim et al. 2010]
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and [Trushkowsky et al. 2011b], two systems are presented that allow automated

control of an elastic storage system, a distributed file system and a custom stor-

age system, respectively. These works, to the best of our knowledge, represent

the first attempts on designing true elastic storage systems. The idea behind

these systems is having a control system that gathers information about work-

loads (request latency, utilization, response time, etc.) and decides whether to

start or stop a computing instance. In order the determine which servers are

overloaded/underloaded, the system from [Lim et al. 2010] measures CPU uti-

lization while the SCADS director [Trushkowsky et al. 2011b] uses a steady-state

performance model to predict whether a server can handle a particular workload,

without violating a given latency threshold, according to the workload rate of get

and put operations.

Elasticity of NoSQL databases has also been subject to analysis. In emphti-

ramola work [Konstantinou et al. 2012], three di↵erent NoSQL databases (HBase,

Cassandra and Riak) are tested in order to assess their elastic capabilities. The

paper presents extensive experiments that measure the cost of adding or remov-

ing nodes from those NoSQL systems. It is important to notice, however, that

this control system is restricted to operations such as add or remove database

instances. Data distribution is left as a database responsibility and all instances

are considered equal. Furthermore, tiramola is oblivious to workload information

or any database metric. It relies solely on CPU usage, memory consumption and

other system-level metrics for its decision model. Similar behavior is obtained by

the use of Amazon’s Cloud Watch [CloudWatch] together with Amazon’s Auto

Scaling [Scaling]. The Amazon Cloud Watch service gathers system metrics while

the Auto Scaling allows a user to define rules based on such metrics. These rules

define what action to take (add or remove nodes) when certain metric values

reach some thresholds.

In this work we also use several systems metrics (CPU utilization, I/O wait

and memory usage) that are critical for a storage system and highly impacts

server utilization’s estimation. However, on top of that we also use database spe-

cific performance metrics and workload information. In addition, our framework

applies di↵erent heterogeneous configurations, a clear departure from previous

approaches.

In fact, with respect to heterogeneous configuration of computational in-



2.3 Autonomous data partitioning 17

stances there is some related research work. In [Soror et al. 2008] the authors

propose a system to autonomously change virtual machine configurations in order

to adjust how resources are allocated. This allows for a certain virtual machine

to be granted more resources if it has higher demand. In this particular case,

the idea was applied to virtual machines running relational database manage-

ment systems. For instance, a certain database management system with an

heavy workload would be given more memory, thus boosting performance with-

out impacting other lighter databases, and improving the overall performance.

If the same resources would be given to every virtual machine, resources would

be wasted and the system would perform below its actual capabilities. The idea

of heterogeneous configuration of a pool of computational instances is similar to

the one we present in Chapter 3. It di↵ers in the fact that we are dealing at the

application level, rather than at the level of the virtual machine controller.

2.3 Autonomous data partitioning

Autonomous data partitioning has been a subject of research work in the area of

distributed relational databases [Curino et al. 2010, Tatarowicz et al. 2012, Pavlo

et al. 2012]. In these works the main goal is to avoid multi-table queries, and thus

to avoid distributed transactions. In other words, the objective of autonomous

data partitioning in distributed relational databases is to prevent a transaction of

including more than one database node, due to the complexity and performance

penalty of distributed atomic commitment protocols.

On the other hand, in NoSQL systems distributed transactions are not a

concern so the main objective is always performance and optimized resource

utilization. Yahoo! Cloud Datastore Load Balancer [Klems et al. 2012] of which

the NoSQL database PNUTS is part of, o↵ers a splitting mechanism. In this

system data partitioning is performed in two situations. Based on the table size

or on its access load. However, even though this system takes into account table

load, it does not use such information to decide the splitting point. On the

contrary, the information is only used to determine if a table is a hotspot and if

so it should be split. In this case, the Yahoo! Cloud Datastore Load Balancer

splits data into two partitions with similar size.

In this work, we propose to include, as a database metric, a suggestion of a
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splitting point that has the following guarantees: if the table is split in that point,

according to past request patterns, the splitting will result in two equal halves

in terms of requests and not in terms of data size. The algorithm described in

Chapter 4 uses an online median estimation to estimate the splitting point based

on the past requests. This type of approach has never been applied to NoSQL

databases.

2.4 Resource usage prediction

Predicting how a system will behave is very important. Critical decisions on

resource allocation, systems configuration or even choice of technology typically

require extensive testing, which is still not enough to actually predict the behavior

of the system in a real deployment. Moreover, the outcome of these decisions has

a direct impact on system cost and e↵ectiveness. As a result, there has been a

considerable amount of research on prediction resource usage of generic systems

such as, virtual machines [Wood et al. 2008] [Sudevalayam and Kulkarni 2011].

But the more generic and broad the system, more complex models are needed,

as it must take into account many parameters.

As mentioned in the literature, in order to obtain accurate models with fewer

variables, it is key to focus on specific applications [Jennings and Stadler 2014].

Therefore, di↵erent applications have di↵erent requirements which means they

may need dissimilar approaches. This is the case of performance prediction for

relational databases focused on online transaction processing (OLTP) [Moza-

fari et al. 2013b] [Mozafari et al. 2013a] as opposed to performance prediction

of NoSQL databases. The di↵erent assumptions from relational databases sig-

nificantly change the required approach to accurately predict the performance of

NoSQL databases. Namely, relational database prediction mechanisms must cope

with a large number of concurrent and lock-prone transactions and need di↵er-

ent models for predicting resources such as CPU, RAM, Disk I/O and database

locks. While as explained and demonstrated in this work, NoSQL databases per-

formance can be predicted with a model based on a single resource as the charac-

teristics of these two database environments are intrinsically di↵erent. Moreover,

a single resource model is also not achievable for research work that predicts the

performance of SQL queries because they need to build models for each database
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operator (e.g., Sort, Merge Join), which are not present in NoSQL databases [Li

et al. 2012]. This is also the case of DBSeer [Mozafari et al. 2013b] that uses

query logs from relational databases to build distinct linear models to predict the

RAM, CPU, network and disk resources of relational databases.

Regarding the techniques used to predict systems’ performance, machine

learning and analytical modeling are the most commonly used. These can be

used exclusively or in combination, by resorting to time-series analysis [Khan

et al. 2012] [Gong et al. 2010], regression models [Desnoyers et al. 2012] [Zhang

et al. 2007], and clustering [Singh et al. 2010]. These approaches require lengthy

training phases to estimate accurately di↵erent workload distributions. It is how-

ever possible to reduce the duration of this initial phase by using a less accurate

model and then refine it, in runtime, with other machine learning algorithms [Di-

dona et al. 2015].

One of the most important applications of performance prediction for NoSQL

databases is related to resource allocation and load balancing in Cloud Comput-

ing. Systems like MeT and [Konstantinou et al. 2012] [Klems et al. 2012] [Wang

et al. 2012] try to overcome this problem by looking at runtime performance

metrics and deciding how to balance the load across machines. Some just add

or remove machines when needed, while others are also concerned with data and

request distribution, and distinct priorities for requests. Although, some of these

systems use statistical models to take better decisions, they make use of iterative

algorithms to reach optimal configurations. As a distinct approach, the SCADS

director [Trushkowsky et al. 2011a] uses a non-iterative steady-state performance

model to predict whether a server can handle a particular workload, without

violating a given latency threshold. However, SCADS is designed to keep data

only in memory and, as we show in this work, when data fits in memory the re-

source usage is only a↵ected by the incoming throughput and not by the workload

distribution.

As shown in Chapter 5 we are able to predict the performance of NoSQL

databases by resorting to a single model. This model is based on the observation

that the cache hit ratio has a great impact on the system’s performance, and by

correlating it with the incoming throughput it is possible to accurately predict the

performance of NoSQL databases. As other approaches, it needs o✏ine training,

but it does not require system traces or runtime mechanisms to improve the
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precision of the estimation.



Chapter 3

Workload Aware Elasticity

In this chapter we focus on the elasticity of NoSQL databases. These databases

have been designed to take advantage of large resource pools and provide high

availability and high performance. Moreover, they were designed to cope with re-

source availability changes. For instance, it is possible to add or remove database

nodes from the cluster and to have the database handle such change transparently.

Even though NoSQL databases can handle elasticity, they are not autonomously

elastic: an external entity is required to control when and how to add or remove

nodes.

Ideally, nodes would be added to the cluster when it is under heavy load, in or-

der to maintain service levels, and removed in the opposite case, to reduce costs.

Simply adding and removing nodes is insu�cient. In fact, current approaches

consider that all nodes of a NoSQL cluster share identical, and thus homoge-

neous configurations. But in practice, di↵erent applications have di↵erent access

patterns, which may even change over time. In addition, NoSQL databases as-

sume data partitioning, meaning that even within an application there may exist

data hotspots.

As our experiments show, fine tuning the available parameters of a NoSQL

database on a per node basis, significantly boosts overall performance, specially

when considering the workload characteristics. Consequently, the heterogene-

ity of data access patterns should be taken into account to optimize the use of

available resources.

In the following, we present the design and implementation of MeT, an elastic

system that not only adds and removes nodes, but also heterogeneously recon-

21
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figures them according to the observed workloads. We achieve this by leveraging

on an existing IaaS system as the basic provider of elasticity. We expose new

database engine metrics regarding workload’s access patterns, which are con-

stantly monitored along with the IaaS nodes. This information feeds our decision

component that then performs online cluster reconfiguration as needed.

3.1 Heterogeneity

In NoSQL databases, data is distributed across the cluster, thus each node is

responsible for a subset of data. In clear contrast to relational databases (both

single node and distributed), in NoSQL databases the co-location of data parti-

tions in the same node, which are usually queried together, is no longer needed

because:

• there is no clear relationship between data from di↵erent entities, and data

is de-normalized;

• computation is done on the client side, for instance queries joining two data

partitions do not take advantage of data co-location;

• NoSQL databases do not provide atomic multi-item operations, thus atomic

inter-node operations are not a concern.

The fact that data is fairly unrelated and can be highly partitioned across

the NoSQL cluster, allows for a rebalancing of the cluster to maximize perfor-

mance without further concerns, such as data locality for join operations. In

order to achieve it, NoSQL databases often require extensive fine tuning. These

configuration tasks are typically manual and dependent on the administrator’s

expertise. Usually, the system administrator will analyze the expected workloads

and homogeneously configure the cluster nodes to cope with the expected load

with best performance. Such a configuration takes into account the overall cluster

performance and each node in the cluster is configured identically. However, dif-

ferent applications have di↵erent data access patterns and even within the same

application there may exist data partitions that are hotspots while others are

seldom accessed.



3.1 Heterogeneity 23

The heterogeneity in access patterns should therefore be taken into account

during distribution and data partitioning. Moreover, regardless of the application

they refer to, data partitions with similar access patterns should be placed in

the same physical nodes configured specifically and exclusively to serve them.

The heterogeneity in access patterns leads to a heterogeneous cluster, i.e. with

di↵erent node configurations, optimized to achieve better performance under the

expected workloads. For instance, in HBase by increasing the block cache size

(see Chapter 2) we can have one RegionServer optimized for read operations, and

thus assign read intensive data partitions (or Regions) to that RegionServer. For

clarity of presentation, we can refer to nodes as RegionServers or data partitions

as Regions. This di↵erence in nomenclature depends on whether we are referring

to our algorithms that are independent of the implementation, or whether we are

referring our prototype, which is based on HBase.

In the following we set up an experiment that validates our intuition.

3.1.1 Workload description

We evaluated HBase in a multi-tenant environment using YCSB [Cooper et al.

2010] as a workload generator configured with di↵erent, but simultaneous work-

loads. The reason to use di↵erent workloads simultaneously, is to simulate a

multi-tenant setting as expected in a Cloud environment. YCSB provides six

pre-configured workloads that simulate di↵erent application scenarios. In order

to achieve a overall read/write ratio of approximately 1.9:1 [Chen et al. 2010], we

modified the configuration parameters of two workloads, namely of WorkloadB

and WorkloadD. We used the following workloads:

WorkloadA: readProportion=50%; updateProportion=50%; Application scenario:

session store recording recent actions;

WorkloadB: updateProportion=100%; Application scenario: stocks management;

WorkloadC: readProportion=100%; Application scenario: user profile cache,

where profiles are constructed elsewhere (e.g., Hadoop);

WorkloadD: readProportion=5%; insertProportion=95%; Application scenario:

logging/history;
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WorkloadE: scanProportion=95%; insertProportion=5%; Application scenario:

threaded conversations, where each scan is for the posts in a given thread

(assumed to be clustered by thread id);

WorkloadF : readProportion=50%; readmodifywriteProportion=50%; Applica-

tion scenario: user database, where user records are read and modified by

the user or to record user activity.

All workloads were initially populated with 1,000,000 records, exceptWorkloadD.

This workload simulates a logging/history application that produces a very fast

growing log, thus it was initially populated with 100,000 records. Overall, the

cluster starts with around 7GB of data and during a 30 minute run it grows, on

average 6GB.

With the exception of WorkloadD with only one data partition, each of the

remaining workloads has four data partitions (Regions in HBase) of the same size.

The keys were drawn from YCSB hotspot distribution, with 50% of the requests

accessing a subset of keys that account for 40% of the key space. In terms of

the load distribution on each data partition, it means that one partition is a

hotspot (34% of the requests), other partition has an intermediate load request

(26%), and the remaining two have few but evenly distributed requests (20% of

the requests each).

3.1.2 Experimental setting

In all experiments, one node acts as master for both HBase and HDFS, and it

also holds a Zookeeper instance running in standalone mode. Our HBase cluster

was composed of 5 RegionServers, each configured with a heap of 3 GB, and 5

DataNodes. It is noteworthy that the RegionServers were co-located with the

DataNodes with a replication factor of 2.

We used two other nodes to run the YCSB workload generators: WorkloadA,

WorkloadB andWorkloadC in one node,WorkloadD,WorkloadE andWorkloadF

on the other. All workloads were configured to run for 30 minutes with a ramp-up

time of 2 minutes. In addition, all workloads were run with 50 threads each except

for WorkloadD with 5 threads. Likewise, there were no limitations imposed on

the throughput of each workload except for WorkloadD with a target throughput

of 1500 operations per second. We have imposed these limits to WorkloadD so
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that all scenarios had identical conditions and were not, therefore, overly influ-

enced by a too rapid growth of data. In our first experiments data grew so fast

that far exceeded the capacity of our 5 RegionServer cluster, which would then

negatively impact the performance of other workloads (multi-tenancy). This be-

havior was observed especially in theManual�Homogeneous strategy explained

below.

All nodes used for these experiments have an Intel i3 CPU at 3.1GHz, with

4GB of memory and a local 7200 RPM SATA disk, and are interconnected by a

switched Gigabit local area network.

3.1.3 Placement and configuration strategies

We defined three di↵erent strategies representative of di↵erent data placement

and node configurations, namely: Random�Homogeneous,Manual�Homogeneous

and Manual �Heterogeneous.

Random-Homogeneous: This strategy represents the regular behavior of

HBase with a manual, homogeneous configuration of nodes and using the out-

of-the-box randomized data placement component that evenly distributes data

partitions across all cluster nodes. Because it is random, it assumes uniformity

on the number of requests per data partition. Besides the necessary optimization

of the default configuration parameters of HBase, we also configured the two

parameters that allocate a percentage of the available memory for read and write

operations (block cache size and memstore size, respectively; see Chapter 2).

We adopted a direct mapping between these two parameters and the overall

read/write ratio. That is, we assigned 60% of memory to the block cache size for

read operations and, 40% to memstore size for write operations.

Manual-Homogeneous: In this strategy, we manually balanced data, so hot

data partitions would be as dispersed as possible across all nodes. Furthermore,

since configurations are homogeneous data partitions were distributed so that

the number of read/write requests would be evenly balanced across all nodes. In

order to do this, we conducted an exhaustive search to find the best distribution.

That meant trying out all possible combinations of data partitions to nodes that

balanced the number of read/write requests across all nodes. We evaluated 15
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possible distributions and we chose the one that showed better throughput.

Note that this strategy represents one possible distribution that Random �
Homogeneous could achieve. The configuration parameters are the same as in

Random � Homogeneous, so any performance improvement obtained is solely

due to the data placement.

Manual-Heterogeneous: In order to take advantage of heterogeneity in access

patterns, this strategy comprises manual data placement and heterogeneous node

configuration. The objective of this strategy is to cluster data partitions with

similar access patterns. In addition, each node is specifically configured according

to the type of load it is expected to handle.

The first step to implement this strategy was to observe the workloads de-

scribed earlier, in order to understand if and how we could cluster them according

to their access patterns. Just by looking at the distribution of requests for each

workload, one can easily conclude thatWorkloadA andWorkloadF have a mix of

read/write operations; WorkloadC produces only read operations; WorkloadE is

mainly composed of scan operations; whileWorkloadB andWorkloadD generate

almost only write operations. These observations lead us to our first conclusion:

we can aggregate the workloads into four main groups according to their access

patterns, namely Read/Write mix, Read, Scan and Write.

The next step is related to the mapping of the data partitions to the Re-

gionServers available. Intuitively, the number of RegionServers to assign each

group should be proportional to the number of data partitions it contains. For

instance, if we have a Read group containing 20 data partitions and a Write

group containing only 5 data partitions, it is clear the number of RegionServers

to assign to the Read group should be higher than to the Write group. Our

experiments confirmed this intuition. Consequently, in the current context we

used the following distribution: each of the groups considered were assigned one

RegionServer, except for the Read/Write group. In fact, this group was assigned

two RegionServers, because it contained 8 data partitions as opposed to the 4 or

5 data partitions of the other groups.

Once we have the mapping of groups to RegionServers, we distribute data

partitions following an approach similar to Manual � Homogeneous. In other

words, for the data partitions belonging to the Read/Write group we balanced

data so each of the two RegionServers had a similar load (i.e. similar number
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of requests). Once more, we resorted to an exhaustive search that culminated

with the hotspots of each workload being in di↵erent RegionServers, and with

the same number of data partitions in each RegionServer (i.e. 4 data partitions

in each one).

After the data placement stage was completed, we then manually configured

each RegionServer taking into account the load they were expected to handle.

For instance, all data partitions belonging to WorkloadE were assigned to a

single node with tailored configuration, namely increased block size (better for

sequential reads) and almost all available memory set for a read workload with

only marginal space for writes. On the contrary, the RegionServer of WorkloadB

and WorkloadD was configured for a write workload.

3.1.4 Results

Figure 5.4 shows the throughput for all workloads under the di↵erent HBase

strategies detailed above. Each bar in the plot represents a specific observation in

the cumulative distributed function (CDF) of the results, for instance the medium

shade of gray (50th percentile) indicates half of the observations were below that

value and the other half above. All presented results are the consequence of 5

independent runs.
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Figure 3.1: Manual strategies results.

It is clear that the Manual � ⇤ strategies impact positively the overall clus-

ter performance. While the Manual � ⇤ strategies improve to some extent the

throughput of WorkloadA, WorkloadB and WorkloadE, most of the observed
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improvement is due to the performance of WorkloadC.

The variance observed in the Random�Homogeneous strategy, both in each

workload individually and in the total throughput is very high due to the ran-

domness of the data placement component. As it is possible to observe, there was

one run whose total throughput was close to Manual � Homogeneous’s result,

while in another run the total throughput is almost half of the mean. This first

comparison confirms that a random data placement, when the distribution of

requests is not uniform, may lead to very distinct results. As such, we need to

carefully distribute data partitions across the cluster when dealing with a non-

uniform distribution of requests. Otherwise, the performance of the cluster is left

to chance.

Thereby, with a di↵erent strategy on data placement and, accordingly, con-

figuring the nodes for the expected load the results achieved by the Manual �
Heterogeneous strategy outperforms the two other strategies. As opposed to the

Manual�Homogeneous,Manual�Heterogeneous strategy improves each work-

load in relation to the other two strategies, except marginally for WorkloadD.

At first glance it may seem that WorkloadF ’s performance is better under the

Random�Homogeneous strategy. This is not true, since on averageWorkloadF ’s

performance for the Random �Homogeneous strategy is somewhat lower than

under Manual � Heterogeneous. Nonetheless, due to the randomness of the

data placement component there was at least one run (90th percentile) whose

throughput was higher than Manual �Heterogeneous strategy.

Regarding the total throughput, Manual�Heterogeneous more than doubles

the result achieved by strategy Random � Homogeneous, and in relation to

Manual�Homogeneous it improves the result by 35% on average. It is important

to stress that for WorkloadE (majority of scan operations) the improvement is

remarkable: from around 100 scans per second, to around 1350 scans per second.

3.1.5 Analysis

From the analysis of these results it is possible to see that a heterogeneous HBase

cluster can outperform the default configuration. Even when using a judicious

data placement, but still with homogeneous nodes, the results are worse than the

Manual �Heterogeneous. Specifically, NoSQL nodes should not be treated as

homogeneous entities because it often results in a skewed load on cluster nodes



3.2 MeT Framework 29

leading to both poor resource usage, due to idle nodes, and degraded performance,

due to overloaded nodes. These observations motivate our belief that it is not

su�cient to simply add or remove HBase nodes in order to have an e↵ective elastic

database. Instead, it is necessary to take into account the database workload

and adapt the cluster accordingly. Unfortunately, combining heterogeneous node

configurations with resource allocation and data placement is a di�cult and error

prone task, thus should be automated.

Next, we detail the design and implementation of a mechanism that is able to

autonomously achieve performance results similar to the heterogeneous configu-

ration and manual data placement, without human intervention.

3.2 MeT Framework

The heterogeneous configuration of a HBase cluster has proven to achieve much

better performance than the alternatives. The downside being it greatly increases

the complexity of cluster management. In fact, if the number of nodes and

data partitions increases to the magnitude of hundreds or thousands, the manual

heterogenous configuration of a cluster is impracticable.

As a result, we developed MeT: a cloud-enabled framework that can auto-

matically manage, configure and re-configure a cluster in a heterogeneous fash-

ion, according to its access patterns. Furthermore, MeT equips the underlying

NoSQL database with the ability to be autonomously elastic, by the addition or

removal of nodes specifically configured to the load they are expected to serve.

Figure 3.2 depicts MeT’s design that relies on three main components: Mon-

itor, Decision Maker and Actuator. The Monitor and Actuator components can

interface with a NoSQL database directly (through the NoSQL interface) and

with an IaaS (through the IaaS interface). The Decision Maker interacts with

the Monitor and Actuator components.

Giving a brief overview, the Monitor component gathers important statis-

tics of the running cluster and periodically passes them to the Decision Maker

component. This component can be considered the core of MeT. Basically, it

tries to converge to the same results as the Manual � Heterogenous strategy

(see Section 3.1) in an automated way. In that regard it follows a set of stages.

The first step involves deciding wether the load cluster is acceptable based on
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MeT

NoSQL database
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Figure 3.2: MeT’s architecture.

the metrics delivered by the Monitor. If the cluster is overloaded or underloaded,

then it is decided how many nodes must be added or removed from the cluster,

respectively. Closely matching the process described in Manual�Heterogenous

strategy, this component then classifies each data partition by type of access,

clusters them into groups, and proportionally determines the number of nodes to

attribute each group. After that, for each group a greedy algorithm tries to evenly

balance the load in each node. Finally, the Decision Maker tries to convey the

best way to bring the previously configured cluster to the new computed configu-

ration. This final output is then passed to the Actuator that actually implements

it in the running cluster. In the following subsections we will describe in detail

each component and the algorithms used.

3.2.1 Monitor

The Monitor component gathers information about the current state of the clus-

ter (Figure 3.3). Periodically, it collects and maintains data over several cluster



3.2 MeT Framework 31

StageC

StageA

Statistics collection

Is cluster 
load 

acceptable?

Yes

Need to 
add/remove 

nodes?

No

Distribution 
algorithm(Current 
state, new cluster 

size)

Yes No

OutputComputation 
(Current Distribution, 

Optimized Distribution)

Take Action

START

Monitor

Decision 
Maker

Actuator

StageB

Distribution 
algorithm(Current 

state, current 
cluster size)

StageD

Figure 3.3: MeT’s flow chart with particular emphasis on the Decision Maker
component.

metrics at two di↵erent levels: system metrics and metrics specific to the NoSQL

database. System metrics are CPU utilization, I/O wait and memory usage.

With regard to NoSQL specific metrics, this component needs to keep track of

several metrics per node and per data partition. The metrics collected from the

NoSQL database must be enough to know the access patterns of the workload.
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MeT uses the total number of read, write and scan requests as well as each node

locality index. In this regard, the locality index measures the percentage of data

that is locally accessible at each node. In other words, it measures the amount

of data owned by the node that is locally stored thus not requiring to be fetched

through the network when queried.

In order to account for temporary load spikes that could result in poor de-

cisions, we used exponential smoothing [Brown 1963] coupled with storing only

the observations after each Actuator’s action. For each monitoring interval, the

last observation is the most important, exponentially decreasing in importance

till the first observation. Periodically, all retrieved metrics are delivered to the

Decision Maker component.

3.2.2 Decision Maker

The Decision Maker component is responsible for deciding what actions to take

when the cluster is considered to be in a sub-optimal state. As depicted in Figure

3.3 it works following four di↵erent stages.

Determine the current state of the cluster (StageA)

StageA (Figure 3.3) begins with the periodical delivery by the Monitor compo-

nent of gathered statistics about the current state of the cluster. Based on those

statistics, the Decision Maker has to decide whether the load of each node in the

cluster is acceptable or not. By acceptable, we mean that the system metrics pro-

vided are within certain defined thresholds. Example values for these thresholds

are evaluated in subsequent sections.

If the cluster is healthy, the Decision Maker remains in StageA (Y es branch

of StageA). Otherwise, three data structures are populated to be used in StageB

that is immediately initiated. Such data structures are: i) firstT ime vari-

able that states whether it is the first time StageB is going to run or not; ii)

subOptimalNodes variable which represents the percentage of nodes in a sub-

optimal state; iii) remove variable that states whether the cluster is under or

overloaded.
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Decision algorithm for adding and removing nodes (StageB)

In StageB (Figure 3.3), the main task is deciding if it is necessary to add or

remove database nodes from the cluster, and if so how many of them following

Algorithm 1.

A particular case arises if it is the first time StageB is running (firstT ime

input). If this is the case, MeT distributes data partitions and heterogeneously

configures the current cluster from scratch in what we call an InitialReconfigura-

tion. This only happens once.

In subsequent iterations, if the cluster is still in a sub-optimal state, we decide

to add or remove nodes. Because we are unable to determine a priori how many

nodes we need, those nodes are iteratively added in a quadratic fashion and

removed linearly. A quadratic strategy enables a fast response to demand increase

by allowing to reach a su�cient number of nodes on a logarithmic number of

iterations. That is, the algorithm starts by suggesting the addition of 1 node,

and in the following iterations, 2, 4, 8 nodes and so forth, until the load in the

cluster is acceptable. Conversely, it removes only 1 node in each iteration, also

until the load in the cluster is acceptable. Of course, this strategy may incur a

higher provision of temporary resources than necessary. For example, supposing

that there is the need for the addition of 8 new nodes. We would only need 4

iterations to reach a su�cient number nodes, but we would have added 15 nodes

in the process. In the meantime, if there was not another increase in demand, we

would need 7 more iterations to linearly remove nodes until the desired 8 nodes

with a total of 11 iterations. On the contrary, if we were adding nodes linearly we

would be needing 8 iterations to achieve the desired cluster size. This means that

it would take twice as long to reach a point where the number of nodes would be

enough to handle the load (from 4 iterations to 8). On the other hand, this also

means that we need 3 more iterations to shrink the cluster to the needed size.

By using this quadratic strategy we privilege availability and a fast response to

sudden load increase.

It should be noted however, that from our experience in the case it is the first

time the algorithm is invoked, but the number of sub-optimal nodes is already

more than SubOptimalNodesThreshold we proceed straightaway to the addition

of nodes. This threshold is a MeT parameter and should be configured according

to each system characteristics.
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Algorithm 1: Decision Algorithm to add or remove nodes

Data: nodesToChange 1
Input: subOptimalNodes, firstT ime, remove
Result: result
/* number of nodes to be added or removed from the cluster */

begin1

if subOptimalNodes > SubOptimalNodesThreshold then2

result nodesToChange3

nodesToChange nodesToChange ⇤ 24

else5

if firstT ime then6

result 07

// InitialReconfiguration

else8

if remove then9

result �110

nodesToChange 111

else12

result nodesToChange13

nodesToChange nodesToChange ⇤ 214

return result15

end16

Finally, the Decision Algorithm computes the number of nodes to be added

or removed from the cluster, and passes it to the Distribution Algorithm in the

form of a target cluster size. If there are nodes to be added or removed a new

cluster size is computed and passed as a parameter to the next stage. If not, the

current size of the cluster is passed as a parameter.

Distribution algorithm (StageC)

The Distribution Algorithm corresponds to StageC of the Decision Maker ’s com-

ponent (Figure 3.3) and is in fact divided in three parts: classification; node

grouping ; and assignment. Note that this stage is only reached if the cluster is

in sub-optimal state. Even if StageB’s result states that there is no need to add

or remove nodes, the fact that StageC is running means that a cluster reconfig-

uration should be attempted in order to improve cluster health.

Classification: data partitions are divided into groups according to access

patterns. As stated earlier, we defined 4 groups: read, write, read/write and
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scan (see Section 3.1.3). Using the metrics related to the number of write, read

and scan requests of each data partition, the Classification algorithm assigns

each data partition to one of the 4 groups. The assignment of partitions to

groups is parameterized with threshold values. In MeT, such values have been

obtained by experimental observation and are presented in Section 3.3. In order

to accommodate workload changes, metric values obtained for each data partition

are refreshed at the beginning of every monitoring interval.

Grouping: the number of nodes to attribute to each group is computed. Each

group will be assigned a number of nodes equal to the division of the number of

partitions in that group by the total number of partitions, and then multiplied

by the total number of nodes available. More formally:

8g 2 G :
#partitions in g

total#partitions
* total#nodes

Assigment: from node grouping and data partition classification an assigment

of data partitions to nodes is established. The assignment is done attempting to

balance the load and the number of data partitions in each node. This task falls

in a classical problem called makespan minimization or multiprocessor schedul-

ing, which in turn is related to bin-packing problems. These class of problems

are known to be NP-hard [Lenstra et al. 1977] but there are greedy algorithms

that provide good results in polynomial time. As a result, we used the greedy

algorithm proposed in [Graham 1969], and because we know in advance all data

partitions we could use the variant of this algorithm that provides better results

- Longest Processing Time (LPT). In short, the makespan minimization problem

can be defined as: there is a set of parallel processors and a set of jobs with a

determined cost; in the LPT version, the algorithm first sorts the set of jobs by

decreasing cost and then assigns the largest job to the least loaded processor,

until there are no jobs left to assign. In our case, jobs can be translated to data

partitions, parallel processors to nodes and the cost of each job to the number of

requests of each data partition.

Furthermore, we added a new constraint to the problem to also attempt to

balance the number of data partitions assigned to each node. In this regard, the

algorithm takes into account node capacity and establishes a maximum number
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Algorithm 2: Assignment Algorithm

Data: result []
Input: nodeGroup, dataPartitions, max
/* max stores maximum number of partitions per node. Calculated in order

to balance load. */

Result: result
begin1

Data: dataPartitions.sort()
/* Sort by number of requests in decreasing order. */

while dataPartitions.size() > 0 do2

partition dataPartitions.first()3

node nodeGroup.getMostEmptyNode()4

if node.numberOfPartitions < max then5

node.assign(partition)6

dataPartitions.remove(partition)7

else8

result.add(node)9

nodeGroup.markAsFull(node)10

/* Node already full. */

return result11

end12

of data partitions per node. This maximum value is estimated by dividing the

number of data partitions in the group by the number of nodes in the group.

The assignment algorithm is depicted in Algorithm 2. It should be noted that

it has to be called for each group of data partitions.

Output Computation (StageD)

Finally, StageD has the responsibility of determining the best way to achieve the

targeted cluster configuration. By best we mean the one that minimizes node

reconfiguration and data partition moves. As depicted in Algorithm 3, it receives

as input the current cluster distribution and the distribution suggested by the

Assignment Algorithm. The first time this algorithm runs, it has no information

about the current configuration. At the beginning, we consider that the cluster

is homogeneously configured. Thus, the distribution suggestion is passed on

to the Actuator. This results in an initially heavier full cluster reconfiguration

(InitialReconfiguration).

In subsequent runs, the algorithm looks at the current distribution of data

partitions per node and tries to match it with the new distribution. The process of
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Algorithm 3: Output Computation

Data: result []
Input: currentState, optimalState, firstT ime
/* Lists of nodes and correspondent sets of data partitions. */

Result: result
begin1

if firstT ime then2

result optimalState3

else4

foreach node 2 currentState.nodes() do5

type node.type()6

set node.partitionSet()7

opset optimalState.mostSimilar(set, type)8

optimalState.remove(opset)9

result.add((node, opset, type))10

if optimalState 6= ; then11

foreach node 2 currentState.node() do12

type node.type()13

opset optimalState.popPartitionSet()14

result.add((node, opset, type))15

return result16

end17

matching distributions is made resorting to a set intersection algorithm between

sets of partitions. In MeT, the set intersection algorithm is a best e↵ort one.

For each set of partitions from the suggested configuration, it tries to find the

node that currently holds the most similar set of partitions. The result is an

assignment of nodes to configurations and sets of partitions to hold.

If there are new nodes added to the cluster, a set of partitions and a configura-

tion type is assigned to these nodes. The same way, if the targeted configuration

does not fully match the current cluster configuration, new sets of partitions and

configuration types are assigned to existing nodes. The output of this algorithm

is a cluster distribution that minimizes data partitions’ reassignment and nodes’

reconfiguration.

3.2.3 Actuator

The Actuator component carries out the necessary tasks to implement the dis-

tribution given by the Decision Maker. It is responsible for the actual addition

and removal of database nodes. On the one hand, if we are using a IaaS system
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it means first starting a virtual machine, and only after the NoSQL database.

On the other hand, if we are using the NoSQL database directly it has only

to start or shutdown the respective processes. The Actuator is also responsible

for the individual reconfiguration of nodes according to one of the possible four

groups defined above. In addition, it assigns the data partitions to those nodes

as determined by the Decision Maker.

3.3 Implementation

MeT is available as an open source project.1 In the current prototype we used

HBase as the NoSQL database and OpenStack as the IaaS platform. Open-

Stack has gained wide support both from the community and enterprises, and is

maturing very quickly [OpenStack Foundation].

At the implementation level MeT has two main parts. It is composed by a

Java module and a Python module. The pivotal module is written in Python and

comprises the core of the Decision Maker, Monitor and Actuator components of

MeT. The Java module is used to gather HBase statistics through the HBase

Administrator interface within the Monitor module of MeT.

Monitoring: TheMonitor component gathers data about CPU usage, memory

usage and I/O wait of the various nodes through Ganglia [Massie et al. 2003].

Regarding the metrics specific of HBase, we collect them through JMX from

each RegionServer, namely: the total number of read, write and scan requests;

the number of requests per second; and an index that measures the data locality

of the blocks in the co-located DataNode. It also retrieves some metrics of each

data partition like the number of read, write and scan requests. The number of

scan requests is not available in HBase thus we modified it to calculate and export

this metric. All this data is retrieved by MeT’s Java module, which interfaces

with the Python module through Py4J [Dagenais]. The monitoring intervals are

configurable. It is possible to define Ganglia requests periodicity and data history

size. Similar to Decision Maker parameters, these are also defined in a properties

file.

1
https://github.com/fmaia/MeT

https://github.com/fmaia/MeT
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Decision Maker parameters: In order for the Decision Maker to work, some

parameters must be set. Firstly, the classification task of Section 3.2.2 requires

a set of threshold values to define types of partitions. Four groups were de-

fined. Data partitions are classified according to the following criteria: i) read,

if more than 60% of total requests are read requests; ii) write, if more than

60% of total requests are write requests; iii) scan, if more than 60% of read

requests are scan requests; iv) and read-write in every other case. Secondly,

SubOptimalNodesThresholdmust be configured. In our experiments this thresh-

old was set to 50% of the cluster. This means that if half of the cluster is under

heavy load MeT will proceed straightway to the addition of a new node. From

our experience, this parameter should be set to 50%, because when most of the

nodes in the cluster are under heavy load there is no benefit in the reconfiguration

of the cluster without adding new nodes. Moreover, if the cluster in question is

subjected to very sudden peak loads it should be adjusted to less than 50% for a

faster response to increased demand.

Although we do not envisage that classification parameter values can take

di↵erent values, this may not be the case for other parameters. Consequently,

each one of these parameters is configurable in a properties file.

Taking actions: Addition and removal of virtual machines from the HBase

cluster is done through the OpenStack interface by the Actuator. With regard to

node reconfiguration, HBase does not currently provide a mechanism to allow on-

line reconfiguration of a RegionServer. That means that every reconfiguration of a

RegionServer implies its restart. As a result, a full reconfiguration of the cluster is

a very costly operation. Bringing the whole cluster down for a full reconfiguration

would reduce the amount of time needed for the full reconfiguration, but it would

also mean that during that period, all data would be unavailable. Therefore, we

use a strategy to incrementally reconfigure the RegionServers while maintaining

data availability, although with a lower overall throughput. This strategy redis-

tributes the Regions from the RegionServer that is going to be reconfigured across

the remaining nodes that have not been reconfigured yet. Then, when there are

no Regions left in the RegionServer, it is restarted with the new configuration.

Finally, the Regions determined by Decision Maker are assigned to it. If data

locality is below 70% for RegionServers configured for a write workload and 90%
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for all the others, it invokes the major compact operation in order to reestablish

data locality. The di↵erence between the two values is that data locality is of

more relevance to a read intensive workload and a major compact operation is a

costly one. Relaxing the condition for write intensive workloads has the objective

of minimizing the load these operations impose on the system. This process is

repeated for all RegionServer ’s reconfigurations.

The concrete values used in our evaluation have been chosen based on experi-

mental observation and our own experience.

3.4 Evaluation

This section evaluates MeT from three perspectives. First we assess if MeT

is able to autonomously converge to a performance level comparable to that

achieved by a Manual-Homogeneous configuration of an HBase cluster. In this

first step an YCSB workload is used. Secondly, we evaluate MeT’s versatility

by exposing MeT to a PyTPCC workload without any kind of customization.

Finally, we study MeT’s elastic properties in a Cloud environment.

Configuration

In the experiments below, every 30 seconds the Monitor component gathers the

metrics and sends them to the Decision Maker every 3 minutes. The period of 30

seconds is the same used by other approaches [Konstantinou et al. 2012], but the

Decision Maker is only invoked after having 6 samples to minimize the impact

of sudden spikes and take advantage of the exponential smoothing algorithm.

The HBase configuration parameters for each group (Distribution Algorithm of

Section 5.3) are described in Table 3.1.

Node profile Cache size Memstore size Block size

Read 55% 10% 32KB

Write 10% 55% 64KB

Read/Write 45% 20% 32KB

Scan 55% 10% 128KB

Table 3.1: Node configuration profiles.
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Convergence

We started by accessing if MeT could autonomously achieve similar performance

to a manual heterogeneous cluster configuration (Manual�Heterogenous strat-

egy). The experimental setting is the same of Section 3.1. We used the 6 YCSB

workloads described in such section. Then, we configured a HBase cluster with

optimized configuration parameters, homogeneous nodes and using the out-of-

the-box randomized data placement component (Random�Homogeneous strat-

egy from Section 3.1).

After 2 minutes of ramp-up time, we start MeT. The experiment then runs

for 30 minutes logging the throughput from the perspective of the YCSB’s clients.

We then compared the results with runs without MeT for the HBase cluster

configured with strategiesManual�Homogeneous andManual�Heterogeneous.

We picked the run with the best throughput from both strategies from the results

presented in Section 3.1. These results are depicted in Figure 3.4.
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Figure 3.4: Evaluation results

This experiment shows that MeT behaves as expected. It is capable of re-

configuring the HBase cluster on-the-fly and achieve similar performance to that

of a manually configured cluster. Note that for the same cluster and workload,

MeT achieves a significant performance increase: it fully reconfigures a HBase

cluster (initially configured with the Random�Homogeneous strategy) in order
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to achieve a distribution of data partitions and node’s configuration identical to

the Manual �Heterogeneous strategy.

The cost of reconfiguration is observable between the 2nd and 8th minute of

the experiment (6 minutes). From this overall time, the time taken by target

cluster reconfiguration calculations and data mapping is negligible. Restarting

the RegionServers along withmajor compacts are the time consuming operations.

On the one hand, in our setting a major compact takes roughly 1 minute/GB. On

the other hand, most of the impact of reconfiguration on the observed throughput

is due to need to restart RegionServers, because currently HBase does not allow

online reconfigurations. Such feature would allow to greatly decrease this impact.

However, by incrementally reconfiguring each RegionServer we not only provide

continuous data availability, but we also provide reasonable performance with

a minimum throughput of 7,500 operations per second. Then, the throughput

quickly rises to 20,000 operations per second by the 5th minute and maintains

this level of throughput until the reconfiguration is completed by the 8th minute.

From this point, the performance is identical to the Manual � Heterogeneous

strategy. Even taking into account the reconfiguration cost, within less than 15

minutes the cumulated average throughput using MeT is greater than the de-

fault HBase with the Manual�Homogeneous data placement strategy carefully

defined by the administrator. These results allow us to state that MeT is able to

autonomously reconfigure a running cluster, converging to a cluster configuration

and performance level similar to that of a manually configured one.

Versatility

The goal of this experiment is to assess whetherMeT could achieve similar results

when using a significantly di↵erent workload. Moreover, without any change to

MeT or its configuration parameters and without any previous knowledge about

the workload itself.

For this purpose, we chose PyTPCC2 an optimized implementation for HBase

of the standard OLTP benchmark TPC-C. Note that, while TPC-C standard

transactions are expected to have full ACID semantics this implementation o↵ers

the isolation semantics provided by HBase: record level atomicity.

TPC-C benchmark attempts to reproduce the behavior of any business in

2https://github.com/apavlo/py-tpcc/wiki/HBase-Driver
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which sales’ districts are geographically distributed along with the corresponding

warehouses. There are a total of 9 tables and 5 di↵erent types of transactions,

and the results are measured in transactions per minute (tpmCs). The default

tra�c is a mixture of 8% read-only and 92% update transactions and thus is a

write intensive benchmark.

The TPC-C database was populated with 30 warehouses resulting in a database

of 15GB. TPC-C tables were horizontally partitioned following the usual setting

for running TPC-C in distributed databases [Stonebraker et al. 2007]. In that

sense, in our experimental setting there were 5 warehouses per RegionServer.

Each RegionServer handles a total of 50 clients.

We ran this experiment on a HBase cluster of 6 RegionServers, each configured

with a heap of 3 GB, and co-located with 6 DataNodes. Similarly to the previous

experiment, we used another machine as the master of both HBase and HDFS

as well as the Zookeeper instance. PyTPCC’s clients were deployed in three

other machines amounting to 300 clients (100 client threads per machine), and

configured to run for 45 minutes.

This experiment involved three settings: i) a run with aManual�Homogeneous

configuration; ii) MeT starting with a Manual � Homogeneous configuration;

iii) and an entire run with the configuration suggested by MeT. The first serves

as a baseline and represents the usual way TPC-C runs. It was obtained exper-

imentally, selecting the one that o↵ered the best overall throughput (tpmC), as

follows: 50% for the cache size; 15% for the memstore size; and 32KB of block

size. The second setting begins with the same configuration as the first one and

after 4 minutes we start MeT to reconfigure the cluster. In the third setting,

we used the same distribution and configuration suggested by MeT, but the

benchmark was allowed to run for the full 45 minutes without any reconfigura-

tion. Therefore, it represents the maximum throughput thatMeT’s configuration

could possibly achieve.

The results, depicted in Table 3.2, are consistent with those of YCSB i.e. the

heterogeneous setting improves the throughput of the Manual �Homogeneous

one by 33%. In addition, when comparing the results achieved by MeT and the

third setting, the cost of reconfiguration during the experiment is not significant.

In fact, around 10 minutes of the total 45 minutes (that is 23%) are due to

the phase of ramp-up time (4 minutes) and the initial reconfiguration phase (6
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Setting Throughput (tpmC)

i) Manual �Homogeneous 25380

ii) MeT with reconfiguration overhead 31020

iii) MeT w/o reconfiguration overhead 33720

Table 3.2: PyTPCC average throughput results.

minutes). Nonetheless, the overall di↵erence between both settings is just 8%.

The results obtained in this experiment show thatMeT is versatile and is able

to achieve good results even in the presence of substantially di↵erent workloads

and without any type of previous knowledge about them.

Elasticity

The experiments conducted so far show that an informed (workload-aware) and

heterogeneous configuration of a HBase cluster leads to the best performance.

Moreover, MeT is able to autonomously infer and apply such cluster configura-

tion yielding a performance similar to a manually obtained configuration.

In these experiments we go a step further and use MeT as an elastic resource

manager that adjusts the size of the cluster according to utilization. To this

end, we ran a HBase cluster and MeT on top of an OpenStack deployment.

Moreover, we compare MeT’s behavior and performance with an existing sys-

tem called tiramola [Konstantinou et al. 2012]. This system, like Amazon’s Cloud

Watch [CloudWatch] together with Amazon’s Auto Scaling [Scaling], automat-

ically provides elasticity to NoSQL databases based on a set of system metrics

defined by the client/user of the system. When those metrics reach a threshold,

a new node is either launched or retracted from the cluster. Meaning, they are

oblivious to the underlying NoSQL system: they just add/remove nodes from

the cluster, they do not reconfigure nodes, neither they make data load balanc-

ing, nor migrate any data from node to node. We compare MeT with tiramola

because is the only freely available system.

For this experiment, the HBase cluster is initially configured with seven virtual

machines with 3GB of RAM: one for the HBase Master, the Hadoop Namenode

and the Zookeeper in standalone mode; the remaining six for RegionServers co-

located with Datanodes. In every run the initial state is identical: 100% data

locality; a replication factor of 2; and data partitions manually balanced on a
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homogeneous configuration of the cluster.

In this experiment, we provided each system with a set of YCSB workloads

that overloads the initial system. The experiment ran for approximately 60 min-

utes and was divided in two phases. In the first phase (33 minutes) all clients

were active and we observed the throughput and the number of nodes in the

cluster.
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Figure 3.5: Cumulative throughput of MeT and tiramola in the first phase of
the experiment.

Figure 3.5 shows the cumulative throughput achieved in both scenarios. As it

is observable, the HBase cluster managed by MeT outperforms the one managed

by tiramola. By the end of the first phase MeT has completed more 706,000 op-

erations than tiramola, corresponding to a 31% throughput increase. Note that

these results are obtained despite the initial MeT reconfiguration cost (from 4th

to 11th minute), which starts to pay o↵ after around minute 12. Equally impor-

tant in a Cloud environment is the amount of resources required to achieve such

throughput. This is depicted in Figure 3.6 that shows the throughput evolution

(left YY axis) and the number of machines in each cluster (right YY axis).

MeT’s throughput is not only superior to tiramola but the number of ma-

chines is less, requiring 9 machines against 11. Also note that the peak perfor-

mance achieved by MeT actually corresponds to this scenario maximum achiev-

able throughput of 22,000 operations/second where all YCSB clients are satu-

rated.

Interestingly, even though tiramola adds more machines to the cluster there

is no significant increase in throughput until the 20th minute. This stems from
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Figure 3.6: Elasticity experiment.

the random balancing and the degradation of data locality, which are precisely

addressed by MeT. MeT judiciously balances the cluster and periodically per-

forms a major compact for the regions loosing locality and the heterogeneous

configuration achieved by MeT increases the cluster throughput by configuring

each RegionServer accordingly to the workload.

In the second phase of the experiment, we study the systems under resources

underutilization. After the 33th minute we progressively switched-o↵ some of

the YCSB workloads until there was only one workload active. At minute 33

we turned o↵ WorkloadE and WorkloadF , then at minute 43 WorkloadB, and

finally at minute 53 WorkloadA leaving only WorkloadC running. The experi-

ment results are depicted in Figure 3.6 and workload removal coincides with the

vertical lines in the figure.

As can be observed, MeT quickly detects the lower demand and removes
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one node from the system. With the progressive lower demand, this process

is repeated until the number of nodes is equal to the initial cluster. Please

note that, in this experiment we are allowing MeT to release machines each

time it detects underutilization, but such behavior is parameterized to avoid, for

instance, continuous addition and removal of machines.

On the contrary, tiramola only releases resources when every node in the clus-

ter is underutilized. This cannot be parametrized and is due to the homogeneous

nature of the tiramola managed cluster where removing a single node can divert

the load to other already overloaded nodes. The di↵erences in throughput be-

tween both systems are due to this behavior, because while MeT is terminating

one node and reconfiguring, tiramola is just receiving less requests.

3.5 Discussion

In this chapter, we focused on automated elasticity for NoSQL databases. Current

approaches to automated elasticity for NoSQL databases look at the di↵erent

cluster nodes as identical entities. Therefore, elasticity is limited to the decision

of adding or removing nodes from the cluster according to demand. Introducing

the possibility of having cluster nodes configured heterogeneously proved to allow

for better performance and resource usage; an outcome only possible when taking

the workload into account.

Following our motivation tests we designed and implementedMeT. TheMeT

framework provides automated workload-aware elasticity for NoSQL databases.

Currently, our prototype is compatible with HBase and OpenStack as the un-

derlying IaaS. Our experiments showed that MeT was able to autonomously

reconfigure an HBase cluster without the need to stop it, and achieve similar

performance to that of a judiciously and manually configured one. Furthermore,

we compared the performance of MeT with an existing system. From this com-

parison it was possible to see that MeT achieves a cluster configuration that

outperforms the cluster obtained using such approach. On top of that, this result

was achieved with less resources. In the following chapter, we focus on workload

aware data partitioning which is a good complement to MeT system.



48 3 Workload Aware Elasticity



Chapter 4

Workload Aware Data

Partitioning

In this chapter, we focus on the need for an automated mechanism to find splitting

points that take into account the system workload. Current systems (as described

in Chapter 2) split data partitions in order to distribute load across cluster nodes.

The decision of when to split is made based on a size threshold. However, the

splitting point itself is also size based. Typically, data partitions are always split

in half. We argue that such splitting impairs load balancing as di↵erent data

partitions, due to non uniform workloads, may be subject to very di↵erent load

patterns.

The main problem we address is finding a good splitting point. A good split-

ting point is the one that splits a set of keys into two new key subsets with similar

load. We define a good splitting point in this manner as it leads to better overall

load balancing of requests across all data partitions. Therefore, in the following

sections we propose and describe a workload aware data partitioning mechanism.

The mechanism proposed estimates, in an autonomous way, a splitting point that

leads to optimal balance of requests. The algorithm is as simple as e↵ective, and,

it is generic and therefore applicable to di↵erent NoSQL databases. For clarity of

presentation, from now on we will refer to data partitions as regions which are no

more than sets of keys. We believe it simplifies the description of the mechanism

and its implementation is also on HBase.

49
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4.1 Algorithm

With the goal of finding the splitting point we designed an algorithm. An im-

portant requisite is that any kind of mechanism we devise does not impose high

overhead over the data store system. Doing otherwise would render it highly

undesirable. Moreover, it needs to divide the region into two regions with simi-

lar load independently of the request distribution applied to the system. Having

these constraints in mind we propose an algorithm that can be run asynchronously

and has no impact on the data path. Moreover, as we will see, it achieves highly

accurate results with negligible memory and CPU consumption.

Algorithm 4: Split key search algorithm.

begin1

foreach Region do2

Data: LowestKey  1
Data: HighestKey  0

Data: splitKey  null

end3

On request :4

Data: key  Request.getKey()
Data: region key.getRegion()
Data: splitkey  region.getSplitKey()
if key > region.HighestKey then5

Data: region.HighestKey  key

if key < region.LowestKey then6

Data: region.LowestKey  key

if splitKey == null then7

Data: splitKey  key

if key > splitkey then8

splitkey.increase()9

if splitkey > region.HighestKey then10

splitkey = region.HighestKey11

else12

splitkey.decrease()13

if splitkey < region.LowestKey then14

splitkey = region.LowestKey15

16
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Relying on a simple mechanism to access region load it is possible to have a

good estimation of the key that splits a region into two with similar load. The

algorithm, depicted in Algorithm 4, works as follows. The algorithm initiates

by estimating that the splitting point is the key of the first request it intercepts

for each region. By taking into account subsequent requests it will progressively

improve its estimation of the splitting point. For each request, if the requested key

is smaller than the current estimation the algorithm decreases it. Otherwise, the

estimated splitting point is increased. At each request it also updates the smallest

(LowestKey) and the highest (HighestKey) object keys, of which that region is

responsible for. Such information is useful to know the region boundaries.

As the reader easily notices, the increase and decrease methods are not defined

in Algorithm 4. This is intentional as their implementation may vary and will

impact the performance of the algorithm.

4.1.1 Instantiation

We consider three instantiations of the increase and decrease methods. The

simplest case is to have linear increase and decrease behavior. This means that,

for instance, if a request arrives for a key whose value is greater than the current

splitting point, the latter will be increased by a constant value. The second

instantiation is an exponential function. This means that when two or more steps

are done in the same direction the step size increases in a quadratic fashion. The

final instantiation is achieved by mixing both strategies as described later in this

chapter.

Considering these instantiations we set up a few experiments. We considered

a key range of 10,000 keys and generated 20,000 key requests that followed a

ZipFian distribution. This distribution was chosen as it is representative [Java

et al. 2007]. At each request, we looked at the splitting point estimation given

by the algorithm. As the distribution was known beforehand, we used the dis-

tribution’s cumulative distribution function to calculate how the regions would

be split should such estimation be used. The optimal splitting point corresponds

to the point where 50% of the requests fall into each one of the new regions i.e.

P(X  50) of the cumulative distribution function.

We configured the algorithm with the linear strategy and the results of the

experiment are depicted in Figure 4.1.
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Figure 4.1: Split key search algorithm with linear strategy.

As shown by the experiment results, the algorithm tends to yield good ap-

proximations to the ideal split value after 8,000 iterations (that corresponds to

8,000 requests). However, by manipulating the implementation of the increase /

decrease methods it is possible to improve the algorithm. The slow convergence

of the approach above is due to the fact that, at each request, the algorithm is

taking very small steps towards the desired point. Relying on the exponential

strategy this can be avoided. As observable in Figure 4.2, the algorithm is now

much faster at the expense of stability.

The bottom line is that neither strategy is very attractive. On the one hand,

the linear strategy requires a lot of iterations to converge to the optimal split

point. On the other hand, the exponential strategy converges rapidly to the

optimal split point, but proves to be unstable.

Therefore, our approach is based on the combination of both strategies. The

idea is to start with the exponential strategy and, when su�ciently close to the

ideal splitting point, change to the linear one. The challenge of this approach

is knowing what su�ciently close means and how to detect it. To address this

problem we try to detect what we call a PingPong zone.

Intuitively, if a splitting point is ideal, it means that the probability of a

request being for a key smaller than the splitting point is equal (or roughly

equal) to the probability of the request being for an higher key. Consequently,

the algorithm will fall into a PingPong zone where the value of the splitting point
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Figure 4.2: Split key search algorithm with exponential strategy.

will be continuously being increased and decreased. When in a PingPong zone,

the algorithm mutates to the linear strategy.

In order to detect a PingPong zone we try to detect consecutive PingPong

pairs. A PingPong pair is a single increase / decrease sequence. The algorithm is

configurable in order to define the number of PingPong pairs needed to trigger the

algorithm mutation. Figure 4.3, depicts the behavior of the algorithm configured

with the linear strategy and two mixed strategies. It is possible to observe that a

mixed strategy proves to be e↵ective. Moreover, in our experiments we observed

that, for this scenario, configuring the algorithm with a small number of PingPong

pairs allows for very good results.

Another important aspect of the algorithm is that it should achieve good

results independently of the request distribution. In Figure 4.4 are depicted the

results of an experiment where a Poisson distribution was used. Using the same

key range size of the previous experiment, 10,000 unique keys, and 20,000 requests

following the Poisson distribution. As it is observable, even for this distribution,

the algorithm achieves acceptable results. It is however worth noting that a

Poisson distribution is a worst case scenario for finding a good splitting point. It

is su�cient for the splitting key to miss the ideal one by a few intervals in order

to yield very di↵erent splitting ranges.

Finally, we also wanted to evaluate the impact of the key range size in the

performance of our algorithm. Figure 4.5 depicts the results of an experiment
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Figure 4.3: Split key search algorithm with PingPong detection.
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Figure 4.4: Split key search algorithm with PingPong detection for a Poisson
request distribution.

where the key range size was increased to 300,000 unique keys. The distribution

used was, again, Zipfian. Beginning with some considerations, not depicted in

the Figure, the linear strategy is much a↵ected by the key range size, because it

depends on the first request to linearly converge to the ideal splitting point. Like-

wise, the exponential strategy is not much a↵ected by the key range size nor the

first request, but once more has some instability. As can be observed, as opposed
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Figure 4.5: Split key search algorithm with PingPong detection for a large key
range.

to the experiment with the smaller key range the di↵erent configurations of the

PingPong really impact the behavior of the algorithm. All di↵erent configura-

tions quickly get close to the ideal splitting point, but for 2 and 4 PingPong pair

configuration the switch to the linear strategy occurs too soon, which impacts

the convergence of the algorithm. The best results are therefore achieved by 8

PingPong pair configuration. Its initial instability is compensated by the closer

estimation yield by the exponential strategy and converges to the ideal splitting

point in almost the same number of iterations as in the previous experiment. This

leads to the observation that for a larger key range size, the number of PingPong

pairs should be slightly increased.

From the results we can safely conclude that our algorithm provides a good

heuristic for finding a suitable region splitting point.

4.2 Workload aware data partitioning in HBase

In this Section we describe and evaluate the implementation of our algorithm in

HBase. Although the mechanism is generic and applicable to other NoSQL data

stores, we will focus on an HBase implementation from now on. In Section 4.2.1

implementation details are described and the evaluation of the mechanism is
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presented in Section 4.2.2.

4.2.1 Implementation

Data in HBase is organized into tables which are split into regions. HBase splits

tables when these reach a certain size. As described earlier, this approach does

not lead to good load balancing when data requests obey skewed distributions.

In order to implement our automated workload aware splitting mechanism, we

have added the mechanism of the previous Section to the HBase data store itself.

Consequently, when HBase is running a splitting point estimation is calculated for

each region continuously. In particular, it is calculated within each RegionServer

and exported as a JMX metric accessible through the HBase client interface.

With this implementation it is now possible to split regions in a workload

aware fashion. It is important to notice that the default load balancer of HBase

tries to achieve similar number of regions in every node. Using our mechanism,

which yields regions with similar load, eases such process.

4.2.2 Evaluation

In this Section we present results of our evaluation. The experiment was set up

as follows. A HBase cluster was deployed across two nodes. A single table was

created and placed on one of the nodes. The table was populated with 1,000,000

records (1 GB of data) using YCSB [Cooper et al. 2010] that was deployed in

a separate machine. The same YCSB instance was configured to produce a

workload with 80% of read requests and 20% of write requests. Moreover, such

workload follows a ZipFian distribution. All nodes used for these experiments

have an Intel i3 CPU at 3.1GHz, with 4GB of memory and a local 7200 RPM

SATA disk, and are interconnected by a switched Gigabit local area network.

The table was intentionally designed to be too large to be handled by a single

node. Consequently, it is split into two regions one on each node. At this point,

two di↵erent scenarios were considered and evaluated. Scenario one corresponds

to the out-of-the-box HBase behavior. HBase splits the table into two regions

of the same size regardless of the access pattern. In scenario two, our splitting

mechanism is in place. The initial set up is similar however.

For both scenarios we logged the load imposed on each of the nodes. In order
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(a) HBase out-of-the-box with uniform splitting.
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(b) HBase with workload-aware splitting.

Figure 4.6: Node load for the two scenarios.

to determine how load was being distributed across both of the cluster nodes.

The results are depicted in Figure 4.6.

The split made by the default mechanism not only leads to an highly unbal-

anced cluster but is also highly infective (Figure 4.6(a)). In fact, node 2 of 4.6(a)

is saturated even after the split while node 1 is practically idle. This reduces

the cluster capacity to virtually the capacity of the single node. An overloaded

node, with this split, remains overloaded as the load moved to the other node is

negligible.
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Figure 4.7: Evaluation over HBase. Throughput achieved in scenarios one and
two.

In contrast, our approach allows to almost double the overall throughput as

depicted by Figure 4.7. Splitting the table using the splitting point given by our

algorithm allows for load to be distributed across the two nodes taking advantage

of the capacity of both (Figure 4.6(b)).

Note that, after the split the nodes remain under high load. Allowing a

second split round and allocating new machines could increase immensely the

performance of this cluster. This is not the case when using the traditional split

mechanism. Splitting without taking into account the load will always result in

an highly unbalanced cluster impairing performance.

The results validate the approach and show that the algorithm proposed is

e↵ective in practice. Moreover, it also opens future research paths as automated

workload aware data partitioning for NoSQL seems an objective worth pursuing.

4.3 Discussion

Along this chapter we presented a workload aware data partitioning algorithm

for NoSQL databases. We evaluated it and proved it to be e↵ective in practice.

Although simple, the algorithm proposed is a pragmatic approach to automated

splitting point discovery. The algorithm is based on online median estimation and

quick convergence is achieved based on a combination of two strategies: linear
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and exponential. The algorithm starts with the exponential strategy for rapid

convergence and, when su�ciently close to the ideal splitting point, changes to

the linear one. This mutation occurs when the algorithm detects what we call a

PingPong zone.

The results obtained showed the mechanism is e↵ective both for achieving

good load balance as well as improving overall performance of HBase. The mech-

anism presented can greatly enhance MeT system. By identifying the regions

with highest load, we can then use the mechanism proposed to split the load of

that region into new regions. Then, MeT can rebalance the cluster and achieve

an even better cluster configuration.
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Chapter 5

Estimating Resource Usage

In the context of cloud computing, predicting and even knowing exactly how a

system will behave is very important. Critical decisions on resource allocation,

systems configuration or even choice of technology typically require extensive

testing, which is still not enough to actually predict the behavior of the system

in a real deployment. Moreover, the outcome of these decisions has a direct

impact on system cost and e↵ectiveness.

In this chapter we demonstrate that for NoSQL databases it is possible to

predict their performance in real-world scenarios even resorting to only a small

fraction of the systems resources. Similar to traditional relational databases,

NoSQL databases make heavy use of bu↵er caching, in order to improve the

performance of read requests. In order for bu↵er caching to be e↵ective, the

cache hit ratio, which measures the percentage of read requests that result in

a cache hit, needs to be as high as possible thus avoiding accesses to slower

storage mediums. As a result, the cache hit ratio is directly related to resource

consumption. By resource consumption, we mean the amount of main memory

used, the number of I/O operations and the amount of memory/disk swapping

needed. By predicting resource usage, then it is possible to optimize, prepare,

and simulate how systems behave under di↵erent conditions.

We take advantage of how the cache hit ratio is directly related to resource

usage of NoSQL databases. In clear contrast with relational databases, which due

to their inherent complexity require more elaborate models, in this work we show

that for NoSQL databases this correlation is actually enough to accurately predict

resource usage of any workload. We resort to a resource usage model of read

61
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operations with uniform distribution, which for LRU caches represents the case

where the cache hit ratio is minimum, and thus the resource usage is maximum.

The model built resorting to spline interpolation is hardware dependent, which

means it has to be rebuilt when the hardware changes, but it is run only once

per hardware configuration and can be used to predict the resource usage for any

workload. Using the same approach we show that it is also possible to build a

similar model for write operations. Finally, by using both models, we show that

it is possible to accurately predict a NoSQL database resource usage, only by

knowing two parameters: i) the cache hit ratio and ii) the incoming throughput.

From our experiments using either HBase and Cassandra, we accurately predict

resource usage for any request distribution and any throughput of read-only and

a mix of read and update operations.

5.1 Applications

The work and contributions discussed along this chapter have several interesting

applications, namely for predicting optimal software and hardware configura-

tions for NoSQL clusters, and for providing novel load balancing mechanisms

for NoSQL databases. In the following, we elaborate further on these possible

applications.

Infrastructure configuration prediction: An interesting application is re-

lated to the need of predicting what would happen to a NoSQL cluster in di↵erent

scenarios. For instance, imagining a deployed NoSQL cluster running smoothly,

what would happen if all of the sudden a specific data partition had a peak on

popularity, and its request rate would increase greatly. Could the running node

deal with the load? By using our work a database administrator could easily pre-

pare for such situations. Even by creating automatic rules on the load balancer,

so when a data partition reaches a certain request rate, it would automatically

assign it to another node. In addition, if one has a running NoSQL cluster and is

considering a hardware upgrade, one could use our work to decide what hardware

to upgrade to, or even make comparisons between several hardware options. It

would require access to at least one machine with the intended hardware spec-

ifications. Then, by using our work to build the resource usage model for both
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read and write operations, one would know how the system would cope with the

expected load, and even how many machines would be needed.

Load balancing: Yet another application of this work concerns load balancing

in NoSQL databases. It can be used in conjunction with MeT framework. In-

stead of trying to minimize the incoming throughput in each node, it is possible

to use the contributions described to minimize resource usage in each node. The

only additional metric required is the cache hit ratio, which is already exported

by NoSQL databases (see Chapter2) or resorting to cache hit ratio estimation

algorithms discussed in the literature can also be used [Che et al. 2002]. This

combination allows to achieve optimal resource usage. This application is actually

implemented and further explained in greater depth in Chapter 6.

5.2 Interdependence of resource usage and cache

hit ratio

The cache hit ratio has a great impact on how a system performs and is thus

directly related to its resource consumption. By resource consumption we mean

the amount of main memory used, the number of I/O operations to distinct

storage mediums and the amount of memory/disk swapping needed. The server

usage encompasses the CPU time waiting for I/O operations to complete (I/O

wait), the time spent on user space (CPUuser) and the time spent on kernel space

(CPUsystem).

Serverusage = I/Owait+ CPUuser + CPUsystem

With this measure it is possible to have an accurate picture of how the machine

is using its resources. Although the I/O wait corresponds to a period when the

CPU is free for other computational tasks, we are addressing a specific scenario

that focus on a NoSQL database where we cannot achieve a perfect parallelism

between I/O wait and CPU usage. In fact, as most operations require network

and/or disk resources we must consider I/O wait to accurately represent the cost

of such operations in the metric. Thus, if the combined I/O wait and CPU usage

reaches 100%, the throughput does not increase by adding more clients.
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In order to demonstrate that e↵ectively the cache hit ratio is related to

server usage, we set up four di↵erent experiments using a HBase deployment

and YCSB [Cooper et al. 2010] as the workload generator. These experiments,

while not necessarily representative of real-world workloads, cover a wide spec-

trum of possible behaviors. With these we are able to show a clear and direct

relationship between the cache hit ratio and server usage in NoSQL databases.

Experimental setting: In all experiments, one node acts as master for both

HBase and HDFS, and it also holds a Zookeeper [Hunt et al. 2010] instance

running in standalone mode, which is required by HBase. Our HBase cluster was

composed of 1 RegionServer, configured with a heap of 4 GB, and 1 DataNode.

HBase’s LRU block cache was configured to use 55% of the heap size, which HBase

translates into roughly 2.15 GB. It is noteworthy that the RegionServer was co-

located with the DataNode. We used one other node to run the YCSB workload

generator. The YCSB client was configured with a readProportion of 100% i.e.

only issue get operations, and with a fixed throughput of 2000 operations per

second with 75 client threads so we solely analyze the impact of cache hit ratio in

server usage. All experiments were set to run for 30 minutes with 150 seconds of

ramp up time and the results are the computed average of 5 individual runs. The

server usage was logged every second in the RegionServer/DataNode machine

using the UNIX top command. The top command gives us the CPUidle metric

that is converted to our Serverusage metric in the form:

Serverusage = 100%� CPUidle

By the end of each experiment, we gathered the global cache hit ratio exported

by HBase for the RegionServer. All nodes used for these experiments have an

Intel i3 CPU at 3.1GHz, with 8GB of main memory and a local 7200 RPM SATA

disk, and are interconnected by a switched Gigabit local area network.

First experiment: In this first experiment, a single region was populated using

the YCSB generator with 4,000,000 records (4.3 GB). This means that the region

cannot be fitted entirely into the block cache: about 1.1 millions records (1.21

GB) remain on secondary memory and must be brought into main memory when

requested. There were four di↵erent scenarios each with a di↵erent configured



5.2 Interdependence of resource usage and cache hit ratio 65

request popularity:

1. A uniform popularity distribution, that is all records have equal probability

of being requested (as mentioned in Section 5.3.1 this is the case where the

cache hit ratio is minimum);

2. A hotspot popularity distribution, where 50% of the requests access a subset

of keys that account for 30% of the key space;

3. A zipf scrambled popularity distribution, highly skewed, but because it is

scrambled it means the most popular keys are spread across the key space;

4. A zipf clustered popularity distribution, highly skewed, and clustered, mean-

ing that the most popular keys are contiguous, which makes them fall in

the same cache block.

The results for this experiment are depicted in Table 5.1. As expected, the

uniform request popularity is the one that achieves the lower cache hit ratio

(49%) and thus consumes more server resources (58.35%). On the contrary, the

zipf clustered request popularity attains the higher cache hit ratio (93%), because

the most popular records are clustered and as a result fall in the same block

served by HBase’s block cache. And because of that it consumes the least Server

resources (only 19.28 %) for the same 2000 ops/s.

Distribution phit Average Serverusage #Records

Uniform 49% 58.35% 4,000,000

Hotspot 56% 46.19% 4,000,000

Zipf Scrambled 68% 35.91% 4,000,000

Zipf Clustered 93% 19.28% 4,000,000

Table 5.1: Average Serverusage and cache hit ratio results under 4 di↵erent dis-
tributions, for a region not fitting in block cache.

Second experiment: We set up a second experiment, to demonstrate that

the behavior observed in the first experiment was not due to the di↵erent request

popularities. This experiment is identical to the first one except for the region

size. This time around the region was populated with 2,000,000 records (2.14

GB). This means that the region can be fitted entirely into the block cache, thus
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the expected cache hit ratio is 100%. If there are no di↵erences in server usage

between the di↵erent request popularities, then the server usage is mainly a↵ected

by the cache hit ratio and the incoming throughput. As shown in Table 5.2, the

results are as expected. As all data is served only by the block cache, the di↵erent

request popularities become irrelevant to server resource consumption. Therefore,

all four distributions use roughly the same amount of server usage.

Distribution phit Average Serverusage #Records

Uniform 100% 12.29% 2,000,000

Hotspot 100% 12.14% 2,000,000

Zipf Scrambled 100% 12.92% 2,000,000

Zipf Clustered 100% 12.89% 2,000,000

Table 5.2: Average Serverusage and cache hit ratio results under 4 di↵erent dis-
tributions, for a region that fits in block cache.

Third experiment: In this third experiment, we show that if the cache hit

ratio of two di↵erent distributions is the same, then provided that the incoming

throughput is also the same, the server usage is identical. From the second exper-

iment this hypothesis is true, however the region fitted entirely in the block cache.

As a result, in this experiment we used the same setting as the first experiment

(populated with 4,000,000 records - 4.3GB), but we changed the hotspot param-

eters so its cache hit ratio is the same as the zipf clustered distribution, that is

93%. Therefore, we increased the percentage of requests from 50% to 92% that

access a subset of keys that account for 30% of the key space. The throughput is

again fixed at 2000 operations per second. As seen in Table 5.3, the two distri-

butions consume the same amount of resources despite the di↵erences in the way

they access data. As a result, the server usage is independent of the distribution

of requests, if the cache hit ratio is the same for a given throughput.

Fourth experiment: Finally, we go a step further and argue that two di↵erent

distributions, with di↵erent data sizes but with the same cache hit ratio, will have

the same server resources consumption if subject to the same fixed throughput.

Consequently, in this experiment we used the same setting as the first experiment

for the zipf clustered, again populated with 4,000,000 records (4.3GB), but we

changed the number of records of the uniform distribution to 2,141,881(2.3 GB)
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Distribution phit Average Serverusage #Records

Zipf Clustered 93% 19.28% 4,000,000

Hotspot modified 93% 18.93% 4,000,000

Table 5.3: Average Serverusage and cache hit ratio results for two di↵erent dis-
tributions, but with the same cache hit ratio, for a region size that cannot fit in
block cache.

so its cache hit ratio could also be 93%. The throughput is again fixed at 2000

operations per second. From Table 5.4 it is possible to see that the amount

of resources used by both distinct distributions is identical. Despite the fact

that they have been populated with di↵erent data sizes. Therefore, for some

throughput all it takes to have an identical server usage is an identical cache hit

ratio, regardless of the data size and the distribution.

Distribution phit Average Serverusage #Records

Zipf Clustered 93% 19.28% 4,000,000

Uniform 93% 19.76% 2,141,881

Table 5.4: Average Serverusage and cache hit ratio results for 2 distributions with
di↵erent sizes, but with same cache hit ratio.

Correlation between server usage and cache hit ratio: Intuitively, it

appears that there is a correlation between the server usage and the cache hit

ratio. A correlation test using the Fisher’s z transformation [Fisher 1921] with

the data from the previous experiments, shows that in fact there is a negative

correlation for p-value < 0.001, making it statistically significant. Accordingly,

we can state that for a given throughput the higher the cache hit ratio, the lower

the server usage. As a result, we argue that it is possible to estimate the server

usage from the incoming throughput and the cache hit ratio. In the following

sections we show how this can be done.
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5.3 Estimating resource usage of read opera-

tions

From the previous section we have shown that the cache hit ratio is related to

NoSQL database resource usage: for a given throughput, the higher the cache

hit ratio, the lower the server usage. In addition, the cache hit rate reflects not

only the data size, but also the underlying distribution of requests which, in

combination with an incoming throughput, corresponds to a given server usage.

Furthermore, for a fixed throughput this relation is univocal, that is, for some

throughput if two distinct workloads consume the same amount of resources, then

they must have the same cache hit ratio.

In this section, we show how the server usage of any workload can be esti-

mated simply by knowing its cache hit ratio and incoming throughput, regardless

of the distribution of requests and data size. We build on the aforementioned

properties to build a tridimensional model, that models the server usage for a

NoSQL database, when the cache hit ratio and the throughput vary. It is note-

worthy that by collapsing the data size and the request distribution into a single

metric, the cache hit ratio, it greatly simplifies the construction of the model.

Nonetheless, this model is hardware dependent and has to be rebuilt when the

hardware changes or when there are changes in core configuration parameters of

the datastore that, for instance, a↵ect the amount of memory allocated to the

cache.

5.3.1 Uniform distribution as a building block for server

usage modeling

As mentioned in Chapter 2, the LRU replacement algorithm is widely used in

numerous systems, particularly in NoSQL databases. One of the properties of

LRU caches, is that the uniform distribution represents the case where the cache

hit ratio is minimum. Taking into account the negative correlation between the

cache hit ratio and the server usage shown in the previous section, it is then

possible to deduce that the uniform distribution represents the scenario where

the server usage is maximum. Therefore, the uniform distribution represents both

a lower bound on cache hit ratio and a higher bound on server usage. As any
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other possible distribution will have a greater cache hit ratio, this means that it

will consume less resources than the uniform distribution. Moreover, the uniform

distribution reduces the training time, since it represents the lowest possible hit

rate for a given data size, thereby the time it takes to populate the data in the

database is smaller. Therefore, the uniform distribution is a good candidate to be

used in building a tridimensional model, which models resource usage of a NoSQL

database, when the cache hit ratio and the throughput vary. In order to build

such model it would be necessary to test the behavior of the system for every

possible combination of cache hit ratio and incoming throughput. Naturally, this

is unpractical and actually defeats the purpose of building a prediction model.

Instead, we need to test the behavior of the system against a carefuly chosen

number of combinations of cache hit ratio and throughput that are representative

enough to build the prediction model.

At this point, it is important to note that, for a generic workload generator,

it is not possible to define the desired cache hit ratio. Instead we can only set

the data size and desired throughput. However, as we have chosen the uniform

distribution for building the model we can take advantage of a simple approach

proposed by Che et al. [Che et al. 2002] that provides an exact estimation of the

cache hit ratio of the uniform distribution. This way, we can represent the cache

hit ratio by its correspondent data size when building the model. Therefore, in

the remainder of this section we will mention data sizes implicitly mentioning

their correspondent cache hit ratios.

Let’s begin by looking at an illustrative example. Figure 5.1 shows the be-

havior of incoming throughput when data sizes increase for a fixed server usage

percentage1. The first obvious observation, also supported by the previous exper-

iments, is that if the data size is smaller than the cache size, then all that matters

to server usage is the incoming throughput. In other words, because the cache hit

ratio is always 100% in those cases, the only variable a↵ecting the server usage

is the throughput. Thus, the throughput is the same for all possible data sizes

between 0 and cache size. For larger data sizes, the cache hit ratio drops and

cache swapping begins, which in turn means that in order for the server usage to

stay the same the throughput must decrease. As a result, this is a boundary point

(where data size equals to the cache size). This observation allows to reduce the

1Actually it corresponds to the 60% Serverusage line in Figure 5.2.
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Figure 5.1: Typical relation between cache size and throughput for a fixed
Serverusage.

number of points to calculate for that section of the model as we just need to

build the model from that point onwards.

From that point on, we need other heuristics for choosing the points to mea-

sure. Naturally, the model will be more accurate as the number of tested com-

binations increase. However, to keep the number of tested combinations as low

as possible, easing the model building process, we need to select them carefully.

For instance, for data sizes slightly larger than the boundary point, there is a big

drop on throughput in order to resource usage to remain the same. This drop

can be more or less abrupt depending on the speed of the secondary memory.

Therefore, in order to capture this behavior in the model we need to increase the

number of tested combinations of pairs data size and throughput immediately

after the boundary point. Conversely, when the data size is largely increased we

can be confident of a long and flat tail. Therefore, in that area we do not need

to test as many combinations for the model to be accurate.

Model generator

The uniform distribution server usage model is automatically generated resort-

ing to a developed Python script and using YCSB as the workload generator2.

2All the scripts used in this work are openly available at github.com/fmcruz/suhcr/

github.com/fmcruz/suhcr/
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Generally, this script has 2 main parameters: i) a list of cache hit ratios and ii)

a list of targeted server usage levels. Hit cache ratios are, as explained earlier,

converted to data sizes using the Che’s approximation. Then, resorting to a bi-

nary search, the script tries to find the necessary throughput of read operations

to achieve each specific percentage of server usage for each data size defined as

input. Fixing the server usage level and allowing the throughput to be experi-

mentally calculated via the script, allows us to have a representative number of

server usage levels without having to test multiple cache hit ratio and throughput

combinations in order to have a usable model.

The first point in the construction of the model is usually the boundary point.

This point is a pair of data size and throughput. By definition, the data size

must be equal to the defined cache size, which means the cache hit ratio is

100% for this point. Let’s say we are trying to know the boundary point that

corresponds to 60% of server usage. What the script does is that tries to find

which throughput is needed to achieve the targeted server usage. For every

pair of data size and throughput there are 3 runs, each 30 minutes long with

150 seconds of ramp-up time, and the server usage is logged every second in

the remote machine where the database is running. Then, it takes the average

server usage of the 3 runs and compares it with the targeted server usage. If

the average falls within 0.25% of the target server usage (i.e between 59.75%

and 60.25%), we found our point and stop. On the other hand, if the server

used is higher, then the throughput has to be decreased, and increased otherwise

for the following runs. When all the points for a specific server usage level are

found, and as mentioned earlier, we resort to interpolation between those points.

Specifically, using the monotonic spline interpolation of the R project 3 embedded

into the Python script. This process is repeated for each of the targeted server

usage levels. This list does not comprehend all of the possible values between

0 and 100%. Instead, by observing through experimentation we noted that a

few of them is su�cient (usually 5 equally spaced). Furthermore, by using linear

interpolation between the di↵erent server usage levels we achieve very accurate

results, and ultimately build a tridimensional model that correlates data size,

with throughput and expected server usage.

3http://www.r-project.org
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Model instantiation in our cluster

The server model based on the uniform distribution is the only aspect of this work

that is hardware dependent. In fact, whenever the hardware changes the model

is rebuilt to reflect the possible di↵erences in hardware behavior. The automatic

server model generator was used on our own cluster, each machine with an Intel

i3 CPU at 3.1GHz, with 8GB of memory and a local 7200 RPM SATA disk. The

generator was configured to use HBase 0.98.3, with one node acting as master

for both HBase and HDFS, and it also holds a Zookeeper instance running in

standalone mode. There was one RegionServer in other machine, configured

with a heap of 4 GB, and co-located with a DataNode. HBase’s LRU block cache

was configured to use 55% of the heap size, that HBase translates into roughly

2.15 GB. Other node was used to run the generator.

The generated server model is as depicted in Figure 5.2. There were defined 10

di↵erent cache hit ratios: 100%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 25%, and

15%. These cache hit ratios were then transformed in their data size equivalents

to be used as input in the model generator. The first point is the boundary

point corresponding to 2,000,000 of YCSB records. As previously stated, for

data sizes slightly larger than the cache size we need to increase the density of

points tested to ensure the model is more accurate. Thus, the following point

is only a 5% decrease, and next 6 points are decreases of 10% in the cache hit

ratio. On the other hand, predicting a flat long tail from that point on, we just

defined 2 points much more apart from each other, 25% and 15% of cache hit

ratio, corresponding to 8,000,000 and 12,000,000 records.

As can be seen in Figure 5.2 the solid lines correspond to the 5 targeted levels

of server usage, namely 80%, 60%, 40%, 20% and 5%. It is general practice in

frameworks for automated elasticity of NoSQL databases [Konstantinou et al.

2012] that the rule governing the addition of new nodes indicate 80% as the

maximum usable CPU before a new node is needed in the cluster. This is an

empirical higher bound on usable CPU to accommodate operating systems pro-

cesses, account for possible load spikes and compactions. Therefore, the highest

defined level was 80%. However, our model generator can be configured to model

any targeted CPU usage.

When eventually the generator has finished searching for the throughput

needed to reach the targeted levels of server usage for the various data sizes,
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Figure 5.2: Instantiation of the server model for read operations based on a
uniform distribution.

it then interpolates the data that resulted in the represented continuous curves.

Finally, so the server model can be finished we just need to do a final and linear

interpolation between these curves. The curves that correspond to the linear in-

terpolation are represented by dotted lines for the server usage levels of, namely,

70%, 50%, 30% and 12.5%, which are example levels.

Model accuracy

Revisiting the first experiment of Section 5.2, we can now use the generated

model to estimate the server usage for the di↵erent distributions. The results are

depicted in Table 5.5. As can be seen, the estimated server usage is almost the

Distribution Observed usage Estimated usage Accuracy

Uniform 58.35% 58.35% 100%

Hotspot 46.19% 45.87% 99.31%

Zipf Scrambled 35.91% 36.29% 98.94%

Zipf Clustered 19.28% 19.15% 99.33%

Table 5.5: Observed average serverusage and Estimated serverusage results under
four di↵erent distributions.
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same as the observed average server usage, despite all four di↵erent distributions

with very di↵erent cache hit rates. It should be noted that, as expected, the

approach predicts the server usage of the uniform distribution with accuracy

of 100% due to the similarity between the input usage levels of the model and

the ones used in the test. Moreover, the generated model proves to accurately

estimate the server usage of any distribution with an accuracy no lower than 98%,

only by knowing two parameters: i) cache hit ratio; and ii) incoming throughput.

Training

The model construction can be a time consuming task: we observed about 5 days

using a single machine. However, to speed up the model’s construction, the script

can be run simultaneously on di↵erent machines provided the hardware is exactly

the same throughout the cluster. For the Cassandra model used in Section 5.5

we leveraged a 3 node cluster to reduce model construction time to slightly over

2 days. The reduction was not completely linear because the script uses the

following optimization: for consecutive data points the maximum throughput

for a server usage level is at most equal to the data point preceding it. In other

words, we know that when using the same access distribution if the cache hit ratio

decreases then the needed throughput to meet a certain level of server usage must

be equal to (if the records fit all in the block cache) or lesser than the previous

data point. As a result, we use this property to provide a higher bound to the

binary search that reduces the search space. However, in the current version, the

script launches independent processes and each process has only a local view of

the overall model. This would be solved with a distributed version of our script

so each process has access to the global view of the model as it is being created.

It should be noted that the construction of the model could be moved to

runtime. The model would possibly not be based on the uniform distribution,

but instead on distributions observed in the cluster. The only shortcoming is

it would likely take a longer time to have a complete model depending on the

variety of workloads each node observes and the number of nodes composing the

cluster.
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Discussion

The approach described in this section allows to accurately estimate the server

usage resorting to an o✏ine trained model based on the uniform distribution. Us-

ing the cache hit ratio and the incoming throughput as the only parameters that

a↵ect resource utilization may appear oversimplifying. Specially, when taking

account related approaches to usage prediction in RDBMS. However, key-value

datastores are fundamentally di↵erent from relational databases. In order to at-

tain high scalability, high throughput and high availability, these datastores o↵er

a simple key-value interface based on put and get operations without providing

multi record atomic operations nor complex operations like joins and aggrega-

tions. On the other hand, RDBMS must cope with a large number of concurrent

and lock-prone ACID transactions and need di↵erent and more complex models

for resources, such as CPU, RAM, disk I/O and database locks. These di↵er-

ences allow our simple but e↵ective technique to work. In fact, as shown in this

Section and in Section 5.5 this technique is valid and achieves high accuracy to

estimate the resource usage of any not previously trained workload. The em-

pirical intuition of why other parameters, such as the I/O costs, do not need to

be considered separately is because they are already concealed in the training

model. Taking a closer look into the behavior of each distribution in the first

experiment, and decomposing the overall throughput into operations hitting the

cache, and operations that are misses, we have:

• Uniform - 49% of cache hit ratio; thus 980 ops/s are cache hits, the remain-

ing 1020 ops/s miss the block cache;

• Hotspot - 56% of cache hit ratio; thus 1120 ops/s are cache hits, the re-

maining 880 ops/s miss the block cache;

• Zipf Scrambled - 68% of cache hit ratio; thus 1360 ops/s are cache hits, the

remaining 640 ops/s miss the block cache;

• Zipf Clustered - 93% of cache hit ratio; thus 1860 ops/s are cache hits, the

remaining 140 ops/s miss the block cache.

By looking at the average resource usage for each distribution, it is obvious that

the cost of a cache miss is greater than the cost of accessing the block cache.

This implies that the server usage for read operations can be decomposed as the
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sum of two costs: Usageread = Usagehit + Usagemiss The Usagehit is the cost

of only accessing the cache, while the Usagemiss represents the cost of a miss in

the cache. It covers not only the cost of bringing a block into the cache (either

from main memory or disk), but also the cost of discarding the least recently

used data to make room for the new data block. Thus, when two workloads

have identical cache hit ratios and identical incoming throughputs, it means that

both workloads have the same number of operations hitting the cache and the

same number of operations missing the cache. As a result, once two workloads

exhibit the same Usagehit and Usagemiss, ultimately exhibit the same server

usage. For instance, when the uniform distribution was populated with only

2,141,881 records to achieve a cache hit ratio of 93%, it ended up with 1860 ops/s

hitting the cache, while the remaining 140 ops/s were cache misses. Making it

equivalent, as shown, in terms of server usage to the Zipf Clustered distribution.

But, the total number of records of the Zipf Clustered distribution is almost the

double (4,000,000 records). However, due to the skewness of this distribution

the 140 ops/s touch a very small fraction of the data, making the likelihood of

going to disk similar to the uniform case, and ultimately making the prediction

accurate.

5.3.2 Scan operations

In NoSQL databases that follow a hierarchical architecture such as HBase, scan

operations allow to read multiple records in batch, which allows to reduce load

in terms of I/O and network. The scan operation requires a start and a stop

key and then all rows in the given range are read. In fact, in HBase the read of

a single row is an instantiation of a scan operation but limited to a single row.

As a result, the process used to estimate the resource usage of single row read

operations can be extended to estimate the resource usage of scan operations over

multiple rows.

As stated earlier, in HBase keys are stored in lexicographic order and thus

clustered in blocks. So HBase takes the start key and finds the correspondent

block. If the block is not already in the block cache, it reads the block to the

cache from secondary storage. Contrasting with a single row read operation,

the scan iterates through the keys within the block until the stop key is found.

However, if the stop key belongs to another block HBase iterates through the
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subsequent blocks until the stop key is found. When estimating the resource

usage of scan operations we have to take into account the cost of iterating over

the key range (CostReadNextRow) as well as the cost of reading a block from block

cache (CostBlockFromBlockCache) and the cost of reading a block not present in the

block cache (CostBlockOutBlockCache). There is yet another cost we must take into

account: in a single row read operation the cost of filtering and returning several

columns is negligible that is, it does not matter if the single row read operation

is requesting just one column from the ColumnFamily or requesting all columns.

This happens because for a single row, the filtering cost is insignificant when

compared to the other costs. However, when iterating over several rows this

filtering cost adds up and has to be taken into account (CostReadNextColumn).

As a result, the process to estimate the resource usage of scan operations is

divided into two parts. In the first part we use the exact same procedure de-

scribed in the previous subsection. In the other words, we build a server usage

model based on the uniform distribution with scan operations limited to one row

and one column. The instantiation of the model in our cluster is depicted in

Figure 5.3.
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Figure 5.3: Instantiation of the server model for scan operations based on a
uniform distribution.
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In the second part of the process we can estimate the resource usage of scan

operations by adding the aforementioned costs to the model using the following

equation:

ServerUsagescans = ServerUsagemodel +#Scans⇥

(ServerUsageReadNextRow + ServerUsageReadNextColumn

+ServerUsageBlockFromBlockCache + ServerUsageBlockOutBlockCache)

As can be seen from the equation, first we use the generated model to de-

termine the server usage for the number of observed scan operations. Then, we

extend the model by multiplying the number of scan operations by the summation

of each of the components that are defined as follows:

ServerUsageReadNextRow = CostReadNextRow ⇥ (ScanLength� 1) (5.1)

ServerUsageReadNextColumn = CostReadNextColumn ⇥ (#Columns� 1) (5.2)

⇥ScanLength

ServerUsageBlockFromBlockCache = CostBlockFromBlockCache (5.3)

⇥(BlocksTouched� 1)⇥ phit

ServerUsageBlockOutBlockCache = CostBlockOutBlockCache (5.4)

⇥(BlocksTouched� 1)⇥ (1� phit)

As stated previously, all equations from 5.1 to 5.4 depend on a set of

costs, namely CostReadNextRow, CostReadNextColumn, CostBlockFromBlockCache and

CostBlockOutBlockCache. All of these costs are constants and must be obtained

experimentally, moreover they are hardware dependent. In addition, the com-

putation of the server usage also depends on the characteristics of the scan op-

eration: i) the scan length, that is how many rows are read; ii) the number of

columns to be retrieved; iii) the number of blocks the scan touches, which is also

dependent on the scan length; and finally iv) the cache hit ratio. It should be

noted that equations 5.3 and 5.4 are complementary, in the sense that they

both depend on the cache hit ratio and, for instance, when the cache hit ra-

tio is maximum (100%) then no blocks are read out of the block cache and the

ServerUsageBlockOutBlockCache = 0. Another important aspect is that if the ob-

served scan operations only return one row and one column then, as expected the
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ServerUsagescans = ServerUsagemodel. Because, in this case ScanLength = 1,

#Columns = 1, and BlocksTouched = 1 then all equations from 5.1 to 5.4

equal 0 and thus the ServerUsagescans = ServerUsagemodel.

Some of the necessary metrics regarding the scan operation are not made

available by HBase. So we included in HBase metrics engine a new set of scan

related metrics for each region, namely: distinguish between single row read

operations and scan of multiple rows; and the total size of the scan operations i.e

how many rows were read by all scan operations. These modifications impose no

overhead to HBase.

5.4 Estimating the resource usage of update op-

erations

Although workloads are generally dominated by reads, most applications also

have updates. Despite the fact that it is not the main focus of this work, we

apply a similar approach to update operations. Updates and writes can be used

interchangeable, because in key-value datastores, such as HBase and Cassandra,

updates and new writes are append-only, so they follow the same write path.

Updates in these datastores are first written to main memory before being

flushed to disk. Therefore, the resource cost of an update is essentially related

with the operation of writing the update to main memory and, from time to time

flushing it to secondary memory. As a consequence, contrary to read requests,

updates are mostly independent of the request distribution and current data size.

In addition, because the write path and the read path in a NoSQL database are

substantially separated, the overall server usage can be defined as the sum of the

usage related with read operations, both single row and multiple row operations,

and the usage related with update operations:

ServerUsageoverall = ServerUsageread + ServerUsageupdate

The server usage related to read operations is estimated using the procedure

described in Section 5.3. On the other hand, the server utilization related to

update operations is estimated in a di↵erent way. As updates are independent of

the request distribution and the data size, creating a model to predict the server
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usage of update operations is simpler than the read model counterpart. The only

variable a↵ecting the server utilization is, thus the write throughput.

5.4.1 Model generator

Analogous to the model generator for read operations, we used a Python devel-

oped script to generate the server usage model for update operations. It also

uses YCSB as the workload generator, but this time configured for updates. As

the update model only depends on the throughput, the script has only one main

parameter: a list of targeted update throughput points to test. Evidently, the

YCSB must also be loaded with an initial data size, but it is not relevant to the

updates server model. For every element of targeted update throughput there

are 3 independent runs, each 30 minutes long with 150 seconds of ramp-up time,

and the server utilization is logged every second in the remote machine where

the datastore node is running. When all the defined points are finished, we also

resort to interpolation between those points. Again, we use the monotonic spline

interpolation of the R project embedded into the Python script, which achieves

very accurate results and allows to diminish the number of data points needed

to test.

5.4.2 Model instantiation in our cluster

The server model based on updates is also hardware dependent. Meaning that

when the hardware changes the model has to be rebuilt. Like the server model

of read operations, the automatic server model generator was used on our own

cluster, using the exact same setting. The generated server model for updates is

depicted in Figure 5.4. There were defined 28 di↵erent targeted update through-

puts from 5 updates per second to 10,000 updates per second. For increased

accuracy, the first 10 targeted throughputs fall within the interval of 5 to 1000

updates per second. From that point on, there were 500 increments until 10,000

updates per second, which is the point where the server usage reaches 80%. As

can be seen the server utilization for update operations grows linearly with the

increased throughput. In Section 5.5, it is shown that it is possible to estimate the

server utilization when simultaneously dealing with read and update operations.



5.5 Validation 81

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

0 1 2 3 4 5 6 7 8 9 10
Throughput (ops/s x 103)

S
er

ve
r u

sa
ge

 (%
)

Figure 5.4: Instantiation of the model for update operations.

5.5 Validation

This section validates the proposed approach using two di↵erent NoSQL databases:

HBase and Cassandra. For HBase, we first used a single region to show that we

can accurately predict the server usage of not previously trained workloads, for

a wide spectrum of read throughputs. Secondly, we show that in a multi-tenant

setting when two or more regions with di↵erent request distributions are in the

same RegionServer, we can still accurately predict the server usage. Moreover, we

prove that we can also predict the server usage when there is a mix of read and

update operations. Finally, we show that the proposed approach is valid even

using di↵erent hardware specifications. In this regard, we instantiated the read

model as described in Section 5.3 for a di↵erent hardware specification. As the

process is identical, for simplicity we omit the depiction of the generated models.

In this section, we also demonstrate that the approach is generic and extensible

to other datastores, namely Cassandra. Thus, again using the model generator

described in Sections 5.3 and 5.4 we instantiated the read model and the update

model for Cassandra.We leveraged a 3 node cluster to reduce model construction

time to slightly over 2 days. Once more, for simplicity we omit the depiction of

the generated models. Nonetheless, since Cassandra was subject to the same set
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(a) HBase: 4 million records; zipf clustered.
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(b) HBase: 3 million records; zipf scrambled.
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(c) Cassandra: 4 million records; zipf clustered.
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(d) Cassandra: 3 million records; hotspot.

Figure 5.5: Experiments for read-only operations in HBase and Cassandra.

of tests as HBase (except evidently for the multiple region experiments as there

are not regions in Cassandra), we use them to estimate the server usage in the

di↵erent experiments.

5.5.1 HBase

Configuration: In the experiments below we used the exact same setting as

in the experiments of Section 5.2. Briefly, we ran all experiments in our cluster,

each machine with an Intel i3 CPU at 3.1GHz, with 8GB of memory and a local

7200 RPM SATA disk. HBase 0.98.3 was deployed, with one node acting as

master for both HBase and HDFS, while holding a Zookeeper instance running

in standalone mode. There was one RegionServer in another machine, configured

with a heap of 4 GB, and co-located with a DataNode. HBase’s LRU block cache

was configured to use 55% of the heap size. YCSB was used as the workload
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generator, with the client running in other node. All experiments were set to

run for 30 minutes with 150 seconds of ramp up time, and the server usage was

logged every second in the RegionServer/DataNode machine, using UNIX top

command. For every data point there were 3 independent runs, and the results

presented are the computed average.

Single region: We began by assessing whether the proposed mechanisms can

accurately predict the server usage, when it comes to other distributions than

the uniform distribution. Therefore, we populated the HBase instance using the

YCSB’s client with 4,000,000 records (4.3 GB). Then, the YCSB’s client was

configured to use the zipf clustered distribution with 100% read operations, and

for a fixed throughput ranging from 250 ops/s to 10,000 ops/s. We also wanted to

validate what happens when using a data size not used in the model generator. As

a result, we populated the HBase cluster with 3,000,000 records (3.15 GB), and

this time using the zipf scrambled distribution, which yields a much lower cache

hit ratio (78.8%). As a result, the configured read throughput ranged from 250

ops/s to 7,000 ops/s. The results for each experiment are depicted in Figure 5.5(a)

and in Figure 5.5(b). They show the estimated server usage compared to the

observed one. The estimated results are drawn from our approach using the

generated model for read operations, and observing the cache hit ratio as provided

by HBase exported metrics. As expected, the estimated server usage in both

experiments is very similar to the observed counterpart.

Multi-tenancy: In this step of validation, we assess if we can accurately

estimate the server usage in a multi-tenant setting. In HBase, we can simulate

this setting with two or more regions. As mentioned previously, they compete for

the cache, and thus the cache hit ratio is a↵ected by their request distribution

and the probability of being accessed. Therefore, we began with 2 independent

regions in the same RegionServer. We configured the read throughput to 2,000

ops/s, and then variated the probability of each region being requested from 10%

to 90%, yielding 9 possible di↵erent combinations. For instance, if one of the

regions has access probability of 10%, it means that is receiving 200 ops/s while

the other one is getting the remaining 1800 ops/s. Both regions were populated

with 2,000,000 records (totaling 4.3 GB). The YCSB client was configured to issue

read requests following a uniform distribution for Region A, and zipf clustered
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(a) 90% read and 10% update.
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(b) 80% read and 20% update.
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(c) 50% read and 50% update.
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(d) 20% read and 80% update.
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(e) 10% read and 90% update.

Figure 5.6: Read and update operations mix experiments in HBase.

distribution for Region B. As depicted in Figure 5.7(a), once more, the estimated

server usage accuracy is very similar to the observed one. It is noteworthy that

the first point corresponds to the minimum cache hit ratio. The cache hit ratio

is at its minimum when both regions compete equally for the cache. Thus, they

have equal probability of access, that is 50%. On the other hand, the maximum
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(b) Experiment with 3 regions.

Figure 5.7: Multi-tenancy experiments in HBase.

cache hit ratio occurs when the zipf clustered distribution is more likely to be

accessed - 90%.

The same behavior can be seen when instead of 2 regions, there are 3 regions.

In this experiment Region A and Region B were populated with 1,000,000 records,

and Region C with 2,000,000 records (totaling 4.3 GB). YCSB was configured to

issue read requests for Region A and Region C following the uniform distribution,

while for Region B zipf clustered distribution. This time, the throughput of read

operations was fixed at 1,000 ops/s and we also varied the access probability
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of each region. The results are depicted in Figure 5.7(b), and once more the

estimated server usage is very similar to the observed one, for all di↵erent access

probabilities, ranging from 68%(when all regions compete equally for the cache)

to 95% cache hit ratio.

Read and update mix experiments: By using both the read and the update

model, we are able to estimate the server usage for read operations and update

operations independently. However, as described in Section 5.4 the write path

and the read path are mostly separated, thus we are able to estimate the overall

server usage just by adding both estimations. In order to validate this assump-

tion, we set up an experiment configured with di↵erent read and update mixes,

namely: 90% read and 10% update; 80% read and 20% update; 50% read and

50% update; 20% read and 80% update; 10% read and 90% update. The region

was populated with 4,000,000 records (4.3 GB) and the requests followed the

uniform distribution with a fixed throughput of 118 ops/s, 562 ops/s, 1250 ops/s,

1958 ops/s and 2921 ops/s. These tested throughputs correspond to 5%, 20%,

40%, 60% and 80% server usage levels, as generated by the server model for the

uniform distribution. In Figure 5.7 is depicted the results for this experiment.

It shows that our approach is valid and it accurately predicts the server usage

even when there are read and update operations simultaneously. However, as

seen in Figure 5.6(c) and Figure 5.6(d) for the higher values of throughput the

observed server usage is higher than the estimated one. These di↵erences can

be explained by compactions occurring during the test period that disrupt the

readers of records stored on disk. Figure 5.8 shows the server usage along the

entire 30 minute run for the 20% read and 80% update mix (Figure 5.6(d)) for the

2912 ops/s throughput. Until the compaction process starts (at 1277 seconds)

the observed server usage average is the same as the estimated one (44%). Then,

the compaction process greatly increases server usage to levels near 100%. When

compaction ends regular behavior is resumed. This process greatly impacts the

overall server usage average, but even at this point our estimated server usage

is only o↵ by 12%, which is the greatest di↵erence observed. It is worth noting,

however, that while more powerful hardware and particularly SSDs would atten-

uate the problem and help improve the estimation, in [Ahmad and Kemme 2015]

it is proposed to o✏oad compactions to a dedicated compaction server to prevent

the significantly degraded read performance during compactions.
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Figure 5.8: Observed server usage along a 30 minute run for the 20% read and
80% update mix for 2912 ops/s throughput.

Di↵erent hardware specification

All the previous experiments, including those in Section 5.2, were run using the

same hardware specification. As a result, in this step of validation we want to

show that the proposed approach is applicable to di↵erent hardware specification.

Configuration: In the following experiment we used two machines each with

an Intel Xeon 2.3 GHz with 16 cores, with 24GB of main memory and a local SSD

drive. HBase 0.98.3 was deployed, with one node acting as master for both HBase

and HDFS, while holding a Zookeeper instance running in standalone mode.

There was one RegionServer in another machine, configured with a heap of 12

GB, and co-located with a DataNode. HBase’s LRU block cache was configured

to use 55% of the heap size (6.6GB). YCSB was used as the workload generator,

with the client running in the other node. All experiments were set to run for

30 minutes with 150 seconds of ramp-up time, and the server usage was logged

every second in the server machine, using the UNIX top command. For every data

point there were 3 independent runs, and the results presented are the computed

average.

Single region: After building the server model based on the uniform dis-

tribution for the new hardware specification, we populated the HBase instance
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using the YCSB’s client with 18,000,000 records (20.5 GB). Again, the data size

is larger than the available main memory to ensure that much of the data has

to be brought from the SSD drive into main memory causing page in and page

out. YCSB’s client was configured to use the zipf scrambled distribution with

100% read operations. Similarly to previous experiments, the configured read

throughput started at 250 ops/s and we stopped at 17,000 ops/s, which is when

the server usage reached 80%. The results for this experiment are depicted in

Figure 5.9. It shows the estimated server usage compared to the observed one.

The estimated results are drawn from our approach using the server model for

read operations, and observing the cache hit ratio as provided by HBase, which

for this experiment is 59%. Again, the estimated server usage is very similar to

the observed counterpart.
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Figure 5.9: Experiment with 18 million records and zip scrambed distribution for
a di↵erent hardware specification using HBase.

5.5.2 Cassandra

Configuration: In the experiments below we again used the same setting and

hardware specification as in the experiments of Section 5.2. We used Cassandra

version 2.1.7 in single node configuration, with a row cache size of 2GB, equivalent
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to HBase. YCSB was used as workload generator, with the client running in other

node. All experiments were set to run for 30 minutes with 150 seconds of ramp

up time, and the server usage was logged every second in the Cassandra machine,

using UNIX top command. For every data point there were 3 independent runs,

and the results shown are the computed average.

Read experiments: The read experiments in Cassandra are analogous to the

HBase single region experiments. That is, we wanted to assess if the proposed

mechanisms can accurately predict the server usage when using other distribu-

tions than the uniform distribution. Consequently, we populated the Cassandra

instance using the YCSB’s client with 4,000,000 records (4.3GB) for the first

experiment and with 3,000,000 records for the second experiment. Likewise, in

the first experiment, the YCSB’s client was configured to use zipf clustered dis-

tribution with 100% operations, and for a fixed throughput ranging from 250

ops/s to 10,000 ops/s. However, in the second experiment, instead of using the

zipf scrambled distribution we had to use a hotspot distribution. Because, as

Cassandra uses consistent hashing and its cache is row oriented instead of block

oriented, the zipf clustered and the zipf scrambled distributions have the same

cache hit ratio. Therefore, we used the hotspot distribution of Section 5.2, which

for 3,000,000 records (3.2 GB) achieve the same cache hit ratio as the zipf scram-

bled distribution. The configured read throughput also ranged from 250 ops/s to

7,000 ops/s. The results for each experiment are depicted in Figure 5.9 and in Fig-

ure 5.5(d). They show the estimated server usage compared to the observed one.

The estimated results are drawn from our approach using the generated model

for read operations, and observing the cache hit ratio as provided by Cassandra

exported metrics. Once again, the estimated server usage in both experiments is

very similar to the observed one.

Read and update mix experiment: The write path of Cassandra is very

similar to the write path of HBase. As a result, we should also be able to esti-

mate the server usage when there is a mix of read and update operations. By

using both the read and the update model, we are able to estimate the server

usage for read operations and then sum the usage for update operations. Like

HBase, we set up an experiment using the same mix of read and update opera-

tions, namely: 90% read and 10% update; 80% read and 20% update; 50% read
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and 50% update; 20% read and 80% update; 10% read and 90% update. The

column family was populated with 4,000,000, records (4.3 GB) and the requests

followed the uniform distribution with a fixed throughput of 79 ops/s, 879 ops/s,

2092 ops/s, 3020 ops/s and 4908 ops/s. As shown in Figure 5.10 our approach is

generic and can accurately predict the server usage when there are read and up-

date operations simultaneously, even when using a di↵erent datastore. Contrary

to HBase experiments the compaction process has not the same impact on the

observed server usage.

From the above experiments we can state that our approach is valid, generic

and can accurately estimate the server usage in HBase and Cassandra, regardless

of the data size, of the request distribution, di↵erent hardware, multi-tenancy,

and even when there is a mix of read and update operations. In fact, from all

experiments the average accuracy is 94% with a standard deviation of just 5.6.

5.6 Discussion

Along this chapter we focused on a mechanism for NoSQL databases resource

usage estimation. Our mechanism is able to accurately predict the resource uti-

lization for every data size, request distribution and throughput combination. In

contrast with previous approaches on prediction systems for cloud environments,

we take advantage of focusing on a specific cloud component to improve predic-

tion accuracy and its applicability. In particular, we observed that the majority of

the NoSQL databases make use of bu↵er caching mechanisms to improve perfor-

mance. Moreover, the e↵ectiveness of such mechanisms is directly related to the

performance and, as a consequence, to the resource utilization of the database.

This e↵ectiveness can be measured in terms of the hit ratio that the caching

mechanism exhibits. The higher the cache hit ratio the more e↵ective the cache

mechanism is, and thus more performant is the database. In this work, we pro-

pose that instead of a specific workload is characterized by the three common

parameters, namely: i) data size; ii) distribution of requests and iii) incoming

throughput; a workload can be characterized by the incoming throughput and

by its cache hit ratio, as the latter is a reflection of the i) data size and of the

ii) distribution of requests. By making this simplification we can use the cache

hit ratio and the throughput to build a server usage model based on the uniform
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(a) 90% read and 10% update.
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(b) 80% read and 20% update.
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(c) 50% read and 50% update.
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(d) 20% read and 80% update.
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(e) 10% read and 90% update.

Figure 5.10: Read and update operations mix experiments in Cassandra.

distribution of requests, that can then be used to predict the resource utilization

of any workload only by knowing those two parameters. In fact, in our experi-

ments the average prediction accuracy achieved is 94%. Also, the solution does

not require system traces or runtime mechanisms to improve the precision of the

estimation. In addition, our approach is generic as it can be applied to di↵erent

NoSQL databases, such as HBase and Cassandra.
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Chapter 6

Resource Usage Load Balancer

Fully using the available resources is the ultimate goal for any application. This

becomes even more important in a cloud environment dominated by the pay-

as-you-go model where enterprises pay for the resources they consume. As a

result, it is extremely important that, at all times, a particular application only

consumes the resources that it really needs to achieve the desired performance.

In the context of NoSQL databases due to its inherently distributed architecture,

it is highly desirable that all the nodes that make up the cluster are to be fully

utilized and the load is evenly distributed across the cluster.

In this chapter, we leverage the work described in the previous chapter to de-

vise a new load balancer based on the estimation of the resource usage of NoSQL

databases to maximize resource usage in each individual node, while minimizing

the total number of nodes needed. This load balancer can be integrated into

MeT framework to supersede the existing load balancer. As described in Chap-

ter 3, MeT system provides a load balancing mechanism that tries to even the

load across the NoSQL cluster. It does so by minimizing the number of requests

per second (i.e the requested throughput) in each node. However, as we have

shown in the previous chapter, due to the request distribution this approach may

not minimize resource utilization across the cluster. In other words, if one node

in the cluster is receiving 10,000 reads per second with a high cache hit ratio,

while other node is getting the same 10,000 reads per second but with a much

lower cache ratio, then although they have even load in terms of requests, the

resource consumption will be very di↵erent in each node. As result, a load bal-

ancer based on the resource usage can more evenly distribute the load across the

93
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cluster while simultaneously reducing the number of nodes needed to meet the

desired performance.

In the following, we present the design, implementation and integration into

MeT system of a load balancer mechanism based on the predicted resource usage.

As our experiments show, the new load balancer achieves even better results than

the original MeT’s load balancer by achieving the same level of throughput while

it maximizes resource usage in each individual node and, thus minimizing the

total number of nodes needed.

6.1 Predicting cache hit ratio

In order to build a resource usage based load balancer we can not rely on the

observed cache hit ratio to estimate the use of resources. As the load balancer

distributes regions in an online fashion we first need to be able to accurately

predict the cache hit ratio when one or more regions are to be placed in one

node. Then, we can use that expected cache hit ratio in conjunction with the

mechanisms described in the previous chapter to predict the resource usage in

each node.

Calculating the cache hit ratio was, until recently, hard to accomplish for

large cache sizes and large data sizes. However, Che, Tung and Wang, in what

has become known as the Che’s approximation [Che et al. 2002], proposed a

simple approach to estimate the cache hit rate probability. The approximation

is very accurate and versatile for a wide variety of popularity distributions and

population sizes. The approximation operates under the LRU replacement al-

gorithm and also under the independent reference model (IRM), which assumes

that all requests are independent random variables with a common probability

distribution. The Che’s approximation then states that the hit rate, hit(i), for a

object i is approximated by:

hit(i) ⇡ 1� e�p(i)tc

where p(i) is the probability of object i being requested, and tc is the cache

characteristic time. The cache characteristic time can be defined as the time

elapsed since an object i was last requested, such that i is no longer in the cache.

For large cache sizes, a first approximation is to consider tc nearly deterministic,
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and a second approximation is to consider tc a constant and thus independent

of the specific object being requested. This greatly reduces the computational

cost while still providing very accurate results. In fact, it is actually exact if the

popularity distribution is uniform (the case where the hit rate is minimum for a

LRU cache), and has a very low error when the popularity distribution is highly

skewed (Zipf for instance). The average hit rate of a cache can then be calculated

by:

phit =
X

i

p(i)hit(i)

In order to predict the cache hit ratio of a given data set, we need to know the

probability of each object being requested. In HBase’s LRU block cache, records

are mapped to blocks, thus when one record is read the entire block it belongs

to is brought into the block cache. Consequently, the probability of a object

being requested does not refer to the individual record, but to the probability of

a block being requested. We modified HBase server code to include a histogram

that counts the number of times each block is accessed i.e. its access frequency.

The histogram is maintained in a memory structure that is persisted periodically

in HDFS. When a new region is created or moved to another RegionServer it is

created a new instance of the histogram. Then, in order to be able to immediately

access the histogram data its persistence period begins at 1 second and increases

in a quadratic manner until it reaches 30 seconds. Thereafter the persistency

period is maintained at 30 seconds so the overhead is kept to a minimum. When

the region is closed or moved to other RegionServer this process is repeated. It

is worth noting that HBase already exports a metric that counts the number

of times each block is accessed, but reduces it to a single global metric. As a

result, we just distinguish between the accessed blocks, which results in almost

no overhead when compared to the vanilla HBase.

From the histogram we can compute the probability mass function (PMF)

needed to calculate the cache hit ratio. However, there is a small detail. When

trying to calculate the cache hit ratio of two or more independent regions we get

two or more histograms, corresponding to the di↵erent regions. In this case, we

have to merge the histograms into a single one. This can be done because the

cache is a shared resource among all regions served by the RegionServer.
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Implementation

We first used an implementation of the che’s approximation from an open-source

Python project called Icarus [Saino et al. 2014]. However, from our experiments

the Python mathematical libraries used by Icarus (namely, scipy and numpy)

resulted in very slow times to calculate the cache characteristic time for our cache

sizes and data sizes. In fact, those times were in the order of several minutes,

and therefore incompatible with an online load balancer. As a result, we have

developed our own implementation of the che’s approximation resorting to R

software with an interface to Python. This allowed us to lower the computational

times down to just a few seconds.

We have conducted several experiments to assert that our implementation’s

calculated cache hit ratio was similar to the observed cache hit ratio as provided

by HBase metrics. In fact, from our experiments we can state that the results are

as expected with the calculated cache hit ratio very close to the observed cache

hit ratio with a deviation of less than 1%.

The process described allows to accurately predict the cache hit ratio for any

number of regions, regardless of the their request distribution or cache size.

6.2 Algorithm and MeT integration

As described in Chapter 3, MeT provides a load balancing mechanism that tries

to even the load across the NoSQL cluster. It does so by minimizing the number

of requests per second (i.e the requested throughput) in each node. Briefly, this

load balancing mechanism (Algorithm 2) assigns data partitions to nodes using

a makespan minimization algorithm, which encompasses two main stages. In the

first stage, all data partitions are first sorted by decreasing order according to

the observed requested throughput. In the second stage, in decreasing order each

data partition is assigned to the least loaded node until there are no more data

partitions left.

The resource usage load balancer follows the exact same algorithm to assign

data partitions to nodes. But, instead of minimizing the number of requests in

each node, it will minimize the resource usage in each node. In order to do so,

we need to reimplement two functions, namely: i) the sorting function and the

ii) the computation of the least loaded node. In Algorithm 2 they correspond to
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the dataPartitions.sort() and nodeGroup.getMostEmptyNode() functions, respec-

tively.

The new sorting function has to sort regions by decreasing order of predicted

resource usage. As a result, we must first estimate the resource usage of each re-

gion. This resource usage corresponds to the consumption each region would have

if it were placed alone in the RegionServer. Consequently, the sorting function is

composed of four main steps:

1. Download from HDFS the histograms of all regions ;

2. Calculate the cache hit ratio of each region using our implementation of the

che’s approximation;

3. Estimate the resource usage of each region taking the predicted cache hit

ratio and the observed metrics regarding the number of requests, which are

then fed as inputs to the mechanisms described in the previous chapter;

4. Sort regions by decreasing order of predicted resource usage.

In the case of the least loaded node function we have to assign each region to

the node with the least predicted resource usage until there are no regions left.

As opposed to the sorting function, we have to take into account all regions that

are to be placed in the node so we need to merge the histograms to calculate

the global cache hit ratio and thereafter the predicted resource usage. The least

loaded node function has two main steps:

1. Take the histogram of the region being assigned and merge it with the

histograms of the regions that were previously assigned to the node, in

order to calculate the global cache hit ratio using our implementation of

the che’s approximation;

2. Estimate the resource usage for the node, taking the global predicted cache

hit ratio and the observed metrics regarding the number of requests of each

assigned regions, which are then fed as inputs to the mechanisms described

in the previous chapter.

Integrating the resource usage load balancer into MeT is a straightforward

task after we have reimplemented the sorting and the least loaded node functions,
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as well as all the auxiliary functions needed. As a consequence, Python language

was used for all functions and, within MeT we can easily choose which load

balancer mechanism to use.

6.3 Evaluation

In this section we evaluate the resource usage load balancer integrated into MeT

and we compare it with MeT’s original load balancer. For this purpose, we

chose PyTPCC an optimized implementation for HBase of the standard OLTP

benchmark TPC-C. Note that, while TPC-C standard transactions are expected

to have full ACID semantics this implementation o↵ers the isolation semantics

provided by HBase: record level atomicity.

TPC-C benchmark attempts to reproduce the behavior of any business in

which sales’ districts are geographically distributed along with the corresponding

warehouses. There are a total of 9 tables and 5 di↵erent types of transactions,

and the results are measured in transactions per minute (tpmCs). The default

tra�c is a mixture of 8% read-only and 92% update transactions and thus is a

write intensive benchmark.

The TPC-C database was populated with 60 warehouses resulting in a database

of 13 GB. The experiment starts with a HBase cluster composed of 1 Region-

Server, configured with a heap of 4 GB, and co-located with 1 DataNode. We

used another machine as the master of both HBase and HDFS as well as the

Zookeeper instance. PyTPCC’s clients were deployed in two other machines

amounting to 600 clients (300 client threads per machine). All nodes used for

these experiments have an Intel i3 CPU at 3.1GHz, with 8 GB of memory and a

local 7200 RPM SATA disk, and are interconnected by a switched Gigabit local

area network.

MeT configuration

We used the sameMeT configuration parameters as the experiments described in

Chapter 3. Briefly, every 30 seconds the Monitor component gathers the metrics

and sends them to the Decision Maker every 3 minutes. The Decision Maker is

only invoked after having 6 samples to minimize the impact of sudden spikes and

take advantage of the exponential smoothing algorithm. The HBase configuration
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parameters for each group (Distribution Algorithm of Section 5.3) are described

in Table 6.1, with cache size in percentage of heap size and the correspondent

number of blocks, as well as the memstore size.

Node profile Cache size (%) Cache size (blocks) Memstore size (%)

Read 55% 34350 10%

Write 10% 6245 55%

Read/Write 45% 28105 20%

Scan 55% 34350 10%

Table 6.1: Node configuration profiles.

Results

The following experiments are divided into two phases. In the first phase, the

experiment starts with a HBase cluster composed of 1 RegionServer co-located

with 1 DataNode. After a ramp-up period of 4 minutes MeT begins. Then,

the Monitor component periodically collects the several performance metrics and

after 3 minutes invokes the Decision Maker, which takes the decision of adding or

removing RegionServers/DataNodes to the HBase cluster. In an open benchmark

like PyTPCC the maximum throughput is achieved when the client PyTPCC

machines are saturated. Therefore, the goal of this first phase is to know how

many RegionServers are needed to saturate the 2 PyTPCC client machines (600

clients) under two di↵erent scenarios: i) MeT configured with the regular load

balancer; and ii) MeT configured with the resource usage load balancer. In

both scenarios, we let MeT configure the cluster and when MeT considers the

cluster to be healthy and, thus it takes no further action, we stop both MeT and

the PyTPCC benchmark clients. The first phase of the experiment under both

scenarios is depicted in Figure 6.1. As can be observed, MeT configured with

the resource usage load balancer settles down at 3 nodes, while MeT configured

with the regular load balancer needs 4 nodes. In fact, MeT configured with the

resource usage load balancer just needs 3135 seconds to achieve a stable cluster.

MeT with the default load balancer needs more 779 seconds to achieve a healthy

cluster. It is worth noting, however, that the regular load balancer also tries to

manage the load with only 3 nodes, but from all of our experiments it fails to do

so and, thus it always adds another RegionServer settling at 4 RegionServers.
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Figure 6.1: Maximum number of nodes needed to saturate the client PyTPCC
machines.

In the second phase of the experiment, we wanted to measure the throughput

in tpmCs of the configuration achieved for both scenarios. As a result, immedi-

ately after the cluster was healthy and we stopped both the MeT system and the

PyTPCC clients, we restarted the PyTPCC clients and let the experiment run

for 900 seconds. The whole process was repeated 3 times. In addition, we also

measured the maximum throughput possible for the PyTPCC client machines.

In this regard, we have added enough RegionServers to the cluster for a total

of 7 so that manually distributing regions was easy and no node would be over-

loaded. The maximum throughput achieved was then 4224 tpmCs. Table 6.2

shows the average results for the two di↵erent load balancer configurations. As

shown in the table both scenarios achieve the maximum throughput possible for

the PyTPCC clients with around 4224 tpmCs. This is a very interesting result

since the resource usage load balancer can saturate the PyTPCC clients with just

3 RegionServers. This must mean that the resource usage in the cluster is higher,

and the load is more evenly distributed across the cluster.

Scenario Throughput (tpmCs) % Max Throughput #Nodes

Regular Load Balancer 4222.66 100 4

Resource Usage Load Balancer 4223.86 100 3

Table 6.2: PyTPCC average throughput results.
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In order to show that this is indeed the case we have measured the server usage

in each of the RegionServer machines. The results are depicted in Table 6.3.

Scenario RS 1 (%) RS 2 (%) RS 3 (%) RS 4 (%)

Regular Load Balancer 76.22 48.35 69.25 4.47

Resource Usage Load Balancer 68.88 59.19 60.00 None

Table 6.3: Average server usage for each RegionServer machine during the PyT-
PCC experiment.

As can be observed, MeT configured with the resource usage load balancer

can more evenly distribute the load across all RegionServers with very similar

average server usage in each server, and thus allowing it achieve the maximum

throughput with just 3 RegionServers. On the other hand, MeT configured with

the regular load balancer needs one more RegionServer to achieve the maximum

throughput but the load is not evenly balance. RegionServer 1 is under heavy

utilization, while RegionServer 4 was underutilized.

From these experiments, we can conclude that the resource usage load bal-

ancer makes better use of available resources. It achieves the same level of

throughput of the regular load balancer, but it minimizes the total number of

nodes required.

6.4 Discussion

In this chapter, we focused on the design and implementation of a load balancer

for NoSQL databases based on the predicted resource usage. The new load bal-

ancer leverages the mechanisms described in the previous chapter regarding the

estimation of resource usage, to optimize the server usage on each individual node,

and thus minimizing the number of nodes required to meet the performance goals.

However, as an online load balancer it can not rely on the observation cache hit

ratio to calculate the resource usage. Instead, it must be able to predict the

cache hit ratio when one or more regions are placed in a RegionServer. In order

to predict the cache hit ratio of a given data set we resorted to the che’s approx-

imation. The approximation is very accurate and versatile for a wide variety of

popularity distributions and population sizes, and operates under the LRU cache

replacement algorithm. Although there are some research projects that already
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implement the approximation, our tests revealed that none of the implementa-

tions would o↵er the performance needed for an online load balancer. Therefore,

we have implemented the approximation using R software with an interface to

Python. This allowed us to lower the computational times down to just a few

seconds, and from our experiments the predicted cache hit ratio is very close to

the observed cache hit ratio with a deviation of less than 1%.

One of the requirements of the approximation is that we know the probability

of each object being requested. Consequently, we have modified HBase server

code to include for every region a histogram of the access frequency to each

block. The histogram is periodically persisted in HDFS, and imposes almost no

overhead to HBase. From the histogram we can compute the probability mass

function (PMF) needed to calculate the cache hit ratio under che’s approximation.

In order to integrate the new load balancer into MeT system load balancing

algorithm, we needed to reimplement two functions as well as all the auxiliary

functions. This gives MeT the flexibility to easily switch between both load bal-

ancer implementations. As our experiments show, the new load balancer achieves

even better results than the original MeT ’s load balancer. It attains the same

level of throughput while it maximizes the resource usage on each individual

node, and it also minimizes the total number of nodes required.
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Conclusion

Cloud Computing is the current trend in systems design and conception. The

cloud is a complex environment composed of various subsystems that, although

di↵erent, are expected to exhibit a set of fundamental features: high availability,

high performance and elasticity. While high availability and high performance

are common goals to all systems, elasticity is specific to the cloud environment

and closely tied to the pay-as-you go model. Elasticity can be defined as the

ability of a system to grow or shrink its resource consumption according to de-

mand. The ability to adjust resource consumption according to demand, favors

the pay-as-you-go model and improves resource utilization. In addition, current

cloud providers make available their infrastructure (IaaS), platform (PaaS) or

software (SaaS) to multiple customers in a multi-tenant environment. Therefore,

optimal resource utilization becomes an even greater concern, since if one cus-

tomer is using more resources than needed, it may impact the performance of

other customer’s applications, resulting in poorer overall performance. From a

cloud provider’s perspective, the ability to dynamically optimize resource usage

according to the contracted level of service is fundamental to the business model.

Along this dissertation work we focused on a specific component: cloud-based

data stores, popularly referred to as NoSQL databases. These databases have

been designed to take advantage of large resource pools and provide high avail-

ability and high performance. Moreover, they were designed to cope with resource

availability changes. For instance, it is possible to add or remove database nodes

from the cluster and to have the database handle such change transparently.

However, even though NoSQL databases can handle elasticity, they are not au-
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tonomously elastic: an external entity is required to control when and how to

add or remove nodes. Therefore, we designed and implemented MeT framework

that provides automated elasticity to NoSQL databases. MeT not only adds and

removes nodes, but also introduces a novel concept to heterogeneously configure

performance related parameters of NoSQL systems, according to the observed

workloads. We achieve this by leveraging on an existing IaaS system as the basic

provider of elasticity. We expose new database engine metrics regarding work-

load’s access patterns, which are constantly monitored along with the IaaS nodes.

This information feeds our decision component that then performs online cluster

reconfiguration as needed. As our experiments show, fine tuning the available

parameters of a NoSQL database on a per node basis, significantly boosts overall

performance, specially when considering the workload characteristics. Further-

more, when comparing MeT with state-of-art systems, MeT was able to clearly

achieve better performance while using less resources.

Following the work on MeT, some interesting research paths were identified.

We focus on two. Firstly, NoSQL databases assume data partitioning and as

applications have di↵erent access patterns there may exist data hotspots. Iden-

tifying and finding a correct splitting point to eliminate a hotspot is critical to

the optimal performance of NoSQL databases. In this work we presented a work-

load aware data partitioning algorithm for NoSQL databases. The algorithm is

based on the online median estimation of past requests in order to find the ideal

splitting point. The results obtained showed the mechanism is e↵ective both

for achieving good load balance as well as improving overall performance of the

NoSQL database, and is a great complement to MeT framework.

Secondly, we focused on a mechanism for NoSQL databases resource usage

prediction. By observing that the majority of NoSQL databases make use of

bu↵er caching to improve performance we were able to draw a relationship corre-

lating the cache hit ratio with the resource usage. Furthermore, we propose that

instead of a specific workload is characterized by the three common parameters,

namely: i) data size; ii) distribution of requests and iii) incoming throughput; a

workload can be characterized by the incoming throughput and by its cache hit

ratio, as the latter is a reflection of the i) data size and of the ii) distribution

of requests. Building on this simplification we can use the cache hit ratio and

the throughput to build a server usage model based on the uniform distribution
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of requests, that can then be used to estimate the resource utilization of any

workload only by knowing those two parameters. The approach is generic as it

can be applied to di↵erent NoSQL databases, such as HBase and Cassandra.

Finally, we leveraged the work on resource usage estimation to devise a new

load balancer that was integrated into MeT framework. While MeT’s original

load balancer tries to even the load across the NoSQL cluster by minimizing the

number of requests per second in each node, the resource usage load balancer can

more evenly distribute the load across the cluster, while simultaneously reducing

the number of nodes needed to meet the desired performance. As our experiments

show, the resource usage load balancer achieves even better results than the

original MeT ’s load balancer. It attains the same level of throughput while

maximizing the resource usage in each individual node and, thus minimizing the

total number of nodes required.
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