
Epidemic Store for Massive Scale Systems

Francisco António Ferraz Martins de Almeida Maia
Advisor: Prof. Rui Carlos Oliveira

April 30, 2015

DECLARAÇÃO

Nome: Francisco António Ferraz Martins de Almeida Maia 
Endereço electrónico: fmaia@di.uminho.pt
Telefone: 964300393  
Número do Bilhete de Identidade: 12129666  
Título Tese: Epidemic Store for Massive Scale Systems  
Orientador: Prof. Rui Carlos Oliveira
 Ano de conclusão: 2015
 Designação do Doutoramento: The MAP-I Doctoral Program Of The Universities of
Minho, Aveiro and Porto

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS
PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO
ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE;

Universidade do Minho, 30/04/2015

 Assinatura: __

STATEMENT OF INTEGRITY

I hereby declare having conducted my thesis with integrity. I confirm that I have not used plagiarism or any

form of falsification of results in the process of the thesis elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, _____________________________

Full name: ___

Signature: __

iv

Agradecimentos

Ao terminar esta etapa apercebo-me da aventura incŕıvel que foram estes
últimos anos. Tantas vezes a subir e contra-corrente mas sempre com chegadas
surpreendentes e plenas. Chegadas essas que são imposśıveis se estivermos
sozinhos.

Agradeço ao Professor Rui Oliveira pelas viagens que fomos fazendo. Via-
gens na discussão de ideias, na exigência que me fez crescer, na sua capacidade
de inspirar e por proporcionar um ambiente de trabalho único onde sempre
me senti bem.

Agredeço a todo o HASLab e em particular ao GSD pelo ambiente fantástico
criado entre todos. Em particular, agredeço ao Professor José Orlando
Pereira pela sua incansável ajuda e paciência.

I would like to thank Etienne Rivière for his solicitous help and for the
numerous and fruitful discussions. I also thank everyone in the University
of Neuchâtel. It was a pleasure to get to know you all and share with you
those weeks. In particular, I would like to thank Pascal Felber for the warm
welcome and Anita Sobe for the one of a kind opportunity to check out the
Montreux Jazz Festival.

Gracias a Enrique Armendariz por ayudarme en mis primeros pasos como
investigador.

Obrigado a todos os que passaram pelo lab e OsSemEstatuto. Em par-
ticular ao Francisco Cruz, João Paulo, Miguel Matos, Ricardo Vilaça, Filipe
Campos, Ana Nunes, Paulo Jesus, Jácome Cunha, Nuno Carvalho, Fábio
Coelho, Nelson Gonçalves, Pedro Gomes, Ricardo Gonçalves, Miguel Borges,
Nuno Castro e Tiago Jorge. Sem os momentos sérios e, sobretudo, sem os
menos sérios convosco não seria posśıvel este trabalho.

De um modo especial quero agradecer à minha famı́lia. Aos meus pais
Rosalina e António, irmãos Lúıs e José e à minha irmã Margarida. Um
obrigado que não cabe nas palavras por tudo aquilo que de palavras não
precisa. Obrigado ainda aos meus avós, aos meus primos e tios porque com
a sua vida tornam a famı́lia grande e verdadeira.

Um enorme obrigado aos meus amigos. Aqueles de sempre, aqueles que

v

vi

são famı́lia, aqueles que estão sempre lá. Obrigado porque, de tantos modos
diferentes, ajudaram a iluminar o caminho e a avançar.

Obrigado aos meus amigos de nova aventura / Gracias a mis amigos
di nueva aventura: Maria e Fabinho, Antonella e Sebastien. Obrigado por
tantos momentos verdadeiramente especiais / Gracias por tantos momentos
verdaderamente especiales.

Grazie a Federica. Grazie per i nuovi colori con cui hai cambiato la mia
vita.

Finalmente, algumas instituições apoiaram o trabalho apresentado nesta
dissertação. A Fundação para a Ciência e Tecnologia (FCT) apoiou este
trabalho através da bolsa de doutoramento (SFRH / BD / 71476 / 2010).
O Departamento de Informática da Univesidade do Minho e o HASLab -
High Assurance Software Lab. ofereceram-me as condições necessárias para
o desenvolvimento deste trabalho.

Epidemic Store for Massive
Scale Systems

Considering the state-of-the-art systems for data management, it is observ-
able that they exhibit two main frailties when deployed in a large scale
system. On one hand, coordination protocols used in traditional relational
database management systems do not perform well when the system grows
beyond tens of nodes. On the other hand, data management approaches that
relax consistency guarantees, thus avoiding coordination, struggle with high
levels of system churn.

In this dissertation, we present a completely decentralized, coordination-
free, scalable and robust data store. Our design is aimed at environments
with several thousands of nodes and high levels of churn. Offering the cur-
rent ubiquitous key-value data structures and programming interfaces, we
describe how to overcome challenges raised by the need to distribute data -
essential for load balancing, to replicate data - the crux of fault tolerance,
and to route requests - key to performability.

Alongside the design of our data store, we make several contributions in
the context of distributed systems slicing. We propose a novel slicing pro-
tocol that overcomes state-of-the-art limitations. Additionally, we propose a
novel epidemic algorithm for scalable and decentralized organization of sys-
tem nodes into groups. This algorithm is used as an alternative to slicing at
the core of our system. It organizes nodes into groups of parameterizable size
without the need to have nodes knowing the system size. The contributions
made on slicing protocols and the proposed group construction protocol are
independent from the design of the data store. They are generic and can also
be used as building blocks for other applications.

vii

viii

Armazenamento Epidémico
para Sistemas de Larga Escala

Ao considerar o estado da arte no que diz respeito a gestão de dados, é
posśıvel observar que as soluções existentes exibem duas grandes fragilidades
quando instaladas em sistemas de grande escala. Por um lado, os protocolos
de coordenação utilizados nas bases de dados relacionais tradicionais não são
capazes de gerir, de forma eficaz, mais de uma dezena de nós. Por outro lado,
abordagens que relaxam a coerência dos dados evitando assim protocolos de
coordenação, escalam melhor mas não conseguem lidar com elevados ńıveis
de dinamismo. Nomeadamente, constante entrada e sáıda de nós do sistema.

Nesta dissertação apresentamos um sistema de armazenamento de dados
completamente descentralizado, que não recorre a protocolos de coordenação,
que é escalável e robusto. O desenho do nosso sistema visa ambientes com
vários milhares de nós e elevados ńıveis de dinamismo. Oferecendo uma
interface chave-valor, descrevemos como superar os desafios de distribuição
de dados - essencial para balanceamento de carga, de replicação de dados -
que permite tolerância a falhas e de direccionamento de pedidos - chave para
o desempenho.

Além do desenho do nosso sistema de armazenamento fazemos várias
contribuições no âmbito do fatiamento de sistemas distribúıdos. Propomos
um novo protocolo de fatiamento que resolve várias limitações das abordagens
existentes. Adicionalmente, propomos um novo algoritmo epidémico para
organizar um sistema em grupos de nós de forma descentralizada e escalável.
Este algoritmo é utilizado como alternativa a protocolos de fatiamento no
mecanismo interno do nosso sistema. Organiza os nós em grupos de tamanho
parametrizável sem que os nós precisem de saber o tamanho do sistema.
As contribuições feitas em algoritmos de fatiamento e o novo algoritmo de
construção de grupos são independentes do sistema de armazenamento de
dados. São genéricos e podem ser utilizados como componentes de outras
aplicações.

ix

x

Contents

Contents xi

List of Figures xiii

List of Algorithms xv

1 Introduction 1
1.1 Problem Statement and Objectives 3
1.2 Contributions . 4
1.3 Results . 5
1.4 Outline . 6

2 Background 9
2.1 Distributed data storage . 9
2.2 Data management systems . 10
2.3 Peer-to-peer systems . 12
2.4 Epidemic protocols . 14

3 DataFlasks: design and architecture 17
3.1 Design . 17
3.2 Model . 19
3.3 Architecture and Implementation 19
3.4 Discussion . 22

4 Slicing for Data Distribution and Replication 23
4.1 Introduction . 23
4.2 Analysis of state-of-the-art protocols 26
4.3 Slead . 34

4.3.1 Steadiness . 34
4.3.2 Memory usage . 37
4.3.3 Dynamics . 40

4.4 Slicing as a distributed systems primitive 42

xi

xii Contents

4.4.1 Slicing Framework . 43
4.4.2 Extending Slicing . 50

4.5 Discussion . 57

5 Group Construction Protocol 59
5.1 The basic protocol . 59
5.2 Extensions . 66

5.2.1 Handling arbitrary system sizes 67
5.2.2 Handling churn . 68

5.3 Discussion . 71

6 Proof of concept 75
6.1 DataFlasks Prototype . 75

6.1.1 Node Communication 77
6.1.2 Client Interface and Load Balancing 78
6.1.3 Group Construction 79
6.1.4 Storage . 79
6.1.5 Request Handler . 80

6.2 Experiments . 81
6.3 Discussion . 83

7 Conclusion 85

Bibliography 87

List of Figures

3.1 DataFlasks node architecture overview. 20

4.1 Steadiness. Evolution of the number of slice changes for
10,000 nodes and 10 slices over 600 cycles. 31

4.2 Steadiness. Cumulative changes over the last 100 cycles for
10,000 nodes and 10 slices. 32

4.3 Slice variance Evolution of the slices std. dev. from 1,000
nodes for 10,000 nodes and 10 slices over 600 cycles. 33

4.4 Steadiness. Evolution of the number of slice changes (10,000
nodes, 10 slices). 35

4.5 Steadiness. Cumulative changes over the last 100 cycles
(10,000 nodes, 10 slices). 37

4.6 Slice Variance. Evolution of the slices std. dev. from 1,000
nodes (10,000 nodes, 10 slices). 38

4.7 Bloom filter’s impact on steadiness. Evolution of the number
of slice changes (10,000 nodes, 10 slices). 39

4.8 Bloom filter’s impact on slice variance. Evolution of the slices
std. dev. from 1,000 nodes (10,000 nodes, 10 slices). 40

4.9 Slice variance. Evolution of the slices std. dev. under churn.
Starts with 100 nodes, ends with 200 41

4.10 Slead and DSlead with reconfiguration. 50
4.11 DSlead run configured with schema one. 53
4.12 DSlead run configured with schema two. 53
4.13 Slice reconfiguration. 55
4.14 Slice variance for a slice schema change. 55

5.1 Data to group mapping and group levels. 61
5.2 Convergence of 10.240 nodes running the simplified version of

the group construction algorithm. 66
5.3 Simulation of the flexible group size mechanism with 10.240

nodes. 68

xiii

xiv List of Figures

5.4 Simulation of the flexible group size mechanism with 15.000
nodes. 69

5.5 Convergence of 15.000 nodes running the extended version of
the group construction algorithm. 71

5.6 Simulation of 15,000 nodes. At cycle 500, 7,500 nodes are
removed from the simulation. 73

6.1 Dataflasks prototype overview architecture. 76
6.2 DataFlasks behavior for different levels of churn. 82

List of Algorithms

1 Ranking [Fernández et al., 2007]. 28
2 Sliver [Gramoli et al., 2008]. 29
3 Slead protocol. 36
4 Slicing Framework. 44
5 Basic slice estimation. 44
6 Data structures for Ranking. 45
7 Data structure for Sliver. 46
8 Data structures for Slead. 48
9 Implementation of heterogeneous slice estimation. 52
10 Implementation of changeSchema function. 54

11 Determining to which group a certain key-value pair belongs. . 60
12 Gossip group construction algorithm. 62
13 Group calculation method. 63
14 Extended group construction algorithm. 67

15 Pseudo-code for the Request Handler component. 80

xv

xvi List of Algorithms

Chapter 1

Introduction

Current times are characterized by the influence that information systems
and the Internet have in society quotidian. Social networks and a variety
of online services have been shaping and radically changing the way peo-
ple, companies and governments interact. Associated with the change in
paradigm came an exponential growth in the amount of digital data being
produced and exchanged. According to [Gantz and Reinsel, 2011], “over the
next decade, the number of servers (virtual and physical) worldwide will grow
by a factor of 10, the amount of information managed by enterprise datacen-
ters will grow by a factor of 50, and the number of files the datacenter will
have to deal with will grow by a factor of 75, at least”. Some of the most
interesting computer science challenges of our time emerge from the need to
deal with such massive amounts of data. In particular, from the need to store
and manage it.

Processors are not getting faster as before, but instead it is easier to
get hold of much larger sets in multi-core architectures [Sutter, 2005]. The
move to multi-core architectures resembles that from centralized supercom-
puters to massive scale deployments of commodity hardware [Chang et al.,
2008]. This is reinforced in the new Cloud Computing paradigm. Although
the Cloud abstraction gives the illusion of a massive centralized computing
environment, it is in fact supported by several data centers with thousands
of machines. Furthermore, the ever increasing number of high performance,
storage rich and always connected desktops and mobile devices leads us to
distributed systems whose unprecedented scale demands new ways to manage
and process data.

Designing and programming distributed systems is a particularly hard
task [Kramer, 2007]. Scaling them is even harder as scale represents ad-
ditional challenges. The increase in size is necessarily accompanied by the
increase in failures and churn [Dean, 2009]. By churn we mean membership

1

2 1 Introduction

dynamics, i.e., the movement of nodes entering and leaving the system. No-
tably, in systems of serveral thousands of machines and components, failures
and churn become the rule instead of the exception. At those scales, studies
have shown disk replacement rates up to 13% [Schroeder and Gibson, 2007]
and RAM failures has high as 8% [Schroeder et al., 2009]. More importantly,
failure rates grow with system size [Schroeder and Gibson, 2010]. Conse-
quently, with systems continuously growing in size, traditional distributed
system protocols often turn out to be inadequate to face these challenges.
This observation is particularly true for data management systems.

Traditional relational database management systems are unable to cope
with large scale scenarios. These database management systems struggle to
scale out. In other words, after a certain point, adding more machines to
the system does not increase the system’s capacity or performance. This
limitation is related to the CAP theorem [Gilbert and Lynch, 2002]. From
this theorem follows that it is not possible to have a distributed system with
high availability, strong consistency and partition tolerance at the same time.
Instead, only two of these characteristics can coexist. Traditional RDBMS
favor strong consistency and, in order to achieve strong consistency in the
presence of network partitions, need coordination protocols. Coordination is
costly, impairing the system’s capacity to scale. In fact, they are known to
scale only to a few dozen nodes [Gray et al., 1996; Lin et al., 2005].

Popular Internet services (eg. Facebook, Flickr, Twitter) face the need
to handle massive amounts of data guaranteeing high availability. Since
traditional relational database managements systems are unfitted for this
task, other data management systems surfaced to cope with large scale data
management. Examples are the key-value stores Dynamo [DeCandia et al.,
2007], PNuts [Cooper et al., 2008], Bigtable [Chang et al., 2008] and Cas-
sandra [Lakshman and Malik, 2010]. These systems are characterized by
focusing on scalability and availability. These desirable properties stem from
a new approach to data management. In contrast to traditional relational
databases, these data stores do not offer atomic multi-item operations, which
allow them to avoid inter-node coordination and hardly any kind of synchro-
nization mechanisms. In particular, it is possible to take advantage of the
lack of relationship between data in different nodes to scale the system bal-
ancing load through data partitioning. Such simplification, however, comes
at the expense of a richer, more powerful, query language (eg. SQL). In fact,
typically these data stores provide a simple put and get interface, and the
computation of more complex operations (e.g. join operations) is executed at
the client side. Although providing a simpler API and requiring extra work
at the client side for certain operations, these new data stores are well suited
for a large class of applications [Leavitt, 2010] and, notably, they are able to

1.1 Problem Statement and Objectives 3

scale to deployments of hundreds of nodes. However, these data stores are
not able to perform well beyond those numbers. Most of these new data man-
agement systems are based on structured peer-to-peer protocols [DeCandia
et al., 2007; Lakshman and Malik, 2010]. They typically use a distributed
hash table (DHT) such as Chord [Stoica et al., 2003] or variants, to organize
nodes and distribute data among them as well as routing and data discovery.
These protocols assume a moderately stable system and current implemen-
tations of DHTs struggle with churn rates observable in real peer-to-peer
systems [Rhea et al., 2004].

1.1 Problem Statement and Objectives

Considering the state-of-the-art systems for data management, it is observ-
able that they exhibit two main frailties when deployed in a large scale
system. On one hand, coordination protocols used in traditional relational
database management systems do not perform well when the system grows
beyond tens of nodes. On the other hand, data management approaches that
relax consistency guarantees, thus avoiding coordination, struggle with high
levels of system churn.

The problem we consider in this work is that of designing a completely
decentralized, coordination-free, scalable and robust data store aimed at en-
vironments with several thousands of nodes and high levels of churn. That
is, how to provide an usable system while avoiding coordination mechanisms
that impair scalability and, at the same time, overcome state-of-the-art sys-
tem limitations under churn.

Our goal is thus to devise a data store tailored for very large scale systems,
offering the current ubiquitous key-value data structures and programming
interfaces, while ensuring common guarantees with respect to fault tolerance
and performability. This leads to major challenges on how to distribute
data – essential for load balancing, how to replicate data – the crux of fault
tolerance, and how to route requests – key to performability.

4 1 Introduction

1.2 Contributions

Along the dissertation we present three main contributions. Firstly, we de-
scribe the design of a key-value store, DataFlasks, designed for massive
scale systems. We built DataFlasks as a completely decentralized peer-to-
peer system where all nodes play the same role. Every node runs the same
set of algorithms and there is no hierarchy, structure or coordination of any
kind. We designed DataFlasks based on a stack of unstructured proactive
protocols. The objective was to build a data store with high scalability and
resilience under highly dynamic environments.

Secondly, we make several contributions in the context of distributed sys-
tems slicing. Slicing a distributed system is the process of autonomously
partitioning its nodes into k groups, named slices, based on some criteria.
For instance, it is possible to slice the system according to node storage
space or their uptime. Motivated by the fact that slicing can be used to
implement one of the core components of DataFlasks, we propose a new
slicing protocol Slead and one variant DSlead, that tackle several limita-
tions of state-of-the-art slicing protocols. In particular, we address steadiness
and high memory consumption issues as well as propose new features previ-
ously absent from slicing protocols. Among them we propose novel solutions
to deal with non-uniform slices and to perform online and dynamic slice
schema reconfiguration.

Thirdly, we propose a novel gossip-based algorithm for scalable and de-
centralized organization of system nodes into groups. This algorithm, is used
as an alternative to slicing at the core of DataFlasks. It organizes nodes
into groups of parameterizable size without the need to have nodes knowing
the system size. The ability to define the group size clearly distinguishes
this approach from that of slicing. Moreover, the protocol is designed to
integrate with DataFlasks minimizing data transfer between nodes when
group layout needs to be adjusted with respect to slicing protocols.

The contributions made on slicing protocols and the proposed group con-
struction protocol are independent from the design of DataFlasks. They
are generic and can also be used as building blocks for other applications.

1.3 Results 5

1.3 Results

The work described in this dissertation was published in several international
conferences. The following resulted directly from the work on DataFlasks:

• Slead: Low-Memory, Steady Distributed Systems Slicing.
Francisco Maia, Miguel Matos, Etienne Rivière and Rui Oliveira.
In the 12th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), 2012.

• Slicing as a Distributed Systems Primitive.
Francisco Maia, Miguel Matos, Etienne Rivière and Rui Oliveira.
In the Latin-American Symposium on Dependable Computing (LADC),
2013.

• DataFlasks: an Epidemic Dependable Key-Value Substrate.
Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira
and Etienne Rivière.
In the International Workshop on Dependability of Clouds, Data Cen-
ters and Virtual Computing Environments - Dependable Systems and
Networks Workshops (DSN-W), 2013.

• DataFlasks: Epidemic Store for Massive Scale Systems.
Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira
and Etienne Rivière.
In the 33rd IEEE Symposium on Reliable Distributed Systems (SRDS),
2014.

Additionally, the result of collaborations paving the way for this thesis or
leveraging its research appear in the following publications:

• Scalable Transactions in the Cloud: Partitioning Revisited.
Francisco Maia, José Enrique Armendáriz-Iñigo, M. Idoia Ruiz-Fuertes
and Rui Oliveira.
In the 12th International Symposium on Distributed Objects, Middle-
ware, and Applications (DOA), 2010.

• About the Feasibility of Transactional Support in Cloud Computing.
Francisco Maia, Rui Oliveira and José Enrique Armendriz-Iñigo.

6 1 Introduction

In the Eighth European Dependable Computing Conference (EDCC),
2010.

• Worldwide Consensus.
Francisco Maia, Miguel Matos, José Pereira and Rui Oliveira.
In the 11th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), 2011.

• MeT: Workload Aware Elasticity for NoSQL.
Francisco Cruz, Francisco Maia, João Paulo, Miguel Matos, Ricardo
Vilaça, José Pereira and Rui Oliveira.
In Eurosys, 2013.

• Autonomous Multi-dimensional Slicing for Large-Scale Distributed Sys-
tems.
Mathieu Pasquet, Francisco Maia, Etienne Rivière and Valerio Schi-
avoni.
In the 14th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), 2014.

• Workload-aware Table Splitting for NoSQL.
Francisco Cruz, Francisco Maia, Rui Oliveira and Ricardo Vilaça.
In the 29th Annual ACM Symposium on Applied Computing (SAC),
2014.

1.4 Outline

This dissertation is organized as follows. We begin by providing some back-
ground and context in Chapter 2 where we survey related work on distributed
data management and peer-to-peer protocols. Then, we organize the core
content of the dissertation into four chapters. Chapter 3 introduces Data-
Flasks describing its design and architecture. Besides providing the in-
tuition behind how DataFlasks works, it also identifies the fundamental
challenge to tackle for its implementation. More specifically, DataFlasks
relies on a group construction component with demanding scalability and
resilience requisites. Chapter 4 and Chapter 5 focus on two alternatives for

1.4 Outline 7

the implementation of such component. These two chapters are the more
extensive ones and represent the two more significant contributions of this
dissertation. They are strongly based on the four papers described previously
as being direct results from our work on DataFlasks. Chapter 6 completes
the main matter of the dissertation describing an experiment that serves
as a proof of concept for the design of DataFlasks. Finally, Chapter 7
concludes the dissertation.

8 1 Introduction

Chapter 2

Background

This chapter focuses on providing some context for the work described in sub-
sequent chapters. Considering that our goal is to build a scalable and robust
data store we center the chapter in networked systems and distributed data
management systems. We provide a brief historical overview that aims at go-
ing through the main motivations behind different approaches to distributed
data management existing in the literature. We then focus on these state-of-
the-art systems and describe the most important mechanisms that support
them. Finally, as our data store follows a significantly different approach
from these systems we provide some background on epidemic (or gossip-
based) systems. These serve as the foundation for DataFlasks, which is
built following an epidemic approach to data management.

2.1 Distributed data storage

From the beginning, computer system designers searched for ways to allow
data sharing and collaboration [Satyanarayanan, 1990b]. While, originally,
users were able to create and store files in a locally available file system,
the advent of networked systems made it possible to provide access to files
remotely stored in other machines in the network. Initially, remote file access
was done recurring to actual file transfers over the network. This proved to
be limited and the idea that remote files should appear to be local for users
(network transparency and location transparency) drove the design of new
approaches to remote file access.

Distributed file systems allow users to seamlessly access files that are not
stored locally on their machines. In particular, users are given a common file
system interface which they use as if it was a local file system and the file
system does all the work underneath. An example of a notable distributed

9

10 2 Background

file systems is the Andrew File System [Satyanarayanan, 1990a]. This file
system relied on caching and by using lock and unlock operations at the
node actually responsible for the file it ensured data consistency. However,
systems such as Andrew File System suffer from limitations of availability.
Failures in the system often render it unavailable. In order to tackle this
limitation, the concept of disconnected operations emerged as a possible so-
lution. Systems such as Ficus [Guy et al., 1990], Coda [Satyanarayanan,
1990a], Rumor [Guy et al., 1999] or Bayou [Terry et al., 1995] allow clients
to perform operations over data even if they are temporarily disconnected
from the network. Afterwards, conflict resolution mechanisms are attempted
when the client becomes connected. These systems are mainly focused on
providing services for mobility environments.

Although the concerns considered in the design of distributed file systems
are considerably different from the type of concerns considered in this dis-
sertation work, they are worth mentioning in order to understand how we
arrived to our design and how it is an improvement considering the existing
literature. In particular, systems such as Ficus and Rumor can be seen as
primordial peer-to-peer systems were every replica of an object can be up-
dated by every participating node hinting at a flat hierarchy of nodes. At the
same time, the difficulty of providing shared access to objects while providing
consistency is at the core of the great majority of data management system
design. In fact, the eventual consistency concept proposed in the design of
these distributed file systems is also revisited by more recent approaches to
data management.

2.2 Data management systems

Alongside the evolution of distributed file systems also emerged the need
to provide more efficient ways for programmers and applications to deal
with data and files. In order to tackle such problem, database manage-
ment systems were introduced. Moreover, with the proposal of the relational
model [Codd, 1982], relational database management systems became the
traditional (and probably still the most widespread) approach to data man-
agement.

Although relational database management systems have been the focus
of intense research work and also subject to continuous commercial driven
evolution, they exhibit some limitations. These systems are often deployed in
a single machine. This has two significant problems: 1) if such machine fails
the system becomes unavailable; 2) If the system becomes overloaded the
only solution is a new, more powerful machine, which becomes very costly.

2.2 Data management systems 11

In order to solve problem 1), replication mechanisms have been implemented
for these relational database management systems [Gray et al., 1996; Lin
et al., 2005]. However, problem 2) remains unsolved as these mechanisms are
known to scale rather poorly [Gray et al., 1996].

The reason that existing replication mechanisms struggle to scale is re-
lated with data consistency guarantees offered by relational database man-
agement systems. In fact, according to the CAP theorem [Gilbert and Lynch,
2002] it is not possible, for a distributed system, to provide both high avail-
ability and consistency in the presence of network partitions. Once network
partitions are unavoidable, data management systems must choose to com-
promise either availability or consistency. Traditional relational database
systems favor strong consistency compromising availability and, in order to
achieve strong consistency in the presence of network partitions, these sys-
tems need coordination protocols. Coordination is costly and impairs the
system’s capacity to scale.

Nevertheless, considering web applications and the different kinds of on-
line services available today, scalable data management systems are a ne-
cessity. This follows from the fact that not only there are unprecedented
amounts of data to manage but also increasingly high number of requests to
handle. Moreover, unavailability became commonly unacceptable as outages
mean loss of sales or clients. This situation is exacerbated with the advent
of the cloud computing paradigm. Cloud computing advertises scalable and
always available systems. The paradigm proposes and abstraction level that
masks the actual system infrastructure and gives the illusion of a scalable,
always available, infinitely powerful system. Naturally, in order to build the
cloud abstraction, the underlying infrastructure and software systems must
be able to scale and be able to provide high availability,

In the pursuit of data management systems with high scalability and
availability, a group of new data stores has been proposed. Among them
are PAST [Druschel and Rowstron, 2001], Dynamo [DeCandia et al., 2007],
PNuts [Cooper et al., 2008], Bigtable [Chang et al., 2008], Cassandra [Lak-
shman and Malik, 2010], Riak [Klophaus, 2010] and Infinispan [Marchioni,
2012]. Commonly known as NoSQL data stores, these data management
systems offer relaxed consistency guarantees when compared with traditional
relational database management systems. Relaxing consistency allows them
to favor scalability and availability even in the presence of network partitions.
Notably, these data stores can scale to deployments of hundreds of nodes.

Alongside the relaxed consistency guarantees, NoSQL data stores also
provide a simpler interface and, as the name implies, do not support the
richer query language SQL. Typically, they provide a simple key-value inter-
face but each data store has its own data model and variants of the interface

12 2 Background

providing, in some cases, additional functionality [Vilaça et al., 2010]. Al-
though relaxing consistency guarantees and providing a simpler interface,
these data stores proved to be successful and adequate to support a number
of online services [Leavitt, 2010].

One of the key features of these data stores is how they implement data
distribution and discovery. Leveraging scalability properties of peer-to-peer
protocols, all these data stores rely on a distributed hash table such as
Chord [Stoica et al., 2003], Tapestry [Zhao et al., 2006], Pastry [Rowstron
and Druschel, 2001] or variants to distribute and locate data objects. The
exceptions are Bigtable [Chang et al., 2008] and PNUTS [Cooper et al.,
2008], which are centrally managed instead. As described previously in Sec-
tion 2.3, distributed hash tables were introduced to solve scalability problems
of previous peer-to-peer systems. In particular, distributed hash tables avoid
flooding the network for node discovery or content search. This mechanism
enables NoSQL data stores scalability.

A slightly different approach is taken by OceanStore [Kubiatowicz et al.,
2000]. In OceanStore strong consistency is still attainable has it is built on a
two tier architecture. When updates are requested, a small set of replicas run
an agreement protocol in order to choose a total order for the updates (first
tier), which are then disseminated to other replicas (second tier). Even so,
similarly to the other data management systems mentioned in this Section,
OceanStore also relies on a distributed hash table for data discovery.

DataFlasks, the system proposed in this dissertation, is closely related
to the aforementioned data stores from two points of view. Firstly, similarly
to the NoSQL data stores, DataFlasks is designed with a simple key-value
interface and without support for strong consistency. Secondly, it also relies
on a peer-to-peer protocol for data distribution and discovery. Nevertheless,
it distinguishes itself by the use of unstructured peer-to-peer protocols where
existing data stores recur to a structured approach, i.e. distributed hash
tables. Moreover, DataFlasks is based on a specific family of peer-to-peer
protocols known as epidemic protocols.

2.3 Peer-to-peer systems

Still considering data sharing, another branch of research was dedicated to
peer-to-peer systems. As the name implies, in these systems, peers (or nodes)
communicate directly with one another avoiding the need to use a central-
ized server. The idea behind this approach is achieving load balancing and,
in some cases, privacy is also a core concern in peer-to-peer system design.
Moreover, avoiding the centralized server and balancing the load among par-

2.3 Peer-to-peer systems 13

ticipants allows peer-to-peer systems to scale. However, peers need to dis-
cover each other and building a scalable and efficient peer discovery mecha-
nism is one of the main challenges of peer-to-peer computing [Stoica et al.,
2003].

As mentioned, Ficus and Rumor could be considered peer-to-peer sys-
tems in their initial phases. However, the term only had significant impact
with the advent of Napster [Napster] and Seti@Home [Anderson et al., 2002].
Even so, neither one of these two systems is a purely peer-to-peer system. In
Seti@Home there is no direct contact among peers. Data is sent for process-
ing at participating nodes and returned to centralized servers. In Napster,
while data transfer was in fact done among participating peers, a centralized
catalog of music was still needed.

The first openly available pure peer-to-peer system was probably Gnutella [Ri-
peanu, 2001]. Gnutella was fully distributed and nodes contacted each other
directly. Nodes maintained references for other nodes and could issue re-
quests directly to those nodes. However, discovering new peers in the net-
work and searching for content was done recurring to flooding. This proved
not to scale [Chawathe et al., 2003].

The fact that node discovery and request routing was a serious impair-
ment to Gnutella’s and Gnutella-like systems’ scalability led to the design of a
new family of distributed systems. These are commonly known as Distributed
Hash Tables. Examples are CAN [Ratnasamy et al., 2001], Freenet [Clarke
et al., 2001], Pastry [Rowstron and Druschel, 2001], Chord [Stoica et al.,
2003], and Tapestry [Zhao et al., 2006]. Taking Chord as a representative
example, these systems provide a lookup primitive that given a key allows
to discover the node that is responsible for holding it. Nodes are organized
in a ring and by using consistent hashing techniques are responsible for an
evenly distributed set of keys. Interestingly, Chord provides such operation
without requiring nodes to know every other node in the system. Nodes hold
a table of references to a subset of nodes in the system and are able to answer
lookup requests in O(log N) communication steps where N is the size of the
system. Naturally, these tables must be maintained up to date. The process
of maintaining the structure of a distributed hash table is costly when system
dynamism is high [Rhea et al., 2004].

Distributed Hash Tables in all their variants are currently used in many
of the state-of-the-art data management systems. They provide the core for
systems like Dynamo [DeCandia et al., 2007], PNuts [Cooper et al., 2008] and
Cassandra [Lakshman and Malik, 2010]. However, it is important to notice
that these data stores typically use a specific DHT variation called ’one-hop’
DHT [Gupta et al., 2004; Vilaça et al., 2010]. This variation allows faster
lookups but requires complete membership knowledge, i.e., each node knows

14 2 Background

about all other nodes in the system. These data stores distributed nature is
a common characteristic to our own approach.

Among the different DHT implementations proposed, there is one in par-
ticular that stands out for its widespread use nowadays. Initially proposed
in [Maymounkov and Mazieres, 2002], many implementations of the Kadem-
lia protocol have been proposed. The Mainline DHT is one of these imple-
mentations and it is considered to be the one supporting the largest DHT
deployment known [Wang and Kangasharju, 2013]. The Kademlia DHT,
from our perspective, represents a different generation of DHT protocols. It
is designed avoiding the lookup rigidity of Chord and similar approaches.
Kademlia allows parallel lookup requests and, in contrast with previous ap-
proaches, each request can be sent to a range of nodes instead of having
to obey a precise lookup structure. The success of Kademlia stems from
this step towards unstructured lookup mechanisms, whose flexibility allows
Kademlia to better handle large scale deployments.

2.4 Epidemic protocols

Epidemic, also known as gossip, communication due to its fully decentralized
nature is specially suited for data dissemination in massive scale environ-
ments. Notably, in such systems any kind of global knowledge is unattain-
able. Relying on information that grows linearly with system size does not
scale and, therefore, is impractical in such a scenario. As a consequence,
large scale protocols must solely depend on partial information about the
system and on node-local decisions. Additionally, with very large number of
nodes, faults and churn become the rule, not the exception. A system de-
signed to be deployed in a massive scale scenario needs to handle faults and
churn by design. Fortunately, epidemic or gossip-based protocols meet such
requirements. Epidemic or Gossip-based protocols are known for their scal-
ability and resilience under highly dynamic environments. They have been
successfully used to build several webscale systems and services [Rivière and
Voulgaris, 2011] like overlay construction and maintenance [Ganesh et al.,
2001; Voulgaris et al., 2005a], consensus [Maia et al., 2011], data aggrega-
tion [Jesus et al., 2010], distributed slicing [Fernández et al., 2007; Gramoli
et al., 2008; Maia et al., 2013a, 2012] and live video streaming [Matos et al.,
2014].

To the best of our knowledge, in 1987, Demers et al. introduced the first
mechanisms for replica maintenance based on the theory of epidemics [Bailey
et al., 1975]. Three mechanisms were introduced: direct mail, anti-entropy
and rumor mongering. Direct mail consists of sending a message with a

2.4 Epidemic protocols 15

certain data update to all participating nodes. Naturally, this is not reliable
as nodes may be disconnected at the time of the update. Anti-entropy works
as a repair mechanism. Each node periodically contacts another node in the
network and by exchanging information about their current state converge
to the same state. In particular, this can mean exchanging missing updates
and data objects. Finally, for rumor mongering each node sends the same
message periodically to randomly chosen nodes in the system. It does so
until a significant number of nodes reports to have already seen such message.
Depending on the number of times a message is sent this mechanism can also
lead messages to reach only a portion of the systems nodes.

These initial epidemic protocols assumed that each node could know ev-
ery other node in the system and choose randomly among them the node to
contact. Such approach does not scale. In subsequent systems, such as pb-
cast [Eugster et al., 2003], the notion of partial views was introduced allowing
these systems to overcome the global knowledge limitation. Moreover, prop-
erties of epidemics allow to provide some guarantees with high probability
even with partial views [Eugster et al., 2004].

Along this dissertation we will focus on epidemic protocols that rely only
on partial views of the system. We consider a typical epidemic protocol that
operates as follows. Each node knows a dynamic set of neighbors, called its
view. The protocol progresses by having each node periodically exchanging
knowledge with one or several of its neighbors.

Naturally, it is necessary to maintain the neighbor list refreshed as nodes
can become disconnected or simply leave or enter the system. Besides main-
taining the view refreshed it is also important to ensure it exhibits an im-
portant property. Epidemic protocols benefit from views composed by a
uniformly random sample of nodes [Voulgaris and Steen, 2005]. If the view
is, in fact, a random sample of nodes, choosing a random peer from such list
is equivalent to choose randomly from all the nodes in the system, which is
important for protocol convergence [Voulgaris and van Steen, 2013].

The problem of providing random views of nodes in the system falls in
a well studied problem in large scale distributed systems that has been ad-
dressed by a family of protocols known as the Peer Sampling Service. These
protocols are gossip protocols themselves. In a nutshell, each node keeps a
set of nodes it knows. Periodically, it refreshes such set by contacting one
ore more of those nodes and exchanging information. Notably, this appar-
ently simple approach allows these protocols to provide each node with a
random stream of uniformly sampled nodes. Examples of these protocols are
Cyclon[Voulgaris et al., 2005a] and Newscast [Voulgaris et al., 2005b].

Interestingly, the collection of views generated by the Peer Sampling
Service not only serves as the support for other epidemic protocols but

16 2 Background

also as an information dissemination medium. From early work on random
graphs [Erdős and Rényi, 1976], we know that it is possible, with arbitrarily
high probability, to effectively disseminate data in an epidemic fashion pro-
vided that each node relays a sufficient number of messages. In particular,
taking N as the number of nodes, each node must relay ln(N)+c messages to
have a probability of atomic infection of patomic = ε−ε

−c
, a value that quickly

gets close to 1. For example for c = 5 the probability of atomic infection
is patomic = 0.993. Considering views of size ln(N) + c, uniformly sampled
from the all set of nodes, an overlay emerges that allows for epidemic data
dissemination. Note that these views do not grow linearly with system size
and are, therefore, a scalable dissemination mechanism.

The distinct characteristics of epidemic protocols make them ideal to the
scenario we are considering in this dissertation. These will be the starting
point of our design and DataFlasks will be entirely based on this type of
protocols.

A specific class of epidemic protocols that are key to this thesis is that
of slicing, more precisely distributed systems slicing. Slicing a large-scale
distributed system is the process of autonomously partitioning its nodes into
k groups, named slices. Slicing is achieved by grouping nodes with respect to
some node-specific criteria, such as available storage, uptime, or bandwidth.
Each slice corresponds to the nodes between two quantiles in a virtual ranking
according to the criteria.

For instance, a system can be split in three groups, one with nodes with
the lowest uptimes, one with nodes with the highest uptimes, and one in the
middle. Such a partitioning can be used by applications to assign different
tasks to different groups of nodes, e.g., assigning critical tasks to the more
stable nodes and less critical tasks to other slices.

To the best of our knowledge there are two main slicing protocols avail-
able: Ranking [Fernández et al., 2007] and Sliver [Gramoli et al., 2008]. In
this dissertation we extend these protocols by tackling some of their frailties
and propose a new one. Both contributions are described in Section 4.

Chapter 3

DataFlasks: design and
architecture

In this chapter we describe the design and architecture of DataFlasks.
We start by focusing on the ideas that motivate our design and provide an
overview of how DataFlasks works. We continue by describing the model
considered, presenting the assumptions on which DataFlasks is built. Fi-
nally, we materialize our design in a concrete architecture describing each
one of its components and how they are implemented.

3.1 Design

The goal that drove the work on DataFlasks was building a data store
tailored for systems with thousands of nodes. The inherent characteristics of
the systems with such scale presented challenges to tackle and motivated a
number of design decisions. In fact, targeting large scale systems necessarily
demands the ability to handle high dynamism. Nodes continuously enter
and leave the system (churn) and components keep failing. DataFlasks
is able to successfully handle such demanding environments while scaling
effortlessly.

In order to provide compatibility with existing data store systems Data-
Flasks is a key-value data store. Client applications can write data via a put
operation and retrieve it with a get operation. The put operation receives as
input a key, an object and a version of the object. Each stored object may
be retrieved through a get operation that receives the object key and desired
version as input. The triple (key, object, version) is assumed to be unique
but not enforced by DataFlasks. Evidently, various versions of each object
are possible for a single key. However, two different write operations for the

17

18 3 DataFlasks: design and architecture

same (key,version) pair may lead to inconsistency. In our design, we assume
that the consistency of writes is handled outside the data store by the client
middleware or application.

The pivotal idea guiding the design of DataFlasks is decentralization.
In DataFlasks each node is autonomous and all nodes play the same role.
A node progresses relying solely on local decisions without depending on any
other node and on any kind of hierarchy. When a client issues a request to
DataFlasks, such request is disseminated throughout the system and each
node decides how to handle it. When a get is received, if the node holds the
corresponding triple (key,object,version) it replies to the client. Otherwise,
it ignores the request. In the case of a put operation, the node locally decides
to store the data or to discard it. The decision to store or not the data is used
to implement data distribution and replication. DataFlasks is designed in
such a way that prevents all nodes to take the same decisions, which would
lead to a system where all nodes either store every object or none at all. Both
situations are undesirable as the former prevents data distribution and the
latter defeats the purpose of the data store. At the same time, DataFlasks
ensures that a sufficient number of nodes actually decides to store each data
object in order to guarantee data replication.

In DataFlasks, the set of nodes that takes the same decisions on whether
to store data objects or not is viewed as a group. Accordingly, we reduce the
decision of which data to store to the decision of which group a node belongs
to. Once that decision is made, each node is responsible for a subset of the
data according to a deterministic mapping between the pair (key,version) of
an object and the group it belongs to. Data is thus distributed by groups,
providing load balancing, and replicated a number of times equal to the size
of the group. Strikingly, in DataFlasks, each node is able to decide to
which group it belongs without requiring any kind of coordination.

We have built DataFlasks using epidemic protocols (Section 2.4). In
particular, unstructured and pro-active epidemic protocols. They are charac-
terized by their independence from any kind of structure or hierarchy among
nodes and by the fact that they rely on pro-active mechanisms for fault toler-
ance. Instead of explicitly detecting failures and act accordingly, pro-active
protocols are continuously taking the initiative, being able to anticipate sys-
tem repair. The choice for unstructured, pro-active protocols contrasts with
the approach taken by current data stores. State-of-the-art data stores, as
described in Chapter 2, often rely on a structured overlay network, typically
a Distributed Hash Table (DHT), for request routing and data distribution.
The DHT builds a node structure that allows requests to be quickly routed
to the nodes responsible for handling them. Since DHTs are decentralized,
they enable current data stores to scale better than previous centralized ap-

3.2 Model 19

proaches. However, DHTs struggle with high churn rates. Each time a node
enters or leaves the system the DHT structure is invalidated and must be re-
paired in order to accommodate the membership change. As request routing
depends on the existence and correctness of the DHT structure, the struc-
ture repairing mechanism is very costly. This reactive recovery mechanism
has been shown to significantly impair DHT performance under churn [Rhea
et al., 2004].

By relying on epidemic protocols, DataFlasks is completely decentral-
ized and coordination-free. Characteristics that make DataFlasks inher-
ently scalable and able to cope with unprecedented levels of system dy-
namism, may it be caused by membership instability or by failures.

3.2 Model

Throughout the design of the system we considered the following system
model. We target very large distributed systems, in the order of thousands
of nodes. Each node has a unique identifier and nodes can communicate
with nodes whose identifier they know. The system is asynchronous in that
no assumption is made regarding the time a node can take to execute its
algorithm or messages may take to reach their recipients. Nodes make use
of local clocks and progress depends on the overall system timeliness.

We assume that nodes can enter or leave the system by their own initia-
tive. Nodes can fail by crashing and may recover, but do not deviate from
their algorithm. Nodes that recover may lose their states but no data cor-
ruption may occur. Moreover, it is accepted that messages can be lost or
duplicated, but cannot be tampered with. However, communication chan-
nels are fair in that each message that is sent has a non-zero probability of
being delivered.

3.3 Architecture and Implementation

Since DataFlasks is completely decentralized and all nodes are autonomous,
the architecture of DataFlasks rests on that of the individual nodes. An
overview of the architecture is depicted in Figure 3.1. The two most im-
portant mechanisms to consider are how requests are disseminated and how
nodes determine the group they belong to. These mechanisms are abstracted
in two architecture components. Request dissemination is the responsibility
of a component called node communication while a component called group
construction is responsible for maintaining information about which group

20 3 DataFlasks: design and architecture

the node belongs to. Both these components are implemented with the use
of epidemic protocols.

DataFlasks Node

Request Handler

Communication

Group
constructionStorage

Request

Figure 3.1: DataFlasks node architecture overview.

As described in Section 2.4, epidemic protocols progress by having nodes
periodically exchanging messages with each other. In order to achieve this,
nodes need to discover each other. This can be achieved with a specific class
of epidemic protocols called Peer Sampling Service [Jelasity et al., 2007],
which implements node discovery and membership maintenance. Addition-
ally, on top of this type of service, it is possible to implement efficient data
dissemination and extensive research exists on the matter. In particular,

3.3 Architecture and Implementation 21

suitable epidemic dissemination protocols exist [Demers et al., 1987; Eugster
et al., 2003, 2004; Felber et al., 2012; Kermarrec and Van Steen, 2007; Ker-
marrec et al., 2003]. and can be directly used in DataFlasks. The main
challenges in the implementation of DataFlasks appear in the context of
the group construction component. To the best of our knowledge, there are
no suitable epidemic protocols than can be used as an implementation of the
group construction component. However, there is a class of epidemic proto-
cols, which implement distributed systems slicing, that provided us with a
starting point (Section 2.4). Currently, there are a number of existing slicing
protocols available [Fernández et al., 2007; Gramoli et al., 2009; Montresor
et al., 2008]. These protocols rely on a Peer Sampling Service (2.4) and no-
tify each node of the slice (group) it belongs to. Although slicing protocols
are able to construct groups they exhibit a number of limitations that hinder
their immediate application to DataFlasks. In particular, these limitations
are group instability and excessive memory consumption. In this disserta-
tion, we improve on state-of-the-art protocols tackling their limitations with
a novel slicing protocol. This work is the focus of Chapter 4.

Our slicing protocol can be applied in the context of DataFlasks group
construction. It is scalable, able to cope with high levels of churn and also
available for use outside the data storage context as a building block for
other applications. However, it still exhibits two important limitations. On
one hand, it is not possible for the user to specify a group size. The size
of the group is always defined as a percentage of the system. Since the
group size determines the data replication factor, it is important that such
configuration parameter is available to the DataFlasks administrator. On
the other hand, even after having drastically decreased instability rates of
state-of-the-art slicing protocols, our protocol still allow nodes to change
slice (group) frequently. This is highly undesirable because changing group
leads to data transfers, which are costly.

In order to be able to tackle slicing protocols limitations we designed a
novel group construction algorithm. This algorithm is the subject of Chap-
ter 5. It is able to divide an arbitrarily large number of nodes into groups
of user defined size. Moreover, it does so relying only on a Peer Sampling
Service. The implementation of the group construction component, in both
variants, represents the core contributions of the work on DataFlasks.

To complete the description of DataFlasks architecture it remains to
describe two components: the storage component and the request handling
component.

The storage component is responsible for the node-local data manage-
ment. Using the the group identification maintained by the group construc-
tion component, the storage component can locally decide which client data

22 3 DataFlasks: design and architecture

to store and which data to discard. Accordingly, the mapping of data to
groups determines how data is distributed across the system. This mapping
has two requisites. Firstly, data must be evenly distributed across groups in
order to balance the load. Secondly, each node must be able to learn about
such distribution solely based on the group it belongs to and on the number of
groups that exist in the system. Note that, knowing the number of groups in
the system is achievable using the aforementioned group construction mech-
anisms. In slicing protocols the number of groups is predefined and in our
group construction protocol it is provided by the protocol itself. Determin-
ing to which group a certain key belongs is achieved by the use of an hash
function. The hash function maps object keys with an arbitrary range size
into keys of a fixed range size, doing so as evenly as possible over the target
range. Using this target range data is distributed and balanced throughout
the various groups and every node can locally determine if a certain key-
value pair belongs to its data store. The storage component also abstracts
the medium to which data is saved, which may vary for convenience.

Finally, the request handling component is the system’s entrance point
and is responsible for handling every request made to a DataFlasks node.
Each time a request arrives, this component routes it through the workflow
needed for processing. In particular, it delivers the request to the storage
component for local processing and asks the node communication component
to disseminate it to the other nodes.

3.4 Discussion

In this chapter we described the design and architecture of DataFlasks
and sketched its operation. We proposed the use of epidemic protocols to
implement two of its main components, the inter-node communication and
group construction. Epidemic protocols are decentralized, rely on partial
information of the system and eschew node coordination which are key char-
acteristrics to deal with the massive scale systems envisioned in this work.

Epidemic communication is a topic that has been receiving a lot of at-
tention from the research community. Several protocols that can be directly
and advantageously used in DataFlasks have been proposed and used in
production systems. One such protocol will be revisited in Chapter 6. In the
next two chapters we focus on the challenges of group construction.

Chapter 4

Slicing for Data Distribution
and Replication

4.1 Introduction

Large-scale systems are usually composed of highly heterogeneous nodes, ac-
cording to their capacity, stability or any other application-specific require-
ments. The ability to distinguish between groups of nodes based on a discrete
metric reflecting a criteria, allows to dynamically provide nodes to certain
tasks according to their suitability. For instance, nodes with a higher uptime
tend to be more stable for a given additional period than those with a small
uptime. Partitioning the set of nodes into k several groups of increasing up-
time, allows to assign critical services to more stable nodes, and less critical
services to less stable ones. Examples include assigning privileged roles to
more stable nodes to improve the quality of a streaming application [Wang
et al., 2010], or allocating a data partition to a group of nodes in a key-value
store [Maia et al., 2013b]. The operation of partitioning in k groups according
to node-specific criteria is called distributed slicing [Fernández et al., 2007;
Gramoli et al., 2009; Montresor et al., 2008].

In addition, these systems’ scale turns any kind of global knowledge as-
sumption unrealistic. In fact, any mechanism that relies on information
that grows linearly with the system size is impractical. Large-scale sys-
tems require protocols designed to intrinsically scale to very large number
of participating nodes, and consequently able to cope with highly dynamic
environments. These requirements are addressed by a well studied class of
protocols known as epidemic. These have been used previously to build sev-
eral Internet-scale systems and services [Rivière and Voulgaris, 2011] like
overlay construction and maintenance [Ganesh et al., 2001; Voulgaris et al.,

23

24 4 Slicing for Data Distribution and Replication

2005a], consensus [Maia et al., 2011] and data aggregation [Jesus et al., 2010].
Epidemic protocols have also been used in industrial systems such as Ama-
zon’s Dynamo [DeCandia et al., 2007] and Facebook’s Cassandra [Lakshman
and Malik, 2010].

There remain, however, several practical considerations that need to be
taken into account to foster a broader adoption of epidemic-based systems
for large-scale systems management and operation. Such disregard of prac-
tical aspects often stem from the use of simplifying models and simulations.
This gap was observed previously even in fundamental primitives such as
consensus [Chandra et al., 2007; Maia et al., 2011]. We consider that the
same happens with slicing.

Slicing is the process of organizing a group of nodes into logical disjoint
subgroups, called slices, according to some application dependent sortable
criteria. Such logical division can be used for a variety of purposes such
as the construction of hierarchical systems, identification of outliers, load-
balancing or offering differentiated service levels [Gramoli et al., 2008]. More-
over, slicing is the natural candidate for managing heterogeneity which ap-
pears naturally in any large scale system from nodes with varying degrees
of stability [Bhagwan et al., 2003] to different resource capacities [Hei et al.,
2007; Saroiu et al., 2002]. As a matter of fact, popular systems such as the
Skype VoIP service explicitly split the system into super and normal peers
with different roles [Guha et al., 2006], and state-of-the-art video streaming
systems like mTreeBone [Wang et al., 2010] offload most of the work to sta-
bler nodes to improve streaming quality. We thus believe that there is a need
for a distributed slicing primitive able to offer a generic but efficient slicing
system that can be used by system and application designers.

Considering the design of DataFlasks, slicing can be used as the group
construction component. It should able to group several thousands of nodes
into groups in a completely decentralized and scalable way. Groups can be de-
fined according to different criteria enabling customizable data distribution.
For instance, using disk space as the sorting metric allows to reasonably ade-
quate the amount of data each node should store. Moreover, slicing protocols
robustness and continuous adaptation to change also enable data replication.

Unfortunately, despite the usefulness of slicing, state-of-the-art protocols
still exhibit flaws that preclude, in our opinion, their immediate applicability
as building blocks for large-scale applications. In particular, the applica-
bility of slicing as the group construction component of DataFlasks. In
this chapter we propose a new slicing algorithm called Slead and then a
framework for slicing protocols. This framework can be instantiated with
all the state-of-the-art slicing protocols and used to build new ones. We
take advantage of such framework to further improve Slead, providing ad-

4.1 Introduction 25

ditional features: multi-attribute slicing, non-uniform slice sizes, online slice
reconfigurations and the ability to propose slicing as a substrate for other
protocols by the provision of random set of nodes from the same slice, effec-
tively implementing a slice-local Peer Sampling Service (PSS) [Jelasity et al.,
2007].

In the design of Slead we begin by analyzing the state-of-the-art slicing
protocols and propose improvements focusing on three previously disregarded
metrics: steadiness, slice variance and memory complexity.

Steadiness is the ability of the protocol to take slice changes decisions
only when necessary. It is the opposite of slice instability, measured by the
distribution of the number of slice changes per second. A slice change can
be legitimate, e.g., if the value of the nodes’ attributes and thus the virtual
ranking change, or if the size of the system changes. However, a slice change
typically implies a considerable load for the overlying applications, as it re-
quires reconfiguring the node for its new role, and often reconfiguring other
nodes to take over its previous responsibilities. Undesired slice changes or
oscillations between two slices tend to appear more frequently for nodes that
lie at the “borders” of slices, that is, at the boundary of slices in the virtual
ranking of all attributes. For instance, using slicing as a core component in
our key-value store, a slice change results in discarding a potentially large
fraction of hard state for the current slice and getting the new state from
nodes of the new slice, which is costly.

Slice variance is a metric that reflects the correctness of the nodes allo-
cation to slices, and in particular, the size distribution of the slices. It is
important to notice that this metric significantly differs from the slice disor-
der metric used in previous work [Gramoli et al., 2009]. Slice variance does
not distinguish whether a specific node is in the correct slice all the time but
instead if the overall distribution of nodes into slices is close to the expected
one, i.e., each slice is close in size to N

k
as possible (N is the size of the

system). The slice variance is defined as the variance measured between the
observed distribution of slices and N

k
.

Thirdly, we consider the memory complexity imposed on nodes for de-
ciding on their slice. This is a fundamental metric to assess scalability. A
linear complexity requires keeping information in the order of the size of the
system, and to maintain it through the system’s dynamics, leading to poor
performance and high costs.

We conducted experiments with two state-of-the-art protocols for dis-
tributed slicing [Fernández et al., 2007; Gramoli et al., 2008]. These protocols
exhibit reasonable slice variance but suffer from serious steadiness and mem-
ory complexity problems. We address the two issues without impairing the
original protocols performance w.r.t. other metrics. Our proposal, which we

26 4 Slicing for Data Distribution and Replication

named Slead, is a novel distributed slicing protocol whose design principles
are generic enough to be adapted to other protocols such as [Fernández et al.,
2007; Gramoli et al., 2008]. We address both issues with a hysteresis mech-
anism that significantly enhances steadiness. It is coupled with a bounded-
memory state management mechanism based on Bloom filters [Bloom, 1970]
that allows us to control memory complexity with a very limited impact on
convergence and accuracy. Consequently, Slead is a better equipped slicing
protocol for working as the group construction component of DataFlasks.
The chapter is organized as follows. We begin analyzing current distributed
slicing protocols in Section 4.2, highlighting their frailties. Section 4.3 is dedi-
cated to our Slead protocol. In Section 4.4 we present the slicing framework
and use it to propose several improvements to Slead. Section 4.5 concludes
the chapter.

4.2 Analysis of state-of-the-art protocols

In this section we present, analyze and discuss two protocols, Ranking [Fernández
et al., 2007] and Sliver [Gramoli et al., 2008] that to the best of our knowl-
edge represent the state-of-the-art for distributed slicing. A complementary
review and comparison of these protocols and other distributed slicing ap-
proaches can be found in [Gramoli et al., 2009].

Slicing is the process of organizing the set of nodes in a distributed system,
into k groups called slices. Each slice must eventually be composed of the
nodes that lie in the sequence of k subgroups ranked by increasing values of
a sortable metric: if slices are S1, . . . , Si, . . . , Sk, then all nodes belonging to
Si must have a greater value for the metric than those in Si−1, and a lower
value for the metric than the nodes in Si+1. Examples of sortable metrics
include the uptime, available disk space, CPU or other application-specific
metrics. In general, each node participating in a slicing protocol possesses an
arbitrary local attribute and wishes to know the slice this value belongs to.
The protocols work by performing pairwise exchanges of the local attribute
with its neighbors. The decided slice may change after each such exchange,
when the locally available information indicates that the local attribute value
crosses a border in the global virtual ranking.

By assumption, each node in the system has access to a continuous stream
of random nodes from the system. These nodes can be used as members
of the node’s view or to determine its position among the different slices.
This is usually provided by an underlying proactive Peer Sampling Service
(PSS) [Jelasity et al., 2007] that builds this stream of random nodes through
a gossip-based periodic exchange of views between nodes. We also assume

4.2 Analysis of state-of-the-art protocols 27

that the number of slices, k, is known by all nodes. This value can easily
be disseminated to all nodes through a gossip-based dissemination [Eugster
et al., 2003], leveraging the PSS.

Ranking Ranking [Fernández et al., 2007], described by Algorithm 1, works
in periodic cycles. It features an active and a passive thread. At each cycle, a
node’s active thread updates the local view by obtaining fresh random peers
from the PSS. It then initiates an exchange with all these peers, simply send-
ing its attribute (lines 7 to 10). Each contacted node processes the request
with its passive thread (lines 11 to 27).

The principle of Ranking is to locally estimate the number of received
attributes that are smaller than the receiver’s. This allows estimating the
position of the node’s attribute in the virtual ranking, and decide on a slice
(line 27). Ties in attribute values are disambiguated by comparing the node
identifiers (line 16, second clause of the condition). Failure to do so by
considering tied attributes on either the smaller or greater portion of the
system would introduce estimation problems, particularly in scenarios where
the attribute distribution is narrow (multiple nodes with the same attribute
value).

As described, Ranking uses a sliding window mechanism by bounding the
number of attributes considered and thus take churn (nodes’ dynamics) into
account.

Sliver Sliver [Gramoli et al., 2008], described by Algorithm 2, relies on
the same basic idea of Ranking. Its fundamental difference though is to not
only keep track of the attributes received but also to record their source
nodes. Such apparently small difference has a significant impact and tackles
a weakness in Ranking. Because the PSS is proactive and nodes periodically
exchange the same information, eventually Ranking will consider the same
attributes (providing from the same nodes) several times in the slice compu-
tation. If the underlying PSS does not provide completely uniform samples
of the network, for instance due to heterogeneous network connections or to
the nature of the shuffling operation used,1 the biasing may strongly affect
the accuracy of the slice estimation [Gramoli et al., 2009]. The longer the
time slice considered, the more important is the bias introduced by selecting

1As demonstrated in [Jelasity et al., 2007] there is no such thing as a “perfect” peer
sampling service; protocols that favor reactivity to take into account failed nodes usually
impose a clustering ratio that is higher than that of a purely random network. It means
that nodes in the vicinity of a given node are more likely to be seen twice in the flow of
random nodes than what would have been the case with a purely random network.

28 4 Slicing for Data Distribution and Replication

1 initially
// view provided by the PSS

2 view ← ∅
// local attribute

3 myAttribute ← . . .
// number slices, system parameter

4 k ← . . .
// list of latest collected attributes

5 attributeList ← ∅
// current slice estimation

6 slice ← ⊥

7

// active thread
8 every ∆ sendAttribute()
9 view ← PSS.getView()

10 foreach p ∈ view
11 send myAttribute to p

12

// passive thread
13 receive value from p

// number of smaller attributes seen
14 smaller ← 0

// total number of attributes seen
15 total ← 0
16 if attributeList.full then
17 attributeList.removeOlder()

18 if (value < myAttribute) ∨
19 (value == myAttribute ∧
20 p < myid) then
21 attributeList.add(true)

22 else
23 attributeList.add(false)

24 foreach a ∈ attributeList
25 if a then
26 smaller ← smaller + 1

27 total ← attributeList.size()
28 position ← smaller / total
29 slice ← k * position

Algorithm 1: Ranking [Fernández et al., 2007].

4.2 Analysis of state-of-the-art protocols 29

1 initially
// view provided by the PSS

2 view ← ∅
// local attribute

3 myAttribute ← . . .
// number slices, system parameter

4 k ← . . .
// holds the received attributes and node ids

5 attributeList ← ∅
// current slice estimation

6 slice ← ⊥

7

// active thread
8 every ∆ sendAttribute()
9 view ← PSS.getView()

10 foreach p ∈ view
11 send myAttribute to p

12

// passive thread
13 receive value from p

// number of smaller attributes seen
14 smaller ← 0

// total number of attributes seen
15 total ← 0
16 if attributeList.contains(p,value) then

// pair attribute and id become the head of list
17 attributeList.update(p,value)

18 else
19 if attributeList.full then
20 attributeList.removeOlder()
21 attributeList.add(p,value)

22 else
23 attributeList.add(p,value)

24 foreach a ∈ attributeList
25 if a.value < myAttribute then
26 smaller ← smaller + 1

27 else
28 if a.value == myAttribute ∧ a.id < myId then
29 smaller ← smaller + 1

30 total ← attributeList.size()
31 position ← smaller / total
32 slice ← k * position

Algorithm 2: Sliver [Gramoli et al., 2008].

30 4 Slicing for Data Distribution and Replication

the same nodes several times. As Sliver keeps track of nodes identifiers, it
is possible to overcome the impact of duplicates as well as provide a conver-
gence proof as shown in [Gramoli et al., 2009]. Such a convergence proof is
not applicable to Ranking.

Using a sliding window of observation Unfortunately, the continuous
collection of attributes hinders scalability, as the memory required is pro-
portional to the system size. This is the case for Ranking but is even more
critical in Sliver as much more information is kept for each interaction. Due
to this, both protocols bound memory usage by defining a time to live on
attribute records, which enables to adjust memory consumption. In practice,
defining a time to live value is equivalent to defining a maximum number of
records each node can store. In our experiments this is the approach taken
by keeping the records in a least-recently-used structure with custom size.

It is important to notice that the ability to forget records is crucial to
cope with churn and changes in node local attribute values albeit with an
impact on steadiness. In fact, defining a low value for the maximum amount
of memory used allows the system to adapt to changes very fast but at the
cost of unsteadiness, whereas increasing memory improves stability but slows
the response to change.

Evaluation of Ranking and Sliver We now study the behavior of Rank-
ing and Sliver with respect to Steadiness and Slice variance, for different
amounts of memory consumption. The experiments were conducted with
the help of the PeerSim simulation framework [Montresor and Jelasity, 2009]
with a system size of 10 000 nodes and k = 10 slices with the event-based
engine. For each experiment both protocols are stacked on top of the same
PSS (Cyclon [Voulgaris et al., 2005a] in our case) and thus receive the same
views enabling a direct comparison of results. As indicated in [Jelasity et al.,
2007], Cyclon provides the best results of available PSS for the quality of the
randomness of the streams of nodes constructed (in particular, low clustering
ratios). This means we consider the best conditions for Ranking here; accu-
racy can only get worse as other PSS are considered. All presented results
are the average of 10 executions. Due to the large number of points to plot,
we applied a cubic spline transformation that summarizes plot data in order
to improve readability. We consider the following configurations: Ranking
and Sliver with memory size (maximum number of elements in attributeList)
of 100, 1,000 and ∞.

For all configurations, the size of the view is 20. This means that the
active thread of both Ranking and Sliver will contact 20 nodes with their

4.2 Analysis of state-of-the-art protocols 31

attribute value. If we consider the network formed by the PSS views to
be random (a reasonable assumption in this case), each node will be on
average contacted 20 times per cycle. Every time a node is contacted with
an attribute value, its passive thread will integrate the received value and
may decide on a slice change. In the worst case, a node may thus change its
slice 20 times per cycle.

 10

 100

 1000

 10000

 0 100 200 300 400 500 600

T
o
ta

l
s
lic

e
 c

h
a
n
g
e
s
 p

e
r

c
y
c
le

Cycles

Ranking (100)

Ranking (1,000)

Ranking (∞)

Sliver (100)

Sliver (1,000)

Sliver (∞)

Figure 4.1: Steadiness. Evolution of the number of slice changes for 10,000
nodes and 10 slices over 600 cycles.

Figure 4.1 explores the steadiness of the various configurations. We rep-
resent the evolution of the number of changes per cycle, for all nodes (note
the logarithmic scale for the y axis). As expected, due to the low number
of values stored by both protocols, there is a major instability of the slice
decisions in the beginning that result in a large number of slice changes,
multiple times per cycle and per node.When using a bounded memory size,
there is a stabilization period after which the number of slice changes per
cycle remain almost constant. This stabilization period is the time it takes
to fill the memory: 20 times 50 cycles makes for 1,000 entries in one case, 20
times 5 cycles makes for the 100 entries in the other. The number of slice
changes, and thus steadiness, is thus directly linked to the memory size at
each node.

Even a memory of a tenth of the total system size is synonym with ma-

32 4 Slicing for Data Distribution and Replication

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000

%
 n

o
d

e
s

Slice changes

Steadiness (cycles 500-600)

Ranking (100)
Ranking (1000)

Ranking (∞)

Sliver (100)
Sliver (1000)

Sliver (∞)

Figure 4.2: Steadiness. Cumulative changes over the last 100 cycles for
10,000 nodes and 10 slices.

jor slice attribution instability. Keeping system-size amount of information
results in the protocols stabilizing, but very slowly. By cycle 600, Ranking
will have seen 600 times 20 values, more than the size of the system, and
still be unstable. As expected, Sliver is slightly more efficient for the same
memory and stabilizes faster by discarding already known information and
counting each attribute only once. Nonetheless, we do not see the stabiliza-
tion of Sliver with a complete knowledge of the system as it would require
much more than 10,000

20
= 500 cycles to get such a complete knowledge (latest

missing attributes taking longer to be captured). We note that the differ-
ence between Ranking and Sliver would be higher if using a PSS yielding a
lower-quality stream of nodes, e.g., where clustering would be more present.

Figure 4.2 presents the cumulative slice changes from cycle 500 to 600
which is enough for all configurations to stabilize. As expected, slice changes
are not evenly distributed among all nodes and tends to affect nodes that
are on, or next to, slice borders in the virtual ranking. In fact, even with
knowledge of one tenth of the system (1 000 records), roughly 20% of the
nodes change slices at least every 10 cycles. The result is deceptive for
the usability of Ranking and Sliver in a real system as these nodes will be
unusable or incur a heavy and persistent reconfiguration load on the system.

4.2 Analysis of state-of-the-art protocols 33

4

10

40

100

 0 100 200 300 400 500 600

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 f
ro

m
e
x
p
e
c
te

d
 s

lic
e
 s

iz
e
 (

1
,0

0
0
 n

o
d
e
s
)

Cycles

Ranking (100)

Ranking (1,000)

Ranking (∞)

Sliver (100)

Sliver (1,000)

Sliver (∞)

Figure 4.3: Slice variance Evolution of the slices std. dev. from 1,000 nodes
for 10,000 nodes and 10 slices over 600 cycles.

Figure 4.3 presents the impact of the various configurations on slice vari-
ance. Here, we plot the standard deviation from the expected slice size (1,000
nodes). We observe that slice variance is heavily dependent on the memory
used: more entries reduce the differences between slices while low memory
(100 entries) results in an instability on slice size. Note that the distribution
of slice sizes evolves over time: the large slices may be the smaller a few cy-
cles later, due to the randomness in the slice attribution. This we attribute
to the low memory available and resulting limited knowledge of the network.

Discussion These evaluations show that an immediate application of ei-
ther protocol is problematic, particularly due to the steadiness problem, as
a significant percentage of the system would be devoted to performing slice
transitions without doing any useful work. These observations are the start-
ing point and main motivation behind the solutions and protocol presented
next.

34 4 Slicing for Data Distribution and Replication

4.3 Slead

In this Section we present Slead, a new distributed slicing protocol that
addresses the problems of steadiness and memory consumption found in
existing protocols and highlighted in the previous section.This is achieved
without impacting slice variance (and thus the distance from an ideal slice
distribution). In fact, Slead can achieve the same slice variance as pre-
vious protocols but with a significantly lower memory consumption as we
demonstrate later in this Section. For the sake of clarity we introduce each
mechanism independently which allows a better understanding of the impact
of each of them.

Conceptually, Slead is similar to both Sliver and Ranking as in each
cycle nodes send their local attributes to their neighbors and compute their
position in the global ranking (and hence their slice) based on the attributes
received in the recent past. The full pseudo-code of Slead is presented in
Algorithm 3, and detailed and evaluated in the following sections.

4.3.1 Steadiness

Changing slice typically requires the node to change context and local state,
which can be very expensive. As we have shown in Section 4.2, Sliver [Gramoli
et al., 2008] and Ranking [Fernández et al., 2007] suffer from a steadiness
problem in the slice estimation: a large fraction of nodes keep changing
slices even in a stable network and long after bootstrap. In fact, this hap-
pens mainly because nodes close to the slice border are highly affected by
small variations in their position estimation.

To address such fluctuations, we propose the use of a hysteresis mecha-
nism that prevents such problematic changes. The basic idea is to look at the
slice estimate over a period of time and only change slice if the slice proposal
is done for a sufficient amount of rounds, or if the magnitude of the change is
high enough. The number of rounds or the magnitude of the change needed
is given by a parameter we call the friction factor.

The hysteresis component of Slead is presented in Algorithm 3, lines
20 to 24 and works as follows. At each cycle, the protocol computes the slice
estimation (lines 18 to 20). The magnitude of the change is accumulated in a
local variable, current difference, which represents the cumulative difference
between the current slice estimation and the one the protocol is suggesting
as correct (line 21). As we compute the difference between the current slice
and the estimated one, small fluctuations in the estimation are avoided since
they do not go over the friction factor and thus steadiness is improved. If
the estimated slice consistently points to a new value, the cumulative differ-

4.3 Slead 35

ence will eventually be greater than the friction factor and the protocol will
effectively adopt the change to the new slice. Furthermore, as the hysteresis
is based on cumulative differences the protocol is able to quickly adapt to
abrupt changes in the system such as massive joins or failures. In fact, if the
difference between the proposed slice and the current one is greater than the
friction factor, the change will be immediate thus helping to effectively deal
with dynamics.

Figures Figs. 4.4 to 4.6 present the impact of the hysteresis mechanism
applied to Ranking and Sliver in the same scenario of Section 4.2 with fric-
tion=2. We only consider the versions with unbounded memory of both
protocols as those achieve better results in both metrics as observed in Sec-
tion 4.2. We observe that the hysteresis mechanism not only improves overall
system steadiness (Figure 4.4) but also considerably reduces the amount of
nodes that frequently changes slice (Figure 4.5, note that the x axis scale
is logarithmic). Moreover, there is no impact on slice variance (Figure 4.6)
meaning that despite avoiding unnecessary changes the protocols still con-
verge to the optimal configuration when compared with their original ver-
sions.

 3

 5

 10

 20

 50

 100

 200

 0 100 200 300 400 500 600

T
o
ta

l
s
lic

e
 c

h
a
n
g
e
s
 p

e
r

c
y
c
le

Cycles

Ranking (∞)

Sliver (∞)

Ranking+hysteresis (∞)

Sliver+hysteresis (∞)

Figure 4.4: Steadiness. Evolution of the number of slice changes (10,000
nodes, 10 slices).

36 4 Slicing for Data Distribution and Replication

1 initially
// view provided by the PSS

2 view ← ∅
// local attribute

3

4 myAttribute ← . . .
// number slices, system parameter

5 k ← . . .
// node identifiers whose attributes are smaller than the local one

6 smaller ← BloomFilter()
// node identifiers whose attributes are greater than the local one

7 greater ← BloomFilter()
// current slice estimation

8 slice ← ⊥
// current value of cumulative changes attempts

9 current difference ← 0

10

// active thread
11 every ∆ sendAttribute()
12 view ← PSS.getView()
13 foreach p ∈ view
14 send myAttribute to p

15

16 receive value from p
17 if (value < myAttribute ∨ (value == myAttribute ∧ p < myId)) then
18 smaller.add(p)

19 else
20 greater.add(p)

21 total ← smaller.size() + greater.size()
22 position ← smaller.size() / total

// hysteresis mechanism
23 nextSlice ← k * position
24 current difference ← current difference + (slice − nextSlice)
25 if ‖current difference‖ > friction then
26 slice ← nextSlice
27 myprotocol.current difference ← 0

Algorithm 3: Slead protocol.

4.3 Slead 37

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.1 1 10 100

%
 n

o
d

e
s

Slice changes

Steadiness (cycles 500-600)

Sliver (∞)
Sliver+hysteresis (∞)

Ranking (∞)
Ranking+hysteresis (∞)

Figure 4.5: Steadiness. Cumulative changes over the last 100 cycles (10,000
nodes, 10 slices).

4.3.2 Memory usage

The other main frailty with existing slicing protocols is that the memory
requirements depend on the system size and too low a memory impacts slice
variance as observed in Figure 4.3. This is because Ranking and Sliver need
to store the values of the attributes of other nodes (and the node id in the case
of Sliver) to build adequate estimations of the slice position. The compromise
taken in Sliver and Ranking is to use a least-recently-used structure that
bounds memory consumption even though constraining estimation accuracy.

Our contribution to reducing memory usage rests on two key observa-
tions regarding the nature of distributed slicing. First, it is important to
track which attributes (source nodes) have been considered in the past to
avoid duplicates. Secondly, what really matters to the slice computation is
not the values themselves but whether they are greater or smaller than the
local attribute. The first observation directly calls for the use of a Bloom
filter, a space-efficient data structure for tracking identifiers [Bloom, 1970]2.

2We note that using a Bloom filter can give false positives for the inclusion of an
element in the set (here, a node identifier). However, the probability of a false positive for
the identifier of a node with a greater attribute is the same as for a node with a smaller

38 4 Slicing for Data Distribution and Replication

4

10

40

100

 0 100 200 300 400 500 600

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 f
ro

m
e
x
p
e
c
te

d
 s

lic
e
 s

iz
e
 (

1
,0

0
0
 n

o
d
e
s
)

Cycles

Ranking (∞) (with and without
hysteresis: lines overlap)

Sliver (∞) (with and without
hysteresis: lines overlap)

Figure 4.6: Slice Variance. Evolution of the slices std. dev. from 1,000
nodes (10,000 nodes, 10 slices).

The second one, leads to simply counting the greater and smaller observa-
tions, which only requires to keep two numbers instead of a list with all the
occurrences.

Therefore, in Slead we use Bloom filters to track the node identifiers,
which allows to track a significant higher number of ids using a bounded and
small amount of memory. Assuming a pair IP:port as the node identifier (48
bits) and that attributes are encoded as long integers (64 bits), each entry
requires 64 bits in Ranking and 112 in Sliver. For the memory configurations
used previously with 100, 1000 and 10,000 entries (the unbounded version
in practice corresponds to the system size), Ranking requires 6,400, 64,000
and 640,000 bits, whereas Sliver requires 11,200, 112,000 and 1,120,000 bits,
respectively. On the other hand, a Bloom filter with a probability of false
positives of 1× 10−4 (the order of the system size) requires only 1,071, 10,899
and 109,158 bits for storing 100, 1,000 and 10,000 nodes respectively [Bloom,
1970], representing savings of around 90% when compared to Sliver. The
next step is simply to count the number of elements in each Bloom filter and
compute the slice estimation accordingly (lines 10 and 19). Please note that

attribute; henceforth the position estimation is not affected by such errors that are evenly
spread on the attribute range space.

4.3 Slead 39

the addition to a Bloom filter is an idempotent operation and thus has no
impact on the cardinality which can be easily computed from the filter fill
ratio [Bloom, 1970].

To evaluate our mechanism, we compared Ranking and Sliver with un-
bounded memory which in practice corresponds to 640,000 and 1,120,000
bits respectively, and Slead with 218,316 bits which corresponds to the
two Bloom filters with a capacity to store 10 000 node identifiers with a
false positive probability of 1× 10−4. We detail the need for two bloom fil-
ters in the next section. To isolate the impact of the use of Bloom filters,
Slead does not use the hysteresis mechanism in this experiment. The results
are depicted in Figure Figs. 4.7 and 4.8 and as it is possible to observe despite
using only 35% of Ranking’s memory and 20% of Sliver’s, Slead provides
similar results for both steadiness and slice variance. Such memory improve-
ments could be further increased by using more advanced Bloom filters that
do not require setting an a priori filter size and are able to scale with the
number of inserted elements [Almeida et al., 2007]. In fact, this benefits
nodes that are on the low/high end of the attribute spectrum as they will
not require significant memory for the smaller/larger Bloom filters.

 20

 50

 100

 200

 500

 0 100 200 300 400 500 600

T
o
ta

l
s
lic

e
 c

h
a
n
g
e
s
 p

e
r

c
y
c
le

Cycles

Ranking (∞)

Sliver (∞) and Slead (∞) without
 hysteresis (lines overlap)

Figure 4.7: Bloom filter’s impact on steadiness. Evolution of the number of
slice changes (10,000 nodes, 10 slices).

40 4 Slicing for Data Distribution and Replication

4

10

 0 100 200 300 400 500 600

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 f
ro

m
e
x
p
e
c
te

d
 s

lic
e
 s

iz
e
 (

1
,0

0
0
 n

o
d
e
s
)

Cycles

Sliver (∞)

Ranking (∞)

Slead (∞) (w/o hysteresis)

Figure 4.8: Bloom filter’s impact on slice variance. Evolution of the slices
std. dev. from 1,000 nodes (10,000 nodes, 10 slices).

4.3.3 Dynamics

In the previous section we intentionally omitted details regarding the Bloom
filter implementation. Actually, such implementation impacts the behavior
of the protocol, which can be tuned to meet application specific criteria.

A traditional Bloom filter implementation [Bloom, 1970] does not have
the ability to delete entries. In the static scenarios we considered previously,
such capacity is not required and moreover, due to the low memory consump-
tion, this simple Bloom filter implementation copes with our requirements.
However, in scenarios with churn, the ability to delete entries is required as
it enables old values to be pruned enabling adaption to new configurations.
In Ranking and Sliver this is addressed by the sliding window mechanism,
which simultaneously limits memory usage.

In Slead we decouple these distinct but related properties simply by
considering a different implementation of the underlying Bloom filter. To
this end we use an implementation able to forget and mimic the sliding
window-type behavior found in Ranking and Sliver. The approach used,
known as A2, provides least-recently-used semantics while keeping low mem-
ory usage [Yoon, 2010]. In short it uses two traditional Bloom filters that are

4.3 Slead 41

filled out of phase, i.e. one starts to be filled only after a number of updates
to the other. This allows each Bloom filter to record a set of values that differ
in the timeline they represent, where one contains the more recent items and
is a subset of the other. The old values are deleted by judiciously swapping
and flushing the Bloom filters [Yoon, 2010].

In our experiments we used the A2 implementation with the parametrized
memory size. Figure 4.9 presents the evaluation of Slead under a dynamic
environment and thus the impact of A2. We start with a system with 100
nodes, let it stabilize, and then at cycle 140 add 10 nodes per cycle for a
duration of 10 cycles. As it is possible to observe, Slead exhibits similar
behavior to Sliver and Ranking. Even though it incurs in slightly higher
variance initially, it quickly converges and accommodates the system size
changes. Moreover, when the hysteresis mechanism is added, the same quick
convergence is observable validating that our complete approach is also ade-
quate for dynamic environments.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 120 140 160 180 200 220 240

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 f
ro

m
e
x
p
e
c
te

d
 s

lic
e
 s

iz
e

Cycles

Slead (∞) (w/o hysteresis)

Slead (∞) (w hysteresis)

Sliver (∞)

Ranking (∞)

Figure 4.9: Slice variance. Evolution of the slices std. dev. under churn.
Starts with 100 nodes, ends with 200

42 4 Slicing for Data Distribution and Replication

4.4 Slicing as a distributed systems primitive

Autonomous and fully decentralized slicing using gossip-based protocols re-
ceived some attention recently [Fernández et al., 2007; Gramoli et al., 2008;
Maia et al., 2012] due to its convenience and desirable properties for large-
scale distributed system provisioning: dependability, scalability and adap-
tivity. However, little effort has been made to consider slicing as a building
block for other applications and in particular, concerning its completeness.
This capability is the key for composing gossip-based protocols into more
complex services [Rivière et al., 2007].

We begin by extracting from the existing literature the main character-
istics of slicing protocols and factoring them in a generic slicing framework.
Next, we go through existing slicing protocols, instantiating our framework
to compare and differentiate them. Finally, we propose a variant of the
Slead protocol recurring to the modularity of the framework.

Recalling from previous sections, slicing is the process of organizing the
set of nodes in a distributed system, into k groups called slices. Each slice
must eventually be composed of the nodes that lie in the sequence of k
subgroups ranked by increasing values of a sortable metric: if slices are
S1, . . . , Si, . . . , Sk, then all nodes belonging to Si must have a greater value
for the metric than those in Si−1, and a lower value for the metric than the
nodes in Si+1. Examples of sortable metrics include the uptime, available disk
space, CPU or other application-specific metrics. The system is modeled as
a set of nodes connected through an asynchronous network.

Slicing protocols operate by means of gossip-based message exchanges of
partial information about the system state, that yield a global convergence
but do not require any centralized knowledge. In detail, each node in the
system has access to a local attribute value representing the measured value
of the metric of interest (disk space, uptime, etc.). Periodically, it contacts
some peers and exchanges its attribute with them. Through this mechanism,
each node gathers some local knowledge that it uses to progress. This is a
key characteristic of gossip-based protocols that confers them high resilience
and scalability.

The set of peers each node may contact (the view of each node) is given
by an underlying protocol called the Peer Sampling Service (PSS) [Jelasity
et al., 2007]. The PSS is typically implemented using gossip-based protocols
itself and produces a random stream of peers drawn from the whole system.

The PSS is a key service that maintains membership of nodes to the
system in a decentralized fashion and offers a set of desirable properties,
namely: i) departed nodes are eventually removed from the random stream
of nodes provided at alive nodes, ii) new nodes are inserted in these streams

4.4 Slicing as a distributed systems primitive 43

within a bounded amount of time, and iii) convergence is guaranteed for
protocols built on top of the PSS by ensuring that all nodes will be involved
in the exchanges regularly. In our experiments, we assume the availability of
the Cyclon [Voulgaris et al., 2005a] PSS implementation, that provides good
randomness properties for the constructed views.

4.4.1 Slicing Framework

We have defined the basic framework of a slicing protocol, with which we can
instantiate the various existing slicing protocols. The pseudo-code for this
framework is presented in Algorithm 4. In this algorithm, node represents
the node id while v represents its attribute value.

At its core are two threads, a passive (lines 2 to 6) and an active one
(lines 8 to 10), running at each node. The active thread periodically and
proactively sends to each neighbor in the view a message containing the
unique node identifier, me, and the current value of the local attribute,
local attribute value (line 10). Recall that view is populated by the under-
lying PSS and is composed of a random subset of system peers (neighbors).
The reception of those messages triggers the passive thread waiting condi-
tion. Upon reception, the slicing protocol stores the received information
in a data structure (line 3) that offers three methods. The first method is
insertData(sender, attribute value) used to store incoming data. Methods
getSmaller() and getTotal() refer to the attribute values the node has seen.
The first one returns the number of attribute values which are smaller than
the local one while getTotal() returns the total number of attribute values re-
ceived. Note that this only represents locally gathered information and does
not requires global knowledge. With this local knowledge, nodes rely on an
estimate slice() (line 6) function to compute the node’s slice and report it
to the application.

What differentiates each instance of such framework is the possibility of
implementing the estimate slice() function and the data structure differ-
ently. Moreover, as we will see next, from the implementation details of
both, the behavior and properties of each protocol change. However, in all
protocols considered in this section the estimate slice() function is imple-
mented similarly (as shown in Algorithm 5). Existing literature on slicing
only considers the case where every slice is equally-sized and each node in
the system knows the number of slices, k, a priori by configuration. Conse-
quently, computing the slice position is simply a matter of multiplying the
node’s position obtained from the ration of smaller attribute values and total
nodes seen by k.

To the best of our knowledge, there are three main slicing algorithms in

44 4 Slicing for Data Distribution and Replication

1 function passive thread
2 upon reception(message)
3 data.insert(message.sender,message.value)
4 smaller ← data.getSmaller()
5 total← data.getTotal()
6 slice← estimate slice(smaller, total)

7 function active thread
8 periodically
9 for (node, v) ∈ view do

10 send(sender = me, value = local attribute value)

Algorithm 4: Slicing Framework.

1 function estimate slice(smaller, nodes seen)
2 position← smaller/nodes seen
3 slice← position ∗ number of slices
4 return slice

Algorithm 5: Basic slice estimation.

the literature: Ranking [Fernández et al., 2007], Sliver [Gramoli et al.,
2008] and Slead [Maia et al., 2012]. We describe each one of them instan-
tiating the data structure implementation from our slicing framework and
point out their specificities and motivations. Subsequently, we present a
novel slicing protocol called DSlead.

Ranking. The Ranking protocol [Fernández et al., 2007; Gramoli et al.,
2009] was the first slicing algorithm proposed in the literature. Its data struc-
ture simply consists on two variables: smaller and total updated each time
a message is received. The pseudo-code for this data structure is presented
in Algorithm 6.

It is important to note that the second part of the boolean expression
in method insertData (line 6) is used for disambiguation. Considering the
possibility of two nodes sharing the same attribute value, their id is used to
order the nodes, improving slice calculation.

Although very simple, the Ranking protocol is highly resilient. Message
loss and churn do not prevent the protocol from progressing. However, some
details prevent the protocol from achieving optimal results. In particular,
there is no regard to duplicate messages. A node that receives duplicate

4.4 Slicing as a distributed systems primitive 45

1 initialization
2 smaller ← 0
3 total← 0

4 function insertData(sender, attribute value)
5 if ((attribute value < local attribute value)
6 ∨(attribute value = local attribute value
7 ∧sender < me)) then
8 smaller ← smaller + 1

9 total← total + 1

10 function getSmaller()
11 return smaller

12 function getTotal()
13 return total

Algorithm 6: Data structures for Ranking.

messages from a specific peer will consider them repeatedly when calculating
the slice estimative: the number of nodes with higher and lower values will
thus be miscalculated leading to wrong slice attributions.

Observe that, in [Fernández et al., 2007], a Ranking node contacts a
single selected node at a time. However, Ranking can be implemented by
sending the attribute to all nodes in the view. Such implementation is faster
and avoids biasing the protocol towards nodes in the slice border [Gramoli
et al., 2009]. In our framework, we only consider this version of the protocol.

Sliver. To solve the duplicate message problem, the Sliver [Gramoli et al.,
2008] protocol was proposed. It is very similar to Ranking but alongside
the node attributes, Sliver also stores the node identifiers. This way, at-
tributes from a specific node are considered only once in the slice estimation.
The pseudo-code for Sliver’s structure follows on Algorithm 7. The data
structure to support Sliver is a key-value table where the keys are node ids
and values their attributes (line 2).

It is possible to see that this protocol converges under the assumption
of the availability of a PSS. Let us consider that a single node is capable
of storing a number of pairs (id, attribute value) equal to the size of the
system. Due to the random nature and continuous refresh of the PSS views,
eventually every node will receive a message from every other node in the
system. With this global information available at each node it is easy to see
that the protocol will converge and every node will compute the correct slice.

46 4 Slicing for Data Distribution and Replication

1 initialization
2 list← new dict()

3 function insertData(sender, attribute value)
4 list[sender]← attribute value

5 function getSmaller()
6 res← 0
7 for k, v ∈ list do
8 if (v < local attribute value)
9 ∨(v == local attribute value

10 ∧ k < me) then
11 res← res+ 1

12 return res

13 function getTotal()
14 return list.size()

Algorithm 7: Data structure for Sliver.

At this point it is important to make an observation. As noted in Sec-
tion 4.1, a protocol that relies on an amount of information proportional to
the system size is not scalable nor suitable to large-scale systems. To address
this problem and to make Sliver run in a bounded memory environment,
instead of storing all received attribute values, only the more recent ones are
kept. In practice, this is achieved by considering a FIFO queue with fixed
size. It should be noted however, that this adjustment not only solves mem-
ory issues but also allows the protocol to handle churn in a more effective
way. Nodes leaving the system will stop publishing their attribute values
and the limited size queue will force them to be eventually forgotten from
the system. Analogous behavior happens for nodes joining the system.

An alternative implementation of the Ranking protocol can also be con-
sidered in order to allow the protocol to forget attribute values. Instead of
simply storing two variables, a fixed size list of attribute values is stored.
The core behavior of the protocol is preserved but now it is able to cope with
dynamic attribute values.

Slead. The Slead [Maia et al., 2012] protocol was proposed with the ob-
jective of tackling the lack of steadiness and high memory consumption issues
manifested by previous approaches.

Steadiness issues were addressed using an hysteresis mechanism. In prac-

4.4 Slicing as a distributed systems primitive 47

tice, the mechanism delays slice change decisions until such decisions have
been confirmed by more than one cycle of slice estimation. This mechanism
avoids unnecessary slice changes, specially for nodes at slice borders. The
hysteresis mechanism, detailed in [Maia et al., 2012], is pluggable to all slicing
protocols and is left out of the scope of the present version of the framework.

Memory consumption problems arise from the need to store a list with
every pair of (id, attribute value) received in order to ensure that the protocol
converges. Let us consider a stable environment where each node has a
constant attribute value and no node leaves or enters the system. It is easy
to see that, in such scenario, in order for a slicing protocol to converge to the
correct slice organization it is necessary that each node sees the attribute
value of every other node in the system. With that complete view over the
system it is possible to compute the exact slice to which the node belongs.
Nevertheless, having a protocol that uses an amount of memory proportional
to system size is clearly not scalable. This problem was addressed with the
use of a FIFO queue of fixed size, m, that follows the behavior of a sliding-
window. As a result, at each point in time, every node has access to a sample
of m pairs (id, attribute value) with which it is able to estimate its relative
position and thus its slice. Because the underlying Peer Sampling Service
provides a stream of nodes that is extremely close to a continuous random
selection, it is expected that each network sample preserves characteristics
similar to the system as a whole distribution, hence allowing each node to
correctly estimate its slice. However, in practice the size of m impacts the
accuracy and steadiness of the protocol. Low values of m degrade the quality
of the sample and negatively impact the protocols behavior while high values
of m result in high memory consumption rates. This behavior is observable
in the results from [Maia et al., 2012].

Slead’s solution to the high memory consumption was the use of Bloom
filters [Bloom, 1970] to store data. With Bloom filters, Slead is able to
store the complete view of the system with a bounded memory footprint
which solves the problem for the case of a stable environment. Still, as noted
in the Slead paper, the sliding-window-type behavior of Sliver not only
addresses memory consumption issues but also addresses system dynamism.
The system may experience instability due to two main factors: churn or
node-level change of attribute values. Both these factors provoke the need
for the system to adapt and consider new information arriving and forget
obsolete one. In Sliver, this is immediately achieved through the fixed
sized queue as old values are progressively being forgotten and replaced by
fresh data. In Slead, as traditional Bloom filters do not have the capacity to
remove items, a special kind of Bloom filters, called A2 [Yoon, 2010] is used.
This Bloom filter implementation is capable of forgetting values by having

48 4 Slicing for Data Distribution and Replication

1 initialization
2 smaller ← new A2BloomFilter()
3 greater ← new A2BloomFilter()

4 function insertData(sender, attribute value)
5 if ((attributevalue < local attribute value)
6 ∨(attributevalue = local attribute value
7 ∧sender < me)) then
8 smaller.insert(sender)
9 greater.remove(sender)

10 else
11 smaller.remove(sender)
12 greater.insert(sender)

13 function getSmaller()
14 return smaller.size()

15 function getTotal()
16 return smaller.size() + greater.size()

Algorithm 8: Data structures for Slead.

two Bloom filters and periodically reseting one of them. Beside, we replaced
the traditional Bloom filters used in A2 by counting Bloom filters that allow
for the removal of specific items [Fan et al., 2000]. The combination of both
mechanisms enables Slead to cope with dynamism.

The instantiation of Slead in our slicing framework is presented in Al-
gorithm 8.

DSlead: Decaying Slead. Although successful in reducing steadiness and
memory consumption issues from previous approaches, the Slead protocol
exhibits some frailties. In particular, the way it deals with dynamism with
the A2 Bloom filter implementation has a main disadvantage. related to
the difficulty of configuring the rate at which values are being forgotten in
a tractable way. This is important since forgetting values too fast results
in protocol output instability while forgetting them slowly results in very
slow adaptation to change. In Sliver, changing this rate is easy because it
suffices to change the queue size (a larger queue means slower adaptation to
change). In Slead this is not a straightforward task. The rate at which the
protocol forgets values is related to the fill ratio of the A2 Bloom filter [Yoon,
2010]. Inevitably, this means that changing the refresh rate is achieved by

4.4 Slicing as a distributed systems primitive 49

changing the Bloom filter size. This is definitely not practical as changing the
Bloom filter size means reseting the whole Bloom filter, impacting negatively
on the slice estimation.

Fortunately, we can take advantage of the slicing framework and Slead
modularity. In fact, Slead is independent of the Bloom filter implemen-
tation. To solve these issues and achieve a more complete slicing protocol
we propose the use of a different Bloom filter variant: time-decaying Bloom
filters [Cheng et al., 2005]. These Bloom filters not only allow direct item
removal but also allow the user to define a function that removes according
to a certain time-related function. In other words, it is possible to define at
which rate items are forgotten from the Bloom filter. This leads to DSlead,
a variant of Slead that shares the same structure from Algorithm 8 but
with a different Bloom filter implementation.

In our implementation it works as follows. Each time an item is inserted
into the Bloom filter a certain number of positions in the Bloom filter array
are incremented according to a set of hash functions [Bloom, 1970]. It is
important to note that the implementation of time-decay Bloom filters relies
on counting Bloom filters [Fan et al., 2000] which have more than one bit
per array position, allowing to count various occurrences of the same item
and enabling item removals. Then, periodically, each of the array positions
is multiplied by a fraction value ([0, 1[). If a certain position or group of
positions in the array are not refreshed their value will eventually decay to a
value close to 0. As the value never reaches 0 and, in order to actually forget
items, when a certain value in a certain array position becomes smaller than
a user defined threshold, it is considered to be 0.

A decay function is, therefore, composed by three variables: the period
of decay, the fraction of decay per period and the minimum threshold. The
ability to define a decay function over the Bloom filter values and easily
change the rate at which it is operating, alongside the ability to immediately
accommodate changes to attribute values completes the DSlead protocol.

We evaluate both Slead and DSlead in the following experiment. We
measure protocol steadiness as the number of slice changes that occur in the
system for a particular cycle [Maia et al., 2012]. In our experiment we let the
protocols run for about 50 cycles and then triggered a configuration change
increasing the memory footprint of Slead and decreasing the decay rate
of DSlead. The results are depicted in Figure 4.10. Note that we inten-
tionally configured Slead and DSlead with small memory and high decay
rate respectively which issue a non desirable behavior from both protocols,
observable until cycle 48. In particular, the steadiness of slice estimation is
degraded as values are continuously being forgotten or decayed. Both proto-
cols eventually converge, lowering the steadiness values. However, DSlead

50 4 Slicing for Data Distribution and Replication

does not incur the same burst of slice changes as Slead. This is due to the
fact that in order to reconfigure Slead it is necessary to reset the protocol’s
data structure while this is avoided in DSlead, resulting in a much smoother
transition.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 40 45 50 55 60 65 70

T
o
ta

l
s
lic

e
 c

h
a
n
g
e
s
 p

e
r

c
y
c
le

Cycles

Steadiness DSlead
Steadiness Slead

Figure 4.10: Slead and DSlead with reconfiguration.

4.4.2 Extending Slicing

Slicing protocols provide the capability of assigning each node a slice which
is useful from the perspective of system organization. However, nothing is
said about how nodes from the same slice interact with each other or how
to have different sized slices. These are very important features for slicing
protocols to be practical.

In particular, in our opinion, there are four main features that are lacking
from slicing protocols. First, it is important to support slices with different
sizes. This feature widens the range of applicability of slicing protocols. It
considers, for instance, the case of having 10% of nodes with a coordination
task and groups of 30% nodes each with separate responsibilities. Secondly,
having a fixed slice configuration also impairs the applicability of slicing pro-
tocols. These protocols are intended for highly dynamic environments where
adaptivity is key. Consequently, it is difficult to conceive the use of a protocol

4.4 Slicing as a distributed systems primitive 51

that needs to be pre-configured and restarted each time a new configuration is
needed. We propose the addition of a mechanism that allows slicing protocols
to change slice configuration without having to stop or restart the system.
Third, in [Jelasity and Kermarrec, 2006] it is noted that slicing is only useful
if each slice is presented to the application as a group. This means that each
node in the system should not only know to which slice it belongs to but
also which nodes share such slice. Finally, the ability to slice considering
more than one attribute seems a very useful feature. For instance, allowing
to look not only to CPU load as an indication of node utilization but to a
combination of different metrics like disk I/O and uptime. In this section we
describe each one of these features and how they can be implemented.

In addition, we evaluate some of these features. In this regard, we ran our
experiments on top of Splay [Leonini et al., 2009]. Splay is a platform that
enables rapid development and testing of distributed systems. In particular,
we ran each experiment on a local deployment of Splay and each consisting
in 1000 Splay nodes. Splay was deployed in a 24-core machine with 128GB
of RAM. Each node runs the same Lua [Ierusalimschy et al., 2007] code
consisting of the DSlead protocol. As described earlier, DSlead follows
a gossip-like message exchange pattern. Each node periodically contacts
its neighbors sharing its locally read attribute and considers this a cycle.
However, nodes are not synchronized which means there is no guarantee
that nodes are progressing, in terms of cycle count, at the same rate. In
order to retrieve usable information from system runs these logical cycles
are ignored and used only internally by each node. We present our results
in terms of cycles measured in actual time. This period of observation was
configured to be of 10 seconds and a cycle, in our experiments, should be
understood as one of these periods.

Heterogeneous slicing. Previous work on distributed systems slicing pro-
tocols focused in dividing the system into k equally-sized slices. However, this
approach is restrictive. Moreover, it is possible to equip existing protocols
with the capability of considering different slice configurations with mini-
mum change to the protocols and maintaining their properties. We name
these slice configurations schemas.

Originally, each node calculates its slice by estimating its position in a
virtual ranking of all nodes according to a certain attribute. This position
estimative is calculated dividing the number of smaller attributes observed by
the total number of attributes observed as described in the estimate slice()
function implementation of Algorithm 5.

To allow the protocol to consider different slice schemas, we need to store

52 4 Slicing for Data Distribution and Replication

1 initialization
2 CL← list with slice configuration

3 function estimate slice(smaller, total)
4 position← smaller/total
5 slice← 0
6 for s in CL do
7 if position <= s then
8 return slice

9 slice← slice+ 1

Algorithm 9: Implementation of heterogeneous slice estimation.

an additional data structure representing the slice size distribution: a simple
schema configuration list (CL) with cumulative percentages is sufficient. This
list is populated with one entry per slice (s1 to sk) and each entry, i, represents
the percentage of the system expected to be assigned to all slices from s1 to si.
For instance, the list CL← [0.2, 0.4, 1], issues a system partitioned into three
slices. The first slice would gather 20% of the system, the second slice another
20% of the system and the third slice would encompass the remaining 60%
of system nodes. It is important to note that this organization still follows
the virtual ranking of nodes according to a local attribute.

Furthermore, even though we are using DSlead in our experiments, this
technique can be implemented by all the slicing protocols that fit the slicing
framework we defined in Section 4.4.1 simply by reimplementing estimate position
as follows (Algorithm 9). The new function will still take as arguments the
total number of attributes seen by the node and the number of those that
are smaller than its local attribute. It computes the node’s relative position
in the virtual rank of all nodes as before but uses this result in a different
way. The node slice is estimated by checking in which schema configuration
interval such position falls.

This change in slicing protocols proved to be effective. To evaluate this
particular feature we ran two different tests with different slice schemas.
Schema one considers five slices, each with 20% of the system nodes and
it was chosen in order to show that previous equally sized slices are still
achievable in this new protocol version. On the other hand, schema two is
an heterogeneous slice schema. It is configured to achieve three slices, one
with 50% of the nodes and the remaining two with 25% of nodes each. The
results are depicted in Figure 4.11 and Figure 4.12, respectively.

Each vertical bar represents how the slices are distributed in a certain

4.4 Slicing as a distributed systems primitive 53

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

N
u

m
b
e

r
o
f
n

o
d
e
s

Cycle

Slice organization for Schema 1

Slice 5
Slice 4
Slice 3
Slice 2
Slice 1

Figure 4.11: DSlead run configured with schema one.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

N
u
m

b
e
r

o
f

n
o

d
e

s

Cycle

Slice organization for Schema 2

Slice 3
Slice 2
Slice 1

Figure 4.12: DSlead run configured with schema two.

54 4 Slicing for Data Distribution and Replication

1 function changeSchema(newSchema)
2 if not CL == newSchema then
3 CL← newSchema
4 for peerinview do
5 send(peer, newSchema)

Algorithm 10: Implementation of changeSchema function.

cycle. Each shade of grey represents the amount of nodes of a certain slice.
Slices as ordered from bottom up according to the CL list order. The sum
of all segments of the vertical bar is the total number of nodes in the system.
Note that this is not true for some initial cycles, as can be observed in
Figure 4.11 and Figure 4.12 where some nodes are still starting.

Slice reconfiguration. In previous work [Fernández et al., 2007; Gramoli
et al., 2008; Jelasity and Kermarrec, 2006; Maia et al., 2012] focused on
slicing, the number of slices was a pre-configured parameter and little is said
about dynamic reconfiguration of slices. Moreover, now that it is possible to
have different slice schemas, the logical step is to capacitate slicing protocols
with the ability to change schema on-the-fly.

We begin by assuming that the initiative of changing schema is external
to the system and communicated to an arbitrary node or set of nodes. The
nodes that receive the schema change request are responsible for processing
it. The main challenge here is how to effectively disseminate the schema to
all system nodes. However, all the slicing protocols rely on Cyclon [Voulgaris
et al., 2005a]. Cyclon provides each node a random view over the complete set
of nodes and this view has the properties of a connected graph. As a result,
in order to send a message to all nodes in the system, it is sufficient to send
it to all the nodes in the current Cyclon view and have each node repeat such
task on the reception of a new message, essentially flooding the network. It is
important to note that more elaborate and effective dissemination techniques
could be used to spread the slice reconfiguration message [Carvalho et al.,
2007]. Nonetheless, such messages are very small in size and sent sparingly
and thus we consider such optimizations out of the scope of this work. The
code for schema change request is presented in Algorithm 10.

In order to validate this approach we ran DSlead with an initial slice
schema with CL ← [0.1, 0.5, 0.6, 0.7, 0.9, 1] and issued a schema change to
CL← [0.1, 0.2, 0.3, 0.4, 0.5, 1] at cycle 250. The change request was made to
a single node in the system, responsible for propagating it.

4.4 Slicing as a distributed systems primitive 55

 0

 200

 400

 600

 800

 1000

 200 220 240 260 280 300

N
u

m
b
e

r
o
f
n

o
d
e
s

Cycle

Slice reconfiguration.

Slice 6
Slice 5
Slice 4
Slice 3
Slice 2
Slice 1

Figure 4.13: Slice reconfiguration.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200 220 240 260 280 300

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 f
ro

m
e
x
p
e
c
te

d
 s

lic
e
 s

iz
e

Cycles

Slead (Schema 1)

Slead (Schema 2)

Figure 4.14: Slice variance for a slice schema change.

56 4 Slicing for Data Distribution and Replication

To better illustrate the protocol behavior, Figure 4.13 depicts slice distri-
bution at each ten cycle period and Figure 4.14 depicts slice variance mea-
surements. Slice variance, as defined in [Maia et al., 2012], measures the
distance of a certain slice distribution to a target distribution. In our exper-
iment we determined the system slice variance according to both schemas.
It is interesting to see how the two curves behave when the schema change
occurs. Initially, as expected, high variance values are measured for schema
two and low variance values measured for schema one. Around cycle 250,
the curves exchange roles indicating the schema change. The same time be-
haviour can be observed in Figure 4.13. For instance, if we look at slice two,
which held 40% of the nodes initially we can see how it shrinks to the 10%
of nodes configured in schema two.

Slice-local view. Independent of the slice schema discussion, another gap
in current slicing protocols is intra-slice connectivity. In the current slicing
protocols, each node is capable of communicating with a set of other nodes
in its view which are called neighbors. This group of neighbors, although of
key importance, is oblivious to the slicing protocol. Consequently, there is
no practical way for a node to contact its slice peers. In fact, partitioning a
distributed system into slices is only useful if it is possible to take advantage
of such slices.

In order to achieve this the immediate solution is to have another in-
stance of a Peer Sampling Service for each slice. This approach was actually
mentioned in [Jelasity and Kermarrec, 2006] as a future research path. This
has however a bootstrapping problem as we do not know in advance each
node’s slice. Our approach is to inject the node’s current slice into the slic-
ing protocol message defined in Algorithm 4, line 10. Besides the current
node’s slice we also inject the slice-local view when the target node belongs
to the same slice as the sender. This information, despite limited, allows
nodes to quickly populate its slice-local view and quickly deal with changes
by resetting it when slice changes happen.

Multi-attribute slicing. Existing slicing strategies take into account a
single system attribute to rank nodes. However, it might be useful to con-
sider more than one attribute in order to better characterize each node.
For instance, considering various load attributes simultaneously or consid-
ering attributes such as geographic information and bandwidth simultane-
ously. The immediate approach can be to extend the slicing protocol to
exchange more than one attribute at each algorithm cycle. This would al-
low considering various attributes for slicing. We propose instead a local

4.5 Discussion 57

computation of an artificial attribute resulting from the combination of dif-
ferent measured attributes and in particular the use of Space Filling Curves
(SFC) [Sagan, 1994]. This mathematical construction provides a mapping
from a d-dimensional space to a unidimensional one. The different attributes
considered are viewed as a multi-dimensional space. This space is divided
into sub-spaces which are mapped to a line that traverses the sub-spaces
passing through every point and entering and exiting the space only once.
Then, the virtual attribute can be constructed as the length of the line from
one of its ends to the point with spatial coordinates derived from the at-
tribute values. Therefore, nodes will be able to map several attributes to a
single point in the SFC given by a real number. This number is then used as
the ranking criteria, allowing existing protocols to run unmodified but still
supporting multi-attribute slicing. An example of the application of these
curves can be found in [Vilaça et al., 2011].

Moreover, in the follow up paper [Pasquet et al., 2014], we study the Space
Filling Curve approach for multi-attribute slicing and propose an additional
solution for the problem based on the notion of dominant relations. This
work was done out of the scope of the present thesis.

4.5 Discussion

In this chapter we focused on distributed systems slicing protocols. Slicing
protocols autonomously organize an arbitrary number of nodes into groups
according to a given criteria. Moreover, this process is completely decentral-
ized and can scale to systems with millions of nodes. These characteristics
made slicing our first choice as the implementation of the group construction
component of DataFlasks. However, some frailties in state-of-the-art slic-
ing protocols impeded their immediate application in such context. Among
these frailties were problems of instability, memory consumption and the in-
ability to consider slices (groups of nodes) with different sizes. Consequently,
we proposed Slead and DSlead to solve the various issues identified in
previous protocols. Additionally, we propose a slicing framework that can be
instantiated in order to take the form of every slicing protocol. This allows
for reasoning about the protocols, clearly identify the differences between
them and identify the key constructions needed to design new ones.

The most important requirement for the group construction component
of DataFlasks is the ability to divide nodes into groups in a scalable and
robust way. Moreover, each node must know the group it belongs to. Dis-
tributed systems slicing meets these requirements. However, group size is de-
termined as a given percentage of the system. As described in Section 4.4.2,

58 4 Slicing for Data Distribution and Replication

slicing protocols receive as an input a slice schema that defines the number
of slices to consider and the percentage of nodes assigned to each slice. Slice
size is thus dependent on system size which is considered to be unknown.
Once that, in DataFlasks, slicing should be used for data distribution and
replication this represents a frailty of the approach. In fact, the replication
factor is not directly controllable by the system administrator. This impairs
the ability of the administrator to intervene in the system and to adjust the
replication factor according to the characteristics of the production environ-
ment. Considering this limitation, we worked on a new protocol for group
construction that would allow the replication factor to be configurable. Such
work is presented in the next chapter.

Even though the work on slicing stems from its applicability for the group
construction component of DataFlasks, this chapter is a contribution in
itself as our protocols are completely independent from the design of Data-
Flasks. Moreover, the slicing framework and the new features introduced
with DSlead are usable in other contexts and are intended as a building
block for other applications and services.

Chapter 5

Group Construction Protocol

A fundamental component of DataFlasks is group construction. Data-
Flasks nodes must be divided into groups in order to distribute data and
every node must learn to which group it belongs. In this chapter, we present
an algorithm that is able to organize thousands of nodes into groups in a
robust and scalable way. The algorithm receives as an input the size of the
groups to construct. This size is user defined and, by configuration, every
node in the network learns the same desired group size at start up.

We begin with some remarks that give the intuition behind the design
of the algorithm. Next, we present a simplified version of the algorithm
and sketch a proof of its correctness. In Section 5.2 we show how it can be
extended in order to be faster and more effective. Section 5.3 concludes the
chapter.

5.1 The basic protocol

In the design of the protocol it is important to take into account that its
main goal is to divide nodes into groups for data distribution and replication.
In this scenario, each time a node changes group it needs to perform state
transfer procedures. The design of our group construction algorithm aims
at minimizing these procedures, which are costly. To this end, we designed
the algorithm to always consider the number of groups to be a power of two.
Consider Figure 5.1. Forcing the number of groups (ngroups) to be a power
of two, results in a well defined set of possible group configurations. Each
configuration is associated with a level number where ngroups = 2level.

An important thing to notice is that the mapping between the key and
group is stable as the level increases. Recalling Section 3.3, data distribu-
tion is done by assigning key-ranges to each group by the use of an hash

59

60 5 Group Construction Protocol

1 Method group(key):
2 key hash← hash(key)
3 key position← key hash/hash max value
4 group← dkey position ∗ ngroupse
5 return group

Algorithm 11: Determining to which group a certain key-value pair
belongs.

function (hash in line 2 of Algorithm 11). The hash function maps the
keys with arbitrary range size into keys of fixed range size, trying to do so
as evenly as possible over the target range. Assuming the target range is
]0,hash max value], it is possible to map each key to a position in the range
]0,1] (lines 2 and 3 of Algorithm 11). With this mapping, it is straightfor-
ward to calculate the group a key belongs to (line 4 of Algorithm 11). Once
each key is mapped to a]0,1] range, its position is preserved across different
configuration levels as depicted by the black arrow in Figure 5.1. The goal
of this design is to minimize state transfers between nodes every time there
is an group change. In fact, when a configuration level is increased, nodes
do not need to transfer any data. Deleting spurious data is even optional
and may be performed only if space is needed. Conversely, when a level is
decreased, state transfers are made only between pairs of groups distributing
and balancing the task.

Algorithm. Typically, a gossip protocol works as follows. Every node
knows a set of other nodes in the network, which we call view. Periodically,
each node contacts one ore more nodes in its view and shares knowledge with
them. Through these periodical exchanges each node is able to gather suffi-
cient information to progress. Strikingly, many gossip protocols are effective
even if the size of the view only grows logarithmically with the size of the sys-
tem. This characteristic renders these protocols highly scalable. Even so, the
node view must be populated. This problem is addressed by a specific class
of protocols, which are themselves gossip protocols and which implement a
Peer Sampling Service [Jelasity et al., 2004, 2007; Voulgaris et al., 2005a,b].
These protocols provide each node with a random stream of peers which is
used to populate the node view. Our group construction protocol assumes
the existence of such a service. In particular, we consider Cyclon [Voulgaris
et al., 2005a] as the Peer Sampling Service.

Cyclon works by periodically exchanging messages containing a set of
random node references from the network. These references contain the in-
formation needed to contact the corresponding nodes. For the purpose of

5.1 The basic protocol 61

1

1 2

1

1

(...)

Level

0

1

3

(..)

2 2 3 4

2 3 4

Group Configuration

Key Range

5 6 7 8

Figure 5.1: Data to group mapping and group levels.

simplicity, we consider that these references are the node identification num-
bers and that knowing a node identification number (id) is sufficient to be
able to contact it. In our protocol we leverage the existence of the PSS taking
advantage of the messages it exchanges. Each time a PSS message containing
a random set of peers from the network is received, a copy of this message
is delivered to our algorithm. Our protocol reacts to the reception of such
messages and, solely based on them, converges to the desired groups con-
figuration. We consider that nodes are completely connected through lossy
communication channels [Guerraoui et al., 1998].

The simplified version of the group construction algorithm is presented
in Algorithm 12.

The protocol has two parameters. The desired group size and the current
node identification. Every node in the system runs the same protocol and is
initialized with the same group size (groupsize). The node identification (id)
uniquely identifies each node.

Upon initialization every node considers the system as a single group and
that it belongs to that group. To this end it initializes variables ngroups and
group with the value 1. The former variable stores the number of groups

62 5 Group Construction Protocol

input : groupsize, id

Data: float pos← random()
/* random number in]0, 1] */
Data: ngroups← 1
Data: group← 1
Data: set localview ← {(id, pos)}

1 upon reception of m ← set of (id, pos) from PSS:
/* add new peers to localview */

2 foreach peer in m do
3 if group(peer.pos, ngroups) == group then
4 localview = localview ∪ {peer}/* possibly rewriting peer */

/* clean localview */
5 foreach peer in localview do
6 if group(peer.pos, ngroups)! = group then
7 localview = localview \ {peer}

/* need to merge or split? */
8 if |localview| < groupsize then

/* Should Merge. */
9 if ngroups > 1 then

10 ngroups← ngroups/2

11 if |localview| > groupsize then
/* Should Split. */

12 ngroups← ngroups ∗ 2

/* recalculate my group */
13 group← group(pos, ngroups)

Algorithm 12: Gossip group construction algorithm.

the node estimates should exist to comply with the desired group size. The
latter stores the estimation of the group the node belongs to. Additionally,
each node has a list variable (localview), where it stores peers that belong
in his group. Initially, the node only considers himself in this list. As the
protocol runs, the estimation of ngroups converges towards a number that
divides the system into groups of groupsize nodes.

An important initialization step is generating the node position (pos).
The node position is a number in the interval]0, 1] generated at node start
and that remains constant while the node is alive. This value allows nodes
to distribute themselves into groups. The position is calculated using a num-
ber generator, which we assume is uniformly random across the entire net-
work. Note that, with the node position and knowing the number of groups
(ngroups) it is trivial to calculate the group to which the node belongs. The

5.1 The basic protocol 63

1 Method group(position, ngroups):
2 group← dposition ∗ ngroupse
3 return group

Algorithm 13: Group calculation method.

node position places the node in a range]0,1]. Consequently, to calculate
the node group it suffices to divide such range into ngroups smaller ranges
and determine in which of those the node position fits. Moreover, by the
uniformity of the number generator, nodes will be evenly distributed across
groups. The node group calculation is abstracted in line 13 of Algorithm 12
and shown in Algorithm 13.

DataFlasks group construction algorithm works as a passive thread
that waits for messages from the Peer Sampling Service, which contain ref-
erences for other nodes in the network. In DataFlasks, node references
also include the node position. Recall that the node position is calculated
only once and remains unchanged while the node is alive. It is thus safe to
disseminate the position alongside the node id.

Upon the reception of a PSS message (line 1), the protocol performs
four tasks. First, for each node reference in the message it checks if the
correspondent node belongs to the same group (lines 2 to 4). If it does, it
adds such reference to its local view (localview). Second, it checks if every
reference in its local view still belongs to the same group (lines 5 to 7). This is
necessary because nodes may change their estimation for ngroups. Consider
a scenario where a node estimates that the correct value for ngroups is 2. In
that case, half of the system nodes belong to the same group as the node.
However, if the node refines its estimation to a value of ngroups of 4, then
only a quarter of the system nodes can now belong to its local view. Following
this process, localview holds references for peers that each node estimates to
belong in its group. Consequently, the size of localview is the group size
estimation at each node. At the third step of the algorithm (lines 8 to 12)
such group size estimation is compared with the groupsize defined by the
user. If the current size of localview is smaller or greater than groupsize
the node refines its estimation of ngroups in order to correct such violation.
For the case it is greater that desired, ngroups is multiplied by two in order
to lower the group size. We name this operation a split. Inversely, nodes
perform a merge operation when there are insufficient nodes in the group.
Finally, after adjusting ngroups, each node recalculates the group it belongs
to (line 13).

With the continuous arrival of PSS messages the protocol continuously
improves the estimation for ngroups. In the remainder of the Section, we

64 5 Group Construction Protocol

present a proof of correctness for the simplified version of the protocol and
present simulation results that show it converges to the correct group con-
figuration.

Proof of correctness. The objective of Algorithm 12 is to group an arbi-
trary large number of nodes into sets of size groupsize (being groupsize the
desired replication factor). In the following we sketch the proof that given a
stable membership then the algorithm eventually converges and stabilizes.

Let us assume N nodes, such that N
groupsize

= 2level for some level ≥ 0.
These nodes do not fail or leave the system. Nodes are fully connected by
lossy communication channels, have access to a Peer Sampling Service that
provides each node with a periodical random sample of nodes from the entire
system, and also to a uniform random number generator in the interval]0,1].

Each node manages a variable ngroups. We show that, starting with
ngroups = 1, each node i will eventually reach ngroups = N

groupsize
and

stabilize there. We do so by firstly 1) showing that the algorithm has an
upper bound N

groupsize
on the number of groups it can split the system into,

then that, 2) at each node, ngroups cannot be indefinitely smaller than
N

groupsize
, and finally that 3) eventually, once ngroups = N

groupsize
, ngroups no

longer changes.

In the following, consider that for each level l, j is a neighbor of i if it
belongs to the same group of i at l. From the group calculation group ←
dposition ∗ ngroupse (line 2 of Algorithm 13) if a node j is a neighbor of i
at level l then it is a neighbor of i for every level k where k < l.

1) The algorithm has an upper bound N
groupsize

on the number of groups it

can split the system into. Assume not, that is, eventually ngroups > N
groupsize

.

Let 2g = N
groupsize

. Once ngroups > N
groupsize

then the node is at least at
level g + 1. It means that the node has performed a split at level g, which
means that |localview| > groupsize at level g. However, this is not possible
since for 2g groups with N nodes there are at most groupsize nodes per
group. A contradiction.

2) At each node, ngroups cannot be indefinitely smaller than N
groupsize

.

Again, for a contradiction, assume that ngroups < N
groupsize

is always true.

As ngroups < N
groupsize

then i must be at some level k < g. Because any
neighbor of i at level k is also a neighbor of i at any level j < k, then by
the PSS properties all neighbors of i at level k will be eventually addded to
i’s localview. These nodes will not be removed from i’s localview (lines 5
to 7) while i is at any level j ≤ k. Since the neighbors of i at any level
k < g is larger that groupsize, i’s localview at level k will eventually grow

5.1 The basic protocol 65

larger than groupsize and i splits. At level g − 1 i eventually splits and
ngroups = N

groupsize
. A contradiction.

3) Eventually, once ngroups = N
groupsize

, ngroups no longer changes.

Let 2g = N
groupsize

. Because any neighbor of i at level g is also a neighbor
of i at any level k < g, then by the PSS properties all neighbors of i at level
g will be eventually added to is localview. These nodes will not be removed
from i’s localview (lines 5 to 7) while i is at any level k ≤ g.

Once, by 2) i reaches level g and all its neighbors at level g belong to
localview then i no longer merges (lines 8 to 10). And by 1), i never reaches
any level larger than g. Therefore ngroups no longer changes and the node
stabilizes.

Convergence. In order to validate the convergence of our algorithm we
ran a simulation1. In this simulation we considered 10.240 nodes and a Peer
Sampling Service that delivered messages with random references of nodes.
Additionally, uniformly distributed position values were generated for every
node and groupsize defined to 10. For this simulation in particular the correct
number of groups (ngroups) is 1024.

At each simulation cycle a single PSS message was delivered to each
node to be processed. The size of the PSS message influences directly the
speed of convergence of the protocol. Typically, the message size increases
logarithmically with the system size [Eugster et al., 2004]. We considered PSS
messages containing 20, 30, 40, 50 or 100 node references2. In Figure 5.2 we
depict the results of the simulations. The plot shows the percentage of nodes
that hold a wrong estimation for ngroups per cycle.

From the results we can verify that the protocol converges to the desired
configuration. It is also possible to see that, as expected, increasing the PSS
message size improves the performance of the protocol. Nevertheless, note
that it converges even for very small message sizes with respect to the size
of the system.

Limitations. In this simplified version, the algorithm has also two impor-
tant limitations. On one hand, if the desired group size does not exactly
divide the number of nodes in the system in such way ngroups is a power
of two, the algorithm does not stabilize. For instance, if in simulation of
Figure 5.2 the number of nodes was 10.240 plus one the system would not
stabilize completely. One group would detect an extra node in the system

1Code used for simulations is available at github.com/fmaia/dataflasks_sim
2Note that the protocol converges even with smaller message sizes however, considering

the system size, smaller messages lead to slow convergence.

github.com/fmaia/dataflasks_sim

66 5 Group Construction Protocol

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

P
e
rc

e
n

ta
g

e
 o

f
n
o

d
e

s
 i
n
 t

h
e

 w
ro

n
g

 g
ro

u
p

Cycles

Message size
20
30
40
50

100

Figure 5.2: Convergence of 10.240 nodes running the simplified version of
the group construction algorithm.

would not stabilize for any estimation of the number of groups. On the other
hand, nothing is said about how it deals with churn. These two simplifications
allow us to convey the main intuition behind the protocol in a straightfor-
ward way. Extensions to the basic protocol are proposed in Section 5.2 to
solve both limitations.

5.2 Extensions

So far, the presented algorithm applies to a hypothetical system absolutely
stable and with a round number of nodes. In practice however, the algorithm
most probably never stabilizes but instead adapts to the dynamics of the
membership. In this Section, we describe extensions to the algorithm of
Section 5.1 in order to overcome the limitations identified previously. The
first extension allows the protocol to support arbitrary system sizes. Next,
we describe how the protocol can be extended to be able to handle churn.

5.2 Extensions 67

input : min groupize, max groupsize, id

1 (...)

2 upon reception of m ← set of (id, pos) from PSS:
3 (...)

/* need to merge or split? */
4 if |locaview| < min groupsize then

/* Should Merge. */
5 if ngroups > 1 then
6 ngroups← ngroups/2

7 if |localview| > max groupsize then
/* Should Split. */

8 ngroups← ngroups ∗ 2

9 (...)

Algorithm 14: Extended group construction algorithm.

5.2.1 Handling arbitrary system sizes

As highlighted previously, the simplified algorithm presented in Section 5.1 is
very sensitive with respect to the defined group size. The algorithm stabilizes
if and only if there exists a power of two, ngroups, that exactly divides the
system size in groups of groupsize nodes. The fact is that aiming at an exact
group size (lines 8 to 12 in Algorithm 12) is restrictive. Moreover, for the
type of systems we are considering knowing the exact size of the system is
unfeasible. In order to tackle this limitation, we extend the algorithm in order
to allow the definition of minimum and maximum group size thresholds. This
simple enhancement allows the protocol to converge in real case scenarios.
Algorithm 14 depicts the changes needed to add this extension.

In order to validate that the proposed extension does not impair the
convergence of the protocol we conducted two simulations. In the first sim-
ulation, the conditions were similar to those of Section 5.1 for a system with
10,240 nodes and configured min groupsize = 5 and max groupsize = 15.
As can be observed in Figure 5.3 the protocol converges preserving the de-
sired behavior of the simplified version. Strikingly, the algorithm converges
even faster when configured with this extension. This is due to the fact
that splitting and merging decisions are delayed due to the threshold flexibil-
ity. Such delay allows the node to preserve more node references in its local
view per cycle. These references allow better splitting and merging decisions
speeding up the convergence process.

We then ran a second simulation. In this simulation we used the same
configurations of the previous one but, this time, for a system with 15,000

68 5 Group Construction Protocol

Figure 5.3: Simulation of the flexible group size mechanism with 10.240
nodes.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
e
rc

e
n
ta

g
e

 o
f
n

o
d

e
s
 i
n

 t
h

e
 w

ro
n

g
 g

ro
u
p

Cycles

Message size
20
30
40
50

100

nodes. As observable in Figure 5.4, the protocol still converges to the desired
configuration.

It is important to note that the maximum replication factor value must
be at least double of the minimum. As the number of groups is always a
power of two, choosing the replication thresholds this way avoids frontier
cases where the system may enter a cycle of consecutive merge and split
operations.

5.2.2 Handling churn

In order for the group construction algorithm to be useful it needs to be able
to handle system dynamics. Nodes that leave the system must be eventually
removed from every node’s view while nodes entering the system must be in-
corporated. As stated previously, the group construction algorithm assumes
the existence of a Peer Sampling Service. By design, the Peer Sampling
Service is able to handle system dynamics. Nodes that leave the system
are eventually removed from every sample the PSS delivers. Joining nodes,
eventually, are sampled with the same probability as any other node in the
system.

5.2 Extensions 69

Figure 5.4: Simulation of the flexible group size mechanism with 15.000
nodes.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
e
rc

e
n
ta

g
e

 o
f
n

o
d

e
s
 i
n

 t
h

e
 w

ro
n

g
 g

ro
u
p

Cycles

Message size
20
30
40
50

100

The problem of handling nodes joining the system is immediately solved.
New nodes are eventually sampled by the PSS and incorporated into the
group construction algorithm. However, as it is, the group construction al-
gorithm is unable to handle node departure. In fact, even if not subsequently
sampled by the PSS, departure nodes for which there is a reference stored
in a node view are never forgotten if they belong to the same group as the
node. This limitation can be overcome introducing an aging mechanism for
node references. Each node reference is now tagged with an age property.
When a node reference is delivered by the PSS it is tagged with age 0. Each
time a new PSS message is delivered, every node sees its age increased by 1.
With this extension, it is now possible to define a maximum age threshold
to allow node references to be forgotten when obsolete. Note that, if a node
leaves the system eventually ceases to be sampled by the PSS. Consequently,
every of its node references stored in any of the active nodes will inevitably
age beyond the age threshold and eventually be forgotten. As a result, the
protocol is now able to handle node departure.

Nevertheless, it is necessary to define an adequate maximum age thresh-
old. Intuitively, such threshold must be higher than the number of cycles
required to refresh a reference to a valid node. Note that, if this was not

70 5 Group Construction Protocol

the case, valid references would be continuously removed impairing the con-
vergence of the algorithm. In practice this means defining the age threshold
superior to the time the PSS needs to sample a certain node reference. Un-
fortunately, this is too slow. As the system size grows, the probability of a
certain node to be sampled by the PSS in each cycle decreases. Consequently,
the number of cycles needed to make sure a certain node is sampled becomes
unmanageably high.

In DataFlasks, we tackle this limitation by adding an active thread to
the group construction algorithm. Periodically, each node produces a node
reference to itself with age 0. It then sends such reference, alongside with
all the references in the local view, to all the nodes it estimates to be in the
same group. This simple mechanism, allows refreshing node references. Note
that, once a node has left the system, every reference to it that may exist
in the system will stop being refreshed. Eventually, it is removed from every
node’s local view as desirable. The active thread may be seen as an heart beat
mechanism. An important thing to notice is that, although this mechanism is
not required for convergence, it improves significantly the algorithm’s speed
of convergence. As nodes exchange references with nodes from the same
group periodically, nodes receive useful references without waiting for the
PSS to sample them all. Note that, as described in [Voulgaris and van Steen,
2013], the Peer Sampling Service randomness properties are essential but,
typically, not sufficient to achieve good convergence results.

Figure 5.5, depicts the results for a simulation of the group construction
algorithm with the all the extensions described so far. The simulation was
configured with 15,000 nodes, min groupsize = 5, max groupsize = 15 and
different view sizes. Additionally, the maximum age threshold was defined
to 30 and the active thread is launched every 15 cycles. As observable, the
algorithm still converges to the desired organization and is now much faster.

It remains to access the actual ability of the algorithm to reconfigure itself
when there is a massive departure or entrance of nodes. Note that, with the
extension considered for handling arbitrary system sizes, moderate system
dynamics are inherently handled. In order to force system reconfiguration
it is necessary that the number of nodes entering or leaving the system be
sufficient to force a split or merge operation respectively. In Figures 5.6(a)
and 5.6, we depict the results for two simulations. Figure 5.6(a) presents
the results for an experiment where 7,500 nodes are added to a stable system
of 7,500 nodes. Such membership change is made at cycle 500. The line in
the Figure represents the percentage of nodes with a wrong estimation for
the number of groups. Note that the expected estimation changes at cycle
500. In this case, the configuration dictates that initially the correct number
of groups is 512. With the addition of another 7,500 nodes, the number of

5.3 Discussion 71

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

P
e
rc

e
n

ta
g

e
 o

f
n
o

d
e

s
 i
n
 t

h
e

 w
ro

n
g

 g
ro

u
p

Cycles

Message size
20
30
40
50

100

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

Figure 5.5: Convergence of 15.000 nodes running the extended version of the
group construction algorithm.

groups is expected to be 1,024. Consequently, until cycle 500, the line depicts
the percentage of nodes that do not estimate the number of groups to be 512,
after such cycle it depicts the percentage of nodes that do not estimate it to
be 1,024. As it is observable, after the abrupt addition of nodes the algorithm
is able to converge to the new configuration.

In an analogous experiment, 50% of the nodes were removed from a 15,000
node stabilized system. The results are depicted in Figure 5.6. In this case,
until cycle 500 the plot depicts the percentage of nodes that have a number
of groups estimation different from the 1,024. After cycle 500, it depicts the
percentage of estimations that are not 512. In fact, the removal of 50% of the
system nodes forces the algorithm to perform a merge operation in order to
preserve the replication factor above the minimal threshold value. Similarly
to the previous experiment, the algorithm is able to converge as desired.

5.3 Discussion

In this chapter we presented a new algorithm for peer-to-peer group con-
struction. It is designed as an unstructured, proactive gossip-based protocol

72 5 Group Construction Protocol

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n
ta

g
e
 o

f
n

o
d

e
s
 i
n

 t
h

e
 w

ro
n

g
 g

ro
u

p

Cycles

(a) Simulation of 7,500 nodes. Number of nodes doubled at cycle 500.

solely based on a Peer Sampling Service. As a result it is inherently scalable
and resilient to system dynamism. We have shown that it is able to cope
with dramatic system failures and able to be deployed in several thousands
of nodes. Moreover, we provide a proof of convergence for the algorithm.

The design of the group construction algorithm is heavily influenced by
the fact it is used as a core component for DataFlasks. Namely, considering
a total number of groups to always be a power of 2 reduces data transfers
whenever there is a configuration change. Such choice renders the design ideal
in that context. However, the protocol is not dependent on DataFlasks.
It can be used separately as a building block for other applications and it is
a contribution in itself.

Finally, there are some considerations to be made regarding the protocol
assumptions. The first important assumption concerns the node position.
Each node must generate a position value in the interval]0, 1] uniformly at
random across the entire system. This position is used to balance nodes by
groups. Naturally, good load balancing is only expected with high probability
for a very large number of nodes. This must be taken into account when using
our protocol. The second important assumption is about churn and faults.
Churn and faults are also considered to be balanced across the entire system.
If for some reason, faults and churn are biased, for instance, to a specific

5.3 Discussion 73

Figure 5.6: Simulation of 15,000 nodes. At cycle 500, 7,500 nodes are re-
moved from the simulation.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

P
e
rc

e
n

ta
g

e
 o

f
n
o

d
e

s
 i
n
 t

h
e

 w
ro

n
g

 g
ro

u
p

Cycles

group of nodes the protocol may struggle to continue working properly. The
easiest way to think about this is considering a system were churn is as high
as 25%. If, for some reason, when 25% of the nodes are failing, an entire
group is among those 25% of nodes then data belonging to such group will
be lost. Even so, we believe that assuming churn and faults balanced across
the entire system to be reasonable.

74 5 Group Construction Protocol

Chapter 6

Proof of concept

Having described the design and architecture of DataFlasks and the pro-
tocols that support its implementation, we now focus on providing a proof
of concept for our system. To this end we implemented a complete Data-
Flasks prototype in Java. In this chapter we describe the implementation of
the DataFlasks prototype detailing the different components and present
an experiment that validates our approach.

6.1 DataFlasks Prototype

Our aim with system prototype was to offer the possibility of a real assess-
ment of the DataFlasks system, complementing simulation results. How-
ever, we do not have access to a sufficiently large number of machines allowing
us to run DataFlasks in the large scale environment it was designed for.
We opted by a compromise between a real deployment and a pure simulation
environment.

The Minha framework [Carvalho et al., 2011] provides Java developers
with the possibility of running several instances of their applications in a
single Java Virtual Machine. The framework is able to provide a simulated
environment and give applications the illusion of running in their own JVM
and machine. The code that runs on Minha is unmodified real, ready for
production deployment and that can be evaluated as if it was running on
thousands of machines.

We have implemented DataFlasks leveraging the Minha framework.
The DataFlasks prototype is open sourced and available at github.com/

fmaia/dataflasks. Its architecture follows the one depicted in Figure 6.1.

75

github.com/fmaia/dataflasks
github.com/fmaia/dataflasks

76 6 Proof of concept

DataFlasks
Prototype

Request Handler

Peer Sampling Service

Group
constructionStorage

Client API

Load Balancer

Dissemination Anti-Entropy

Figure 6.1: Dataflasks prototype overview architecture.

6.1 DataFlasks Prototype 77

Nodes communicate through UDP sockets and the current prototype as-
sumes that all nodes are in the same network and are able to contact each
other knowing only their IP addresses. Problems arising from removing this
assumption are out of the scope of the present dissertation. Next, we describe
the role of the prototype components and their implementation.

6.1.1 Node Communication

At the base of our prototype is the node communication component. In Fig-
ure 6.1, this component is represented by a gray area containing three other
sub-components: the Peer Sampling Service, the Dissemination component
and the Anti-entropy component.

Firstly, we have implemented a version of the Cyclon protocol [Voulgaris
et al., 2005a] that serves as our Peer Sampling Service. This service provides
each DataFlasks node with a continuous stream of random peers. It main-
tains the node’s view of the system and allows node discovery as described
in previous chapters. Our implementation of the Cyclon protocol includes a
boot component that initiates the Cyclon protocol. Even though this is a
simplification, it doesn’t affect the behavior of DataFlasks. It replaces the
node joining procedure described in [Voulgaris et al., 2005a] by providing an
initial random sets of peers to populate the node’s initial view.

For data dissemination, the current implementation of DataFlasks
leverages the Peer Sampling Service. Each request is disseminated in an
infect and die model [Eugster et al., 2004]. To this end, each node forwards
each request to the peers in their Cyclon view. The size of the view is consid-
ered to be large enough to provide good dissemination properties as described
in [Eugster et al., 2004]. Note that, requests are not required to reach all
nodes in the system. It is sufficient to ensure it reaches some nodes of each
group. Once a request reaches a node belonging to the group of interest, such
node disseminates it to the nodes in its group. This allows for optimizations,
some of them already implemented in our prototype.

Finally, in order to ensure data reaches all nodes that must replicate it,
DataFlasks uses an anti-entropy mechanism [Demers et al., 1987]. The
mechanism works by, periodically, have nodes contact another random node
in its group and exchange information about the data they are replicating. If
a node detects that it lacks some data, i.e., it detects it is not replicating cer-
tain (key,object) pairs, it asks other group nodes for them. This mechanism
allows nodes to periodically restore possibly missing data items. Moreover,
it ensures that node entering the system are automatically integrated. In de-
tail, when a node enters the system starts its own anti-entropy mechanism.
At that time, its local storage is still empty thus the first anti-entropy cycles

78 6 Proof of concept

allow the node to quickly receive the data it is responsible for storing.

6.1.2 Client Interface and Load Balancing

DataFlasks offers a client interface package, which abstracts all interac-
tions with the data store. This package offers put and get methods to the
client application. By design, DataFlasks supports multiple versions for
the same object. However, as it does not enforce consistency of write oper-
ations, the pair (key,version) is considered unique. Consequently, the client
interface generates a unique key per data object obtained by concatenating
the pair (key,version) and encoding it in an unique long value. Data objects
are arrays of bytes and the application is responsible for encoding its data
appropriately. Consequently, a put operation receives as input the object key
and an object and a get operation returns an object correspondent to a key
given as input.

The client interface package has one important configuration parameter.
When the client application issues a request it can define the number of replies
to wait for. Recall that in DataFlasks requests are disseminated through
the system and several nodes will answer them. Specially for write operations,
it is useful to wait for a specific number of nodes to reply. This way, the
client application can define a number of replicas of the object it believes
are sufficient to ensure data persistence. In fact, even though with very high
probability requests will arrive to all the other node replicas, waiting for a
certain number of answers increases client trust in the persistence of data.

Another important aspect of the client interface package is node discov-
ery. In DataFlasks, any node may receive requests but the client interface
package must be able to discover them in order to issue data requests. This
functionality is provided by a Load Balancer component. Similarly to the
Peer Sampling Service boot mechanism described previously, in the current
implementation, the load balancer is implemented artificially leveraging the
Minha platform. In a real deployment, the load balancer should behave as
an observer of the Peer Sampling Service, which provides a node discovery
mechanism. Moreover, the current implementation of the load balancer pro-
vides random node samples from the entire system for each request. This is
sufficient for our proof of concept but clearly yields suboptimal performance.
Many optimizations are possible. The most simple one would be caching.
Once a node has satisfied a request for a certain key, i.e. it belongs to a
certain group, it may be stored with such information. Subsequent requests
can then be judiciously routed to appropriate nodes significantly improving
performance.

For our experiments, we implemented a YCSB [Cooper et al., 2010] bind-

6.1 DataFlasks Prototype 79

ing for DataFlasks. Our binding supports get and put operations. Even
though YCSB supports update and delete operations, these are not cur-
rently supported by DataFlasks. Once DataFlasks does not enforce
data consistency, it is not possible to implement the update operation with
well-defined semantics. Instead, in order to update a data object, the client
application should issue a put operation with a new version for such object.
On the other hand, the delete operation can be implemented in DataFlasks
in a similar way to the put operation. Additionally, the client interface pack-
age was implemented with support for multi-threaded client applications. As
a consequence, YCSB can be run in multi-threaded mode.

6.1.3 Group Construction

The group construction component includes the algorithm described in Chap-
ter 5 with all the extensions of Section 5.2. The Cyclon implementation was
enhanced to allow the propagation of node’s position alongside the node’s
identification. This way, each time the Peer Sampling Service component
receives peer references, not only processes them but also delivers them to
the group construction component. At the reception of peer references, the
group construction algorithm progresses as described in Chapter 5.

This component continuously exports its estimation of the number of
groups in the system and the group to which the node belongs to. This
information is used by the storage component in the decisions of storing or
discarding data as described previously.

6.1.4 Storage

The storage component is currently an in-memory store. Our prototype
is modular and the store can be replaced with a disk based one, however,
because in our evaluation we consider that when a node fails all data is lost,
an in-memory store is adequate for our evaluation purposes. The storage
offers, internally, the same write and read operations as the system as a
whole. When a read operation is issued the storage checks if it holds the
data corresponding to the requested key. If that is the case, it replies with
the data object. Otherwise, it replies with an empty object. For the write
operation, the storage component asks for the group the node belongs and
decides if it is responsible for the data object being written or not (recall
Algorithm 11). It replies with a boolean object saying if it has stored or not
the object.

80 6 Proof of concept

6.1.5 Request Handler

The request handler is implemented as a typical multi-threaded server. Each
request is handled by thread and this thread leads the request through the
steps necessary to process it. Two main operations are implemented: the get
operation and the put operation. Algorithm 15 presents their pseudo-code.

1 upon reception of r ← request from cli ← sender:
Data: rlog ← []/* Read request log. */
Data: wlog ← []/* Write request log. */
Data: op← r.type

2 if op is get then
Data: key ← r.key
Data: requestID ← r.id

3 if requestID in rlog then
/* Ignore operation because it was seen previously. */

4 else
5 rlog.add(requestID)/* Mark as seen. */

Data: data← storage.get(key)
6 if data then

/* Locally available. */
7 replyToClient(cli, data)

8 else
9 forwardRequest(r)

10 else if op is put then
Data: key ← r.key
Data: object← r.object

11 if key in wlog then
/* Ignore operation because it was seen previously. */

12 else
13 wlog.add(key)/* Mark key as seen. */
14 stored← storage.put(key, object)
15 if stored then
16 replyToClient(cli)

17 forwardRequest(r)

Algorithm 15: Pseudo-code for the Request Handler component.

There are a few things to notice in the processing of these operations.
Firstly, read operations need a mechanism to detect duplicate requests. Since
requests are being disseminated in an epidemic way, they can arrive at each
node more than once. If these duplicates are not detected, nodes will contin-
uously forward them and they will never stop being in transit in the system.
This is achieved by uniquely identifying read requests. In our prototype,

6.2 Experiments 81

client applications are also given a unique id, similar to the one given to
DataFlasks nodes. With this identification and a request counter main-
tained by the client interface component, requests are tagged with a request
id. In Algorithm 15, this mechanism is described with the use of a read log
(rlog). Upon reception of a read request, its id is compared against the infor-
mation in the log in order to detect if it was already processed (lines 3 and
5). In that case the request is ignored.

A similar mechanism exists for write requests using a write log (wlog)
(lines 10 and 12). However, for write requests there is no need for a unique
request id as the request key is sufficient to detect possible duplicates. In
fact, while a read request may be issued several times for the same key,
a put request is always the same for a certain key. This is true because
DataFlasks assumes that write consistency is, currently, the responsibility
of the client application.

Secondly, the mechanism for request forwarding (lines 8 and 16) can be
also improved. In the default configuration, requests are disseminated using
the Peer Sampling Service view, which is a random set of other nodes in
the system. However, if the node detects that the request is aimed at his
own group it can leverage the information it has about his group peers and
forward the request to them directly. This mechanism reduces system load
and accelerates the request processing and it is implemented in our prototype.

Finally, the ReplyToClient operation (lines 7 and 15) is responsible for re-
plying to the client application when the operation succeeded at a node. For
the read operation it replies with the requested data while, for the write oper-
ation, simply confirms that the data was stored in that node. An important
implementation detail concerns a parameter that can define a probability of
actually replying to the client. In the normal setting, every node that can
satisfy the request replies to the client. When DataFlasks groups grow in
size, several answers are sent to the client, which can unnecessarily overload
it. In order to tackle this problem, in our implementation, it is possible to
define a probability of answering to the client smaller than one. When set
to 0.7 for example, allows that only 70% of the group nodes actually issue
answers. This mechanism leverages the assumption that nodes have access
to a random number generator thus this choice can be performed locally.

6.2 Experiments

Having described our DataFlasks prototype, we present a set of experi-
ments to validate persistence guarantees of our system. The goal of Data-
Flasks was to be highly scalable and resilient under high levels of churn.

82 6 Proof of concept

We focus on these goals and leave performance evaluation out of the scope of
the present work. We used a machine with an AMD Opteron 6172 (24 core at
2.1GHz) and 128GB of memory. Leveraging Minha, we are able to evaluate
DataFlasks in a large scale environment while, at the same time, provide
a Java prototype that is actually ready for deployment in a real scenario.

In our experiments we ran 1000 nodes and populated DataFlasks with
200.000 data objects. We configured the Peer Sampling Service to exchange
messages every 2 seconds and the active group construction mechanism (see
Section 5.2.2) every 15 seconds. Additionally, the anti-entropy mechanism
was configured to run at intervals of 30 seconds.

 0

 5

 10

 15

 20

 25

 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

re
p
lic

a
s

Time (s)

1% of churn
10% of churn
15% of churn
20% of churn
25% of churn

Figure 6.2: DataFlasks behavior for different levels of churn.

We subjected the system to different levels of churn and recorded the
number of replicas per key each 10 seconds. Churn is implemented by re-
moving a node and adding a fresh one preserving the position distribution
of the nodes removed. We assume that churn is uniform across the entire
system, which in a very large scale scenario means that nodes leaving and
entering are uniformly distributed by all groups. Consequently, in our exper-
iments, subjecting the system to 10% of churn means subjecting each group
to 10% of churn. Moreover, churn is applied each 60 seconds for 5 minutes.
The results of the experiments are depicted in Figure 6.2.

As it is observable, during the churn phase (between cycles 300 and 600),

6.3 Discussion 83

the average number of replicas is not constant as it is impaired by the de-
parture of nodes. However, DataFlasks is able to repair the number of
replicas even for churn as high as 25%. In all the experiments no data was
lost by DataFlasks.

6.3 Discussion

We have shown that DataFlasks design achieves the goals initially set.
DataFlasks has an elegant design that effortlessly scales being able to be
deployed in large scale scenarios. Moreover, it is able to handle high levels
of node churn.

In order to better assess DataFlasks, we wanted to compare its be-
havior with that of an existing system. However, this was not possible.
Notably, it was not possible to compare with existing data stores such as
Cassandra [Lakshman and Malik, 2010] or similar systems as the use of ’one-
hop’ DHT is not possible with our assumption that no node can know ev-
ery other node in the system. Following this observation, we thought of
comparing directly the behavior of the core of DataFlasks with an exist-
ing implementation of a ’multi-hop’ DHT system, which are at the core of
systems such as PAST [Druschel and Rowstron, 2001] or OceanStore [Ku-
biatowicz et al., 2000]. Accordingly, we tried to run an experiment with
OpenChord (http://sourceforge.net/projects/open-chord/), the most
up-to-date Java implementation of the Chord protocol we found. However,
in our experiments, both in a real deployment and in Minha, a simple se-
quence of single node departures and joins lead to system deadlocks. The
rigid lookup structure of Chord seems to effectively impair its capacity to
handle churn. As a consequence, we searched for an implementation of the
Kademlia protocol, which is known to be able to handle high amounts of
churn [Wang and Kangasharju, 2013] and would be more adequate for a
behavior comparison. Moreover, some of the characteristics of Kademlia’s
design resemble that of DataFlasks’. In particular, Kademlia buckets can
be seen as DataFlasks groups and both systems assume that nodes have
access to a uniformly distributed value. The two approaches differ in how
node discovery is achieved, in how data replication is maintained and in the
overlay used for information lookup. We found two candidate implemen-
tations: OpenKad (https://code.google.com/p/openkad/source/list)
and TomP2P (http://tomp2p.net). Unfortunately, OpenKad only imple-
ments DHT lookup and message passing operations and could not be used
to compare data persistence under churn. TomP2P on the other hand is a
mature peer-to-peer framework and implements a panoply of peer-to-peer

http://sourceforge.net/projects/open-chord/
https://code.google.com/p/openkad/source/list
http://tomp2p.net

84 6 Proof of concept

mechanisms. Because this framework is so complex we were not able to
run it in the Minha framework in a timely fashion. At a scale similar to the
one used in DataFlasks experiments, the simulation became impracticably
slow.

Finally, we left performance evaluation out of the scope of the present
work. Our focus was on how DataFlasks handles high dynamism and an
adequate performance evaluation requires maturation of some DataFlasks
components that were not the focus of the dissertation. In particular, a
comprehensive study of the more adequate epidemic dissemination protocol
for DataFlasks is necessary as well as a careful design and implementa-
tion of the DataFlasks Load Balancer component. Even so, DataFlasks
successfully achieved our scalability and resilience goals and proved to be
suitable to environments with very high levels of churn.

Chapter 7

Conclusion

With the ever-increasing number of connected devices and the ubiquity of
the Internet, systems composed of several thousand of peers are becoming
a commonplace. Taking advantage of all these devices and having them
cooperating to provide the next generation of services and applications de-
mands distributed protocols able to handle unprecedentedly challenging en-
vironments. Along this dissertation work we looked at one of the pivotal
challenges of very large scale systems: dynamism. We believe that designing
distributed systems able to cope with constant churn and failures is the only
way to guarantee that we are going to be able to address the challenges of
future information systems.

We have striven for the design of a new generation of data management
systems. Designed from the ground up to be able to deal with an expo-
nentially increasing volume of data as well as an unprecedented dynamic
environment. The presented data store, DataFlasks, can be easily scaled
to several thousands of nodes. It was designed to be completely decentral-
ized and to be equipped with mechanisms that are able to overcome high
and constant membership dynamism due to churn or failures.

The work on DataFlasks resulted in the proposal of two novel epi-
demic protocols aimed at dividing an arbitrary large system into groups.
Both protocols were also designed for large scale environments and, individ-
ually, also exhibit the desirable scalability and resilience characteristics of
DataFlasks. They were carefully evaluated and not only serve as a key
component in the architecture of DataFlasks but also as an independent
and general purpose building block for other applications. In particular, in
mobile environments or in Internet-scale systems it is of vital importance
to be able to organize nodes even when they are continuously entering or
leaving the system. We believe that DataFlasks and the proposed pro-
tocols are part of a new generation of large scale systems that pro-actively

85

86 7 Conclusion

repair themselves and are able to autonomously adapt themselves to dynamic
environments.

In this dissertation we also presented a proof of concept of DataFlasks.
We focused on how DataFlasks was able to handle high dynamism and
left performance concerns out of the scope of the present work.

Following the work on DataFlasks, some interesting research paths were
identified. We focus on two. Firstly, DataFlasks leaves data consistency
concerns to the client application. While a compromise between data con-
sistency and effective dynamism handling must always be made, we believe
that DataFlasks design paves the way for a useful coexistence of different
compromise levels. In previous work [Maia et al., 2011; Pereira and Oliveira,
2004], we showed that it is possible to use epidemic style communication
patterns to achieve coordination between hundreds of nodes spread around
the world. Leveraging such work and integrating it with DataFlasks can
lead to new and practical data consistency levels. Moreover, we believe it
is possible to adapt the protocol proposed in [Pereira and Oliveira, 2004]
and take its epidemic-style design influence a step further. In particular, in-
vestigate if it is possible to relax the guarantees offered by the protocol, still
offering a level of guarantees easily understandable and usable by application
developers and, at the same time, offer the dynamism handling of epidemic
protocols. Secondly, from the perspective of the group construction algo-
rithm of DataFlasks we plan on investigate if the assumption that nodes
are uniformly distributed can be relaxed while still achieve autonomous and
completely distributed behavior. This assumption eases the process of node-
local, independent decisions because it is, in fact, implicit knowledge. It is
important to investigate if this assumption can be relaxed or it is actually
mandatory to achieve DataFlasks-type behavior.

Bibliography

Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.
Scalable bloom filters. Information Processing Letters, 101(6):255–261,
2007. (Cited on page 39.)

David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@ home: an experiment in public-resource computing.
Communications of the ACM, 45(11):56–61, 2002. (Cited on page 13.)

Norman TJ Bailey et al. The mathematical theory of infectious diseases and
its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High
Wycombe, Bucks HP13 6LE., 1975. (Cited on page 14.)

Ranjita Bhagwan, Stefan Savage, and Geoffrey M Voelker. Understanding
availability. International Workshop on Peer-to-Peer Systems, pages 256–
267, 2003. (Cited on page 24.)

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970. (Cited on pages 26,
37, 38, 39, 40, 47, and 49.)

Nuno Carvalho, Jose Pereira, Rui Oliveira, and Luis Rodrigues. Emergent
structure in unstructured epidemic multicast. 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 481–490, 2007. (Cited on page 54.)

Nuno A. Carvalho, João Bordalo, Filipe Campos, and José Pereira. Experi-
mental evaluation of distributed middleware with a virtualized java envi-
ronment. In Proceedings of the 6th Workshop on Middleware for Service
Oriented Computing. ACM, 2011. (Cited on page 75.)

Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made
live: an engineering perspective. Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing, pages 398–407,
2007. (Cited on page 24.)

87

88 Bibliography

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E
Gruber. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008. (Cited on
pages 1, 2, 11, and 12.)

Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making gnutella-like p2p systems scalable. Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 407–418, 2003. doi:
10.1145/863955.864000. URL http://doi.acm.org/10.1145/863955.

864000. (Cited on page 13.)

Kai Cheng, Limin Xiang, and Mizuho Iwaihara. Time-decaying bloom filters
for data streams with skewed distributions. 15th International Workshop
on Research Issues in Data Engineering: Stream Data Mining and Appli-
cations (RIDE-SDMA), pages 63–69, 2005. (Cited on page 49.)

Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet:
A distributed anonymous information storage and retrieval system. De-
signing Privacy Enhancing Technologies, pages 46–66, 2001. (Cited on
page 13.)

E. F. Codd. Relational database: A practical foundation for productivity.
Commun. ACM, 25(2):109–117, February 1982. ISSN 0001-0782. doi:
10.1145/358396.358400. URL http://doi.acm.org/10.1145/358396.

358400. (Cited on page 10.)

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-
marking cloud serving systems with YCSB. In Proceedings of the 1st ACM
symposium on Cloud Computing. ACM, 2010. (Cited on page 78.)

Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008. (Cited on
pages 2, 11, 12, and 13.)

Jeff Dean. Designs, lessons and advice from building large distributed sys-
tems. Keynote from LADIS, 2009. (Cited on page 1.)

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

http://doi.acm.org/10.1145/863955.864000
http://doi.acm.org/10.1145/863955.864000
http://doi.acm.org/10.1145/358396.358400
http://doi.acm.org/10.1145/358396.358400

Bibliography 89

Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available
key-value store. ACM SIGOPS Operating Systems Review, 41(6):205–220,
2007. (Cited on pages 2, 3, 11, 13, and 24.)

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algo-
rithms for replicated database maintenance. Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, pages 1–12, 1987.
(Cited on pages 14, 21, and 77.)

P. Druschel and A. Rowstron. Past: a large-scale, persistent peer-to-peer
storage utility. Proceedings of the Eighth Workshop on Hot Topics in Op-
erating Systems, 2001. (Cited on pages 11 and 83.)

P Erdős and A Rényi. On the evolution of random graphs. Selected Papers
of Alfréd Rényi, vol, 2:482–525, 1976. (Cited on page 16.)

P Th Eugster, Rachid Guerraoui, Sidath B Handurukande, Petr Kouznetsov,
and A-M Kermarrec. Lightweight probabilistic broadcast. ACM Trans-
actions on Computer Systems (TOCS), 21(4):341–374, 2003. (Cited on
pages 15, 21, and 27.)

P.T. Eugster, R. Guerraoui, A.M. Kermarrec, and L. Massoulié. From epi-
demics to distributed computing. Computer, 2004. (Cited on pages 15, 21,
65, and 77.)

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking (TON), 8(3):281–293, 2000. (Cited on pages 48 and 49.)

Pascal Felber, Anne-Marie Kermarrec, Lorenzo Leonini, Etienne Rivière, and
Spyros Voulgaris. Pulp: An adaptive gossip-based dissemination protocol
for multi-source message streams. In Peer-to-Peer Networking and Appli-
cations. Springer US, 2012. (Cited on page 21.)

Antonio Fernández, Vincent Gramoli, Ernesto Jiménez, A-M Kermarrec, and
M Rayna. Distributed slicing in dynamic systems. 27th International Con-
ference on Distributed Computing Systems (ICDCS), pages 66–66, 2007.
(Cited on pages xv, 14, 16, 21, 23, 25, 26, 27, 28, 34, 42, 44, 45, and 54.)

Ayalvadi J Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Scamp:
Peer-to-peer lightweight membership service for large-scale group commu-
nication. International COST264 Workshop on Networked Group Com-
munication, pages 44–55, 2001. (Cited on pages 14 and 23.)

90 Bibliography

John Gantz and David Reinsel. Extracting value from chaos. IDC iview,
pages 1–12, 2011. (Cited on page 1.)

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News,
33(2):51–59, 2002. (Cited on pages 2 and 11.)

Vincent Gramoli, Ymir Vigfusson, Ken Birman, Anne-Marie Kermarrec, and
Robbert van Renesse. A fast distributed slicing algorithm. Proceedings of
the twenty-seventh ACM symposium on Principles of distributed comput-
ing, pages 427–427, 2008. (Cited on pages xv, 14, 16, 24, 25, 26, 27, 29,
34, 42, 44, 45, and 54.)

Vincent Gramoli, Ymir Vigfusson, Ken Birman, A-M Kermarrec, and Rob-
bert Van Renesse. Slicing distributed systems. IEEE Transactions on
Computers, 58(11):1444–1455, 2009. (Cited on pages 21, 23, 25, 26, 27,
30, 44, and 45.)

Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of
replication and a solution. ACM SIGMOD Record, 25(2):173–182, 1996.
(Cited on pages 2 and 11.)

R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn Communication Chan-
nels. Technical report, EPFL, 1998. (Cited on page 61.)

Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study of the
skype peer-to-peer voip system. Proceedings of The 5th International
Workshop on Peer-to-Peer Systems (IPTPS), pages 1 – 6, February 2006.
(Cited on page 24.)

Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient routing for
peer-to-peer overlays. NSDI, 2004. (Cited on page 13.)

Richard Guy, Peter Reiher, D Rather, Michial Gunter, Wilkie Ma, and Ger-
ald Popek. Rumor: Mobile data access through optimistic peer-to-peer
replication. Lecture notes in computer science, pages 254–265, 1999. (Cited
on page 10.)

Richard G Guy, John S Heidemann, Wai-Kei Mak, Thomas W Page Jr,
Gerald J Popek, Dieter Rothmeier, et al. Implementation of the ficus
replicated file system. Summer, pages 63–72, 1990. (Cited on page 10.)

Xiaojun Hei, Chao Liang, Jian Liang, Yong Liu, and Keith W Ross. A
measurement study of a large-scale p2p iptv system. IEEE Transactions
on Multimedia, 9(8):1672–1687, 2007. (Cited on page 24.)

Bibliography 91

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.
The evolution of lua. Proceedings of the third ACM SIGPLAN conference
on History of programming languages, pages 2–1, 2007. (Cited on page 51.)

Mark Jelasity and A-M Kermarrec. Ordered slicing of very large-scale overlay
networks. Sixth IEEE International Conference on Peer-to-Peer Comput-
ing (P2P), pages 117–124, 2006. (Cited on pages 51, 54, and 56.)

Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten
Van Steen. The peer sampling service: Experimental evaluation of un-
structured gossip-based implementations. Proceedings of the 5th ACM/I-
FIP/USENIX international conference on Middleware, pages 79–98, 2004.
(Cited on page 60.)

Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec,
and Maarten Van Steen. Gossip-based peer sampling. ACM Transactions
on Computer Systems (TOCS), 25(3):8, 2007. (Cited on pages 20, 25, 26,
27, 30, 42, and 60.)

Paulo Jesus, Carlos Baquero, and Paulo Sergio Almeida. Fault-tolerant ag-
gregation for dynamic networks. 29th IEEE Symposium on Reliable Dis-
tributed Systems, pages 37–43, 2010. (Cited on pages 14 and 24.)

Anne-Marie Kermarrec and Maarten Van Steen. Gossiping in distributed
systems. In ACM SIGOPS Operating Systems Review. ACM, 2007. (Cited
on page 21.)

Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Proba-
bilistic reliable dissemination in large-scale systems. In IEEE Transactions
on Parallel Distributed Systems. IEEE, 2003. (Cited on page 21.)

Rusty Klophaus. Riak core: building distributed applications without shared
state. In ACM SIGPLAN Commercial Users of Functional Programming,
page 14. ACM, 2010. (Cited on page 11.)

Jeff Kramer. Is abstraction the key to computing? Communications of the
ACM, 50(4):36–42, 2007. (Cited on page 1.)

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An
architecture for global-scale persistent storage. SIGPLAN Notices, 2000.
(Cited on pages 12 and 83.)

92 Bibliography

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review, 44(2):
35–40, 2010. (Cited on pages 2, 3, 11, 13, 24, and 83.)

Neal Leavitt. Will nosql databases live up to their promise? Computer, 43
(2):12–14, 2010. (Cited on pages 2 and 12.)

Lorenzo Leonini, Étienne Rivière, and Pascal Felber. Splay: Distributed
systems evaluation made simple (or how to turn ideas into live systems in
a breeze). 9:185–198, 2009. (Cited on page 51.)

Yi Lin, Bettina Kemme, Marta Patiño-Mart́ınez, and Ricardo Jiménez-Peris.
Middleware based data replication providing snapshot isolation. Proceed-
ings of the 2005 ACM SIGMOD international conference on Management
of data, pages 419–430, 2005. (Cited on pages 2 and 11.)

F. Maia, M. Matos, E. Rivière, and R. Oliveira. Slicing as a distributed
systems primitive. 6th Latin-American Symposium on Dependable Com-
puting, 2013a. (Cited on page 14.)

Francisco Maia, Miguel Matos, José Pereira, and Rui Oliveira. Worldwide
consensus. Distributed Applications and Interoperable Systems, pages 257–
269, 2011. (Cited on pages 14, 24, and 86.)

Francisco Maia, Miguel Matos, Etienne Rivière, and Rui Oliveira. Slead:
low-memory, steady distributed systems slicing. Distributed Applications
and Interoperable Systems, pages 1–15, 2012. (Cited on pages 14, 42, 44,
46, 47, 49, 54, and 56.)

Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira,
and Etienne Rivière. Dataflasks: An epidemic dependable key-value sub-
strate. In the International Workshop on Dependability of Clouds, Data
Cen- ters and Virtual Computing Environments - Dependable Systems and
Networks Workshops, (DSN-W), 2013b. (Cited on page 23.)

Francesco Marchioni. Infinispan Data Grid Platform. Packt Publishing Ltd,
2012. (Cited on page 11.)

Miguel Matos, Valerio Schiavoni, Etienne Rivière, Pascal Felber, and Rui
Oliveira. Laystream: composing standard gossip protocols for live video
streaming. The International Conference on Peer-to-Peer Computing,
2014. (Cited on page 14.)

Bibliography 93

Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. Peer-to-Peer Systems, 2002. (Cited
on page 14.)

Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator.
IEEE Ninth International Conference on Peer-to-Peer Computing (P2P),
pages 99–100, 2009. (Cited on page 30.)

Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Decentralized rank-
ing in large-scale overlay networks. Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pages
208–213, 2008. (Cited on pages 21 and 23.)

Napster. www.napster.com. (Cited on page 13.)

Mathieu Pasquet, Francisco Maia, Etienne Rivière, and Valerio Schiavoni.
Autonomous multi-dimensional slicing for large-scale distributed systems.
Distributed Applications and Interoperable Systems, pages 141–155, 2014.
(Cited on page 57.)

J Pereira and R Oliveira. The mutable consensus protocol. Proceedings of
the 23rd IEEE International Symposium on Reliable Distributed Systems,
2004. (Cited on page 86.)

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Com-
put. Commun. Rev., 31(4):161–172, August 2001. ISSN 0146-4833. doi:
10.1145/964723.383072. URL http://doi.acm.org/10.1145/964723.

383072. (Cited on page 13.)

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling
churn in a dht. Proceedings of the USENIX Annual Technical Conference,
pages 127–140, 2004. (Cited on pages 3, 13, and 19.)

Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. Pro-
ceedings of the First International Conference on Peer-to-Peer Computing,
pages 99–100, 2001. (Cited on page 13.)

Etienne Rivière and Spyros Voulgaris. Gossip-based networking for internet-
scale distributed systems. E-Technologies: Transformation in a Connected
World, Lecture Notes in Business Information Processing, 78:253–284,
2011. (Cited on pages 14 and 23.)

http://doi.acm.org/10.1145/964723.383072
http://doi.acm.org/10.1145/964723.383072

94 Bibliography

Étienne Rivière, Roberto Baldoni, Harry Li, and José Pereira. Compositional
gossip: a conceptual architecture for designing gossip-based applications.
ACM SIGOPS Operating Systems Review, 41(5):43–50, 2007. (Cited on
page 42.)

Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Proceed-
ings of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, 2001. (Cited on pages 12 and 13.)

Hans Sagan. Space-filling curves. Springer-Verlag New York, 1994. (Cited
on page 57.)

Stefan Saroiu, P Krishna Gummadi, and Steven D Gribble. Measurement
study of peer-to-peer file sharing systems. Multimedia Computing and
Networking (MMCN), 2002. (Cited on page 24.)

Mahadev Satyanarayanan. Scalable, secure, and highly available distributed
file access. Computer, 23(5):9–18, 1990a. (Cited on page 10.)

Mahadev Satyanarayanan. A survey of distributed file systems. Annual
Review of Computer Science, 4(1):73–104, 1990b. (Cited on page 9.)

Bianca Schroeder and Garth A Gibson. Disk failures in the real world:
What does an mttf of 1, 000, 000 hours mean to you? Proceedings of the
5th USENIX Conference on File and Storage Technologies, 7:1–16, 2007.
(Cited on page 2.)

Bianca Schroeder and Garth A Gibson. A large-scale study of failures in
high-performance computing systems. IEEE Transactions on Dependable
and Secure Computing, 7(4):337–350, 2010. (Cited on page 2.)

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors
in the wild: a large-scale field study. ACM SIGMETRICS Performance
Evaluation Review, 37(1):193–204, 2009. (Cited on page 2.)

Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-
to-peer lookup protocol for internet applications. Networking, IEEE/ACM
Transactions on, 11(1):17–32, 2003. (Cited on pages 3, 12, and 13.)

Herb Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s journal, 30(3):202–210, 2005. (Cited on page 1.)

Bibliography 95

Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J
Spreitzer, and Carl H Hauser. Managing update conflicts in bayou, a
weakly connected replicated storage system. SIGOPS, 29(5), 1995. (Cited
on page 10.)

Ricardo Vilaça, Francisco Cruz, and Rui Oliveira. On the expressiveness and
trade-offs of large scale tuple stores. On the Move to Meaningful Internet
Systems, OTM 2010, pages 727–744, 2010. (Cited on pages 12 and 13.)

Ricardo Vilaça, Rui Oliveira, and Jose Pereira. A correlation-aware data
placement strategy for key-value stores. Distributed Applications and In-
teroperable Systems, pages 214–227, 2011. (Cited on page 57.)

Spyros Voulgaris and Maarten Steen. Epidemic-style management of se-
mantic overlays for content-based searching. Proceedings of the 11th in-
ternational Euro-Par conference on Parallel Processing, 2005. (Cited on
page 15.)

Spyros Voulgaris and Maarten van Steen. Vicinity: A pinch of random-
ness brings out the structure. Middleware, pages 21–40, 2013. (Cited on
pages 15 and 70.)

Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. Cyclon: Inex-
pensive membership management for unstructured p2p overlays. Journal
of Network and Systems Management, 13(2):197–217, 2005a. (Cited on
pages 14, 15, 23, 30, 43, 54, 60, and 77.)

Spyros Voulgaris, Márk Jelasity, and Maarten Van Steen. A robust and scal-
able peer-to-peer gossiping protocol. Agents and Peer-to-Peer Computing,
pages 47–58, 2005b. (Cited on pages 15 and 60.)

Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. mtreebone: A collab-
orative tree-mesh overlay network for multicast video streaming. IEEE
Transactions on Parallel and Distributed Systems, 21(3):379–392, 2010.
(Cited on pages 23 and 24.)

Liang Wang and Jussi Kangasharju. Measuring large-scale distributed sys-
tems: case of bittorrent mainline dht. IEEE Thirteenth International Con-
ference on Peer-to-Peer Computing, pages 1–10, 2013. (Cited on pages 14
and 83.)

MyungKeun Yoon. Aging bloom filter with two active buffers for dynamic
sets. Knowledge and Data Engineering, IEEE Transactions on, 22(1):134–
138, 2010. (Cited on pages 40, 41, 47, and 48.)

96 Bibliography

B. Y. Zhao, Ling Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deploy-
ment. Journal on Selected Areas in Communications, 2006. (Cited on
pages 12 and 13.)

	Contents
	List of Figures
	List of Algorithms
	Introduction
	Problem Statement and Objectives
	Contributions
	Results
	Outline

	Background
	Distributed data storage
	Data management systems
	Peer-to-peer systems
	Epidemic protocols

	DataFlasks: design and architecture
	Design
	Model
	Architecture and Implementation
	Discussion

	Slicing for Data Distribution and Replication
	Introduction
	Analysis of state-of-the-art protocols
	Slead
	Steadiness
	Memory usage
	Dynamics

	Slicing as a distributed systems primitive
	Slicing Framework
	Extending Slicing

	Discussion

	Group Construction Protocol
	The basic protocol
	Extensions
	Handling arbitrary system sizes
	Handling churn

	Discussion

	Proof of concept
	DataFlasks Prototype
	Node Communication
	Client Interface and Load Balancing
	Group Construction
	Storage
	Request Handler

	Experiments
	Discussion

	Conclusion
	Bibliography

