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ABSTRACT
Massive scale data stores, which exhibit highly desirable
scalability and availability properties are becoming pivotal
systems in nowadays infrastructures. Scalability achieved by
these data stores is anchored on data independence; there
is no clear relationship between data, and atomic inter-node
operations are not a concern. Such assumption over data
allows aggressive data partitioning. In particular, data ta-
bles are horizontally partitioned and spread across nodes for
load balancing. However, in current versions of these data
stores, partitioning is either a manual process or automated
but simply based on table size. We argue that size based
partitioning does not lead to acceptable load balancing as it
ignores data access patterns, namely data hotspots. More-
over, manual data partitioning is cumbersome and typically
infeasible in large scale scenarios. In this paper we propose
an automated table splitting mechanism that takes into ac-
count the system workload. We evaluate such mechanism
showing that it simple, non-intrusive and effective.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms
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1. INTRODUCTION
One of the outstanding challenges of large scale web sys-

tems is data management. In fact, some of the most popular
internet services (Facebook, Flickr, Twitter) face the need
to handle massive amounts of data. In order to cope with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24–28, 2014, Gyeongju, Korea
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

large scale data management, a new class of data manage-
ment systems surfaced. These systems, commonly known as
NoSQL data stores, are characterized by their high scalabil-
ity and high availability properties. These desirable prop-
erties stem from a new approach to data management. In
contrast with traditional relational databases, NoSQL data
stores do not offer atomic multi-item operations and there
is no clear relationship between data from different enti-
ties. These assumptions allow NoSQL data stores to avoid
the need for inter-node operations and hardly any kind of
synchronization mechanisms. This comes at the expense of
a richer, more powerful, query language (SQL). In fact, a
typical NoSQL data store provides a simple put and get in-
terface, and the computation of more complex operations
(e.g. join operations) is executed at the client side. Even
though new massive scale data stores provide a simpler API
and require extra work at the client side for certain opera-
tions, they are well suited for a large class of applications. In
particular, it is possible to take advantage of the lack of re-
lationship between data entities to scale the system through
data partitioning and load balancing.

In the usual case [9, 14, 4, 8, 3], data is organized into
tables. These tables are horizontally partitioned into groups
of tuples, which we will call regions from now on. Regions
are spread across the cluster nodes in order to balance the
load.

In current systems [9, 3], region split is automatically trig-
gered whenever it reaches a certain threshold in size. When
the decision to split is made, the data store will split it into
two regions of roughly the same size. Note that, following
this approach, regions are always split in half independently
of their data access patterns as if assuming a near uniform
data access pattern.

As an alternative, the splitting procedure can also be done
manually. By manual we mean that it requires a human
manually choosing splitting points. Such approach allows
for fine tuning and optimal load balancing. However, in
the typical case, this is unfeasible. In fact, the user would
need to gather information about the data access patterns
of each region in order to figure out the correct splitting
point. The massive scale of data, the high number of regions
and the fact that data is continuously growing make manual
partitioning an impractical task.

As manual partitioning is not an option, we are left with
partitioning of regions in half. At this point, we argue that
such mechanism is not sufficient and that the fact it does



not take into account data access patterns highly impairs
performance. Moreover, it is common for data workloads
over these data stores to exhibit non-uniform distribution
of requests over data [15, 5]. Not taking into account the
distribution of requests renders partitioning ineffective as a
load balancing mechanism.

In this paper, we focus on the need for an automated
mechanism to find region splitting points that take into ac-
count the system workload. We propose a workload aware
table splitting mechanism. The mechanism proposed esti-
mates, in an autonomous way, a region splitting point that
leads to optimal load balancing. We show that the algorithm
is as simple as effective. Moreover, it is a generic approach
applicable to different NoSQL data stores. We also evaluate
our mechanism over the HBase data store.

The paper is organized as follows. Section 2 provides a
brief overview of related work. Section 3 describes our algo-
rithm to compute region splitting points. In Section 4 the
table splitting system is implemented over the HBase data
store and evaluated. Finally, Section 5 concludes the paper.

2. RELATED WORK
Work on data load balancing for NoSQL is closely related

to the one presented in this paper. In particular, in [6]
the authors present a workload aware elastic manager for
NoSQL called MeT. MeT has as its core component a load
balancer. Such component supersedes the randomized load
balancing mechanism, typically used as the default one [9].
Moreover, it is our claim that an autonomous table split-
ting mechanism would greatly enhance a system like MeT.
In fact, being able to split tables that are overloaded would
allow the load balancing mechanism of MeT to better dis-
tribute regions across system nodes.

Another load balancing system was proposed in [13]. How-
ever, similarly to MeT, this system does not consider table
splits.

In [1] tables are replicated across different nodes according
to their popularity. This is related to our work as it is an
workload aware approach to load balancing.

An example of a splitting mechanism is included in the
Yahoo! Cloud Datastore Load Balancer [11]. In this sys-
tem table splitting is performed in two situations. If the
table reaches a certain size or based on table load. The
key difference when compared to our approach is that, even
though this system takes into account table load, it does not
use such information to decide the table splitting point. It
is our understanding that, in this case, the Yahoo! Cloud
Datastore Load Balancer splits tables into two with similar
size.

Table splitting was also subject of research work in the
area of relational databases [7, 16, 15]. However, in these
works the main goal was to avoid multi-table queries, and
thus to avoid distributed transactions. In the present one,
the assumption is that there will be no multi-table queries
at all. This assumption places those previous works in a
different class of approaches.

There is also research work on online median estimation.
Specifically in [2], the authors follow a similar overall ap-
proach to the one presented in this paper, in the domain of
fetal heart rate interpretation.

Algorithm 1: Split key search algorithm.

begin
foreach Region do

Data: LowestKey ←∞
Data: HighestKey ← 0

Data: splitKey ← null

On request :
Data: key ← Request.getKey()
Data: region← key.getRegion()
Data: splitkey ← region.getSplitKey()
if key > region.HighestKey then

Data: region.HighestKey ← key

if key < region.LowestKey then
Data: region.LowestKey ← key

if splitKey == null then
Data: splitKey ← key

if key > splitkey then
splitkey.increase()
if splitkey > region.HighestKey then

splitkey = region.HighestKey

else
splitkey.decrease()
if splitkey < region.LowestKey then

splitkey = region.LowestKey

3. WORKLOAD-AWARE TABLE SPLITTING
Current data stores split regions in order to distribute

load across cluster nodes. The decision of when to split is
made based on a size threshold. However, the splitting point
itself is also size based. Typically, regions are always split
in half. We argue that such splitting impairs load balancing
as different regions, due to non uniform workloads, may be
subject to very different load patterns.

In this paper, the main problem we address is finding a
good splitting point. A good splitting point is the one that
splits the region into two new regions with similar load. We
define a good splitting point in this manner as it leads to
better overall load balancing of requests across regions. Note
that the considering multiple splitting points for a single re-
gion simultaneously is out of the scope of the present paper.

In Section 3.1 we describe our algorithm for workload
aware table splitting point estimation. The algorithm is an-
alyzed in Section 3.2.

3.1 Algorithm
With the goal of finding the splitting point we designed

a simple yet effective algorithm. An important requisite is
that any kind of mechanism we devise does not impose high
overhead over the data store system. Doing otherwise would
render it highly undesirable. Moreover, it needs to divide
the region into two regions with similar load independently
of the request distribution applied to the system. Having
these constraints in mind we propose an algorithm that can
be run asynchronously and has no impact on the data path.
Moreover, as we will see, it achieves highly accurate results
with negligible memory and CPU consumption.

Relying on a simple mechanism to access region load it is
possible to have a good estimation of the key that splits a



region into two with similar load. The algorithm, depicted
in Algorithm 1, works as follows. The key range is assumed
to have a well defined order over keys. The algorithm ini-
tiates by estimating that the splitting point is the key of
the first request it intercepts for each region. By taking into
account subsequent requests it will progressively improve its
estimation of the splitting point. For each request, if the re-
quested key is smaller than the current estimation the algo-
rithm decreases it. Otherwise, the estimated splitting point
is increased. At each request it also updates the smallest
(LowestKey) and the highest (HighestKey) object keys,
of which that region is responsible for. Such information is
useful to know the region boundaries.

As the reader easily notices, the increase and decrease
methods are not defined in Algorithm 1. This is intentional
as their implementation may vary and will impact the per-
formance of the algorithm.

3.2 Instantiation
We consider three instantiations of the increase and de-

crease methods. The simplest case is to have linear increase
and decrease behavior. This means that, for instance, if a
request arrives for a key whose value is greater than the cur-
rent splitting point, the latter will be increased by a constant
value. The second instantiation is an exponential function.
This means that when two or more steps are done in the
same direction the step size increases in a quadratic fashion.
The final instantiation is achieved by mixing both strategies
as described later in the paper.

Considering these instantiations we set up a few experi-
ments. We considered a key range of 10,000 keys and gen-
erated 20,000 key requests that followed a ZipFian distribu-
tion. This distribution was chosen as it is representative [10].
At each request, we looked at the splitting point estimation
given by the algorithm. As the distribution was known be-
forehand, we used the distribution’s cumulative distribution
function to calculate how the regions would be split should
such estimation be used. The optimal splitting point corre-
sponds to the point where 50% of the requests fall into each
one of the new regions i.e. P(X ≤ 50) of the cumulative
distribution function.

We configured the algorithm with the linear strategy and
the results of the experiment are depicted in Figure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000

R
e
q
u
e
s
t 
s
p
lit

ti
n
g
 p

o
in

t

Iteration

Ideal split
Linear Strategy

Figure 1: Split key search algorithm with linear strategy.

As shown by the experiment results, the algorithm tends

to yield good approximations to the ideal split value after
8,000 iterations (that corresponds to 8,000 requests). How-
ever, by manipulating the implementation of the increase /
decrease methods it is possible to improve the algorithm.
The slow convergence of the approach above is due to the
fact that, at each request, the algorithm is taking very small
steps towards the desired point. Relying on the exponential
strategy this can be avoided. As observable in Figure 2, the
algorithm is now much faster at the expense of stability.
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Figure 2: Split key search algorithm with exponential strat-
egy.

The bottom line is that neither strategy is very attrac-
tive. On the one hand, the linear strategy requires a lot of
iterations to converge to the optimal split point. On the
other hand, the exponential strategy converges rapidly to
the optimal split point, but proves to be unstable.

Therefore, our approach is based on the combination of
both strategies. The idea is to start with the exponential
strategy and, when sufficiently close to the ideal splitting
point, change to the linear one. The challenge of this ap-
proach is knowing what sufficiently close means and how to
detect it. To address this problem we try to detect what we
call a PingPong zone.

Intuitively, if a splitting point is ideal, it means that the
probability of a request being for a key smaller than the
splitting point is equal (or roughly equal) to the probability
of the request being for an higher key. Consequently, the
algorithm will fall into a PingPong zone where the value
of the splitting point will be continuously being increased
and decreased. When in a PingPong zone, the algorithm
mutates to the linear strategy.

In order to detect a PingPong zone we try to detect con-
secutive PingPong pairs. A PingPong pair is a single in-
crease / decrease sequence. The algorithm is configurable in
order to define the number of PingPong pairs needed to trig-
ger the algorithm mutation. Figure 3, depicts the behavior
of the algorithm configured with the linear strategy and two
mixed strategies. It is possible to observe that a mixed strat-
egy proves to be effective. Moreover, in our experiments we
observed that, for this scenario, configuring the algorithm
with a small number of PingPong pairs allows for very good
results.

Another important aspect of the algorithm is that it should
achieve good results independently of the request distribu-
tion. In Figure 4 are depicted the results of an experiment
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Figure 3: Split key search algorithm with PingPong detec-
tion.

where a Poisson distribution was used. Using the same key
range size of the previous experiment, 10,000 unique keys,
and 20,000 requests following the Poisson distribution. As
it is observable, even for this distribution, the algorithm
achieves acceptable results. It is however worth noting that
a Poisson distribution is a worst case scenario for finding a
good splitting point. It is sufficient for the splitting key to
miss the ideal one by a few intervals in order to yield very
different splitting ranges.
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Figure 4: Split key search algorithm with PingPong detec-
tion for a Poisson request distribution.

Finally, we also wanted to evaluate the impact of the key
range size in the performance of our algorithm. Figure 5
depicts the results of an experiment where the key range
size was increased to 300,000 unique keys. The distribu-
tion used was, again, Zipfian. Beginning with some consid-
erations, not depicted in the Figure, the linear strategy is
much affected by the key range size, because it depends on
the first request to linearly converge to the ideal splitting
point. Likewise, the exponential strategy is not much af-
fected by the key range size nor the first request, but once
more has some instability. As can be observed, as opposed
to the experiment with the smaller key range the different
configurations of the PingPong really impact the behavior of
the algorithm. All different configurations quickly get close
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Figure 5: Split key search algorithm with PingPong detec-
tion for a large key range.

to the ideal splitting point, but for 2 and 4 PingPong pair
configuration the switch to the linear strategy occurs too
soon, which impacts the convergence of the algorithm. The
best results are therefore achieved by 8 PingPong pair con-
figuration. Its initial instability is compensated by the closer
estimation yield by the exponential strategy and converges
to the ideal splitting point in almost the same number of
iterations as in the previous experiment. This leads to the
observation that for a larger key range size, the number of
PingPong pairs should be slightly increased.

From the results we can safely conclude that our algo-
rithm provides a good heuristic for finding a suitable region
splitting point.

4. WORKLOAD AWARE TABLE SPLITTING
IN HBASE

In this Section we describe and evaluate the implementa-
tion of our algorithm in HBase. Although the mechanism
is generic and applicable to other NoSQL data stores, we
will focus on an HBase implementation from now on. In
Section 4.1 implementation details are described and the
evaluation of the mechanism is presented in Section 4.2.

4.1 Implementation
Data in HBase is organized into tables which are split

into regions. HBase splits tables when these reach a certain
size. As described earlier, this approach does not lead to
good load balancing when data requests obey skewed distri-
butions.

In order to implement our automated workload aware ta-
ble splitting mechanism, we have added the mechanism of
the previous Section to the HBase data store itself. Conse-
quently, when HBase is running a splitting point estimation
is calculated for each region continuously. In particular, it is
calculated within each Region Server (HBase node) and ex-
ported as a JMX metric accessible through the HBase client
interface.

With this implementation it is now possible to split re-
gions in a workload aware fashion. It is important to notice
that the default load balancer of HBase tries to achieve sim-
ilar number of regions in every node. Using our mechanism,
which yields regions with similar load, eases such process.
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(a) HBase out-of-the-box with uniform splitting.
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(b) HBase with workload-aware splitting.

Figure 6: Node load for the two scenarios.

4.2 Evaluation
In this Section we present results of our evaluation. The

experiment was set up as follows. A HBase cluster was de-
ployed across two nodes. A single table was created and
placed on one of the nodes. The table was populated with
1,000,000 records (1 GB of data) using YCSB [5] that was
deployed in a separate machine. The same YCSB instance
was configured to produce a workload with 80% of read re-
quests and 20% of write requests. Moreover, such workload
follows a ZipFian distribution. All nodes used for these ex-
periments have an Intel i3 CPU at 3.1GHz, with 4GB of
memory and a local 7200 RPM SATA disk, and are inter-
connected by a switched Gigabit local area network.

The table was intentionally designed to be too large to
be handled by a single node. Consequently, it is split into
two regions one on each node. At this point, two different
scenarios were considered and evaluated. Scenario one corre-
sponds to the out-of-the-box HBase behavior. HBase splits
the table into two regions of the same size regardless of the
access pattern. In scenario two, our splitting mechanism is
in place. The initial set up is similar however.
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Figure 7: Evaluation over HBase. Throughput achieved in
scenarios one and two.

For both scenarios we logged the load imposed on each
of the nodes. In order to determine how load was being

distributed across both of the cluster nodes. The results are
depicted in Figure 6.

The split made by the default mechanism not only leads
to an highly unbalanced cluster but is also highly infective
(Figure 6a). In fact, node 2 of 6a is saturated even after
the split while node 1 is practically idle. This reduces the
cluster capacity to virtually the capacity of the single node.
An overloaded node, with this split, remains overloaded as
the load moved to the other node is negligible.

In contrast, our approach allows to almost double the
overall throughput as depicted by Figure 7. Splitting the
table using the splitting point given by our algorithm al-
lows for load to be distributed across the two nodes taking
advantage of the capacity of both (Figure 6b).

Note that, after the split the nodes remain under high
load. Allowing a second split round and allocating new
machines could increase immensely the performance of this
cluster. This is not the case when using the traditional split
mechanism. Splitting without taking into account the load
will always result in an highly unbalanced cluster impairing
performance.

The results validate the approach and show that the al-
gorithm proposed is effective in practice. Moreover, it also
opens future research paths as automated workload aware
table splitting for NoSQL seems an objective worth pursu-
ing.

5. DISCUSSION
In this paper we presented a workload aware table split-

ting algorithm for NoSQL. We evaluated it and proved it to
be effective in practice. Although it may seem simple, the
algorithm proposed is a pragmatic approach to automated
splitting point discovery. The results obtained showed it
is effective both for achieving good load balance as well as
improving overall performance of HBase.

From the results obtained we believe the present work
opens various very promising research paths. The most im-
mediate concerns the mechanism itself. In fact, it should
be interesting to find a convergence criteria. The current
implementation needs the observation interval to be repre-
sentative of the distribution. Moreover, it is not capable of
knowing, in an autonomous way, if such requisite is met. It



should be possible for the algorithm to be enhanced with
some technique that would allow it to stop when a suitable
splitting point is found.

Another key issue is the PingPong zone detection criteria.
Currently this is a system parameter. Finding a way to de-
termine this parameter in an autonomous way could greatly
improve the present work.

Finally, another research path is related to the work in [12,
6]. It is our understanding that the mechanism presented in
the current paper can greatly enhance works as such. More-
over, heterogeneity as presented in [6] presents itself as a
very interesting challenge to the workload aware table split-
ting algorithm. As a result it should be possible to design
and implement a fully autonomous elasticity controller for
NoSQL that takes advantage of table splitting for enhance
load balance and performance. In particular, such controller
could take into account cluster load also for the decision of
when to split regions as this is not considered in the present
work.
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