
pH1: A Transactional Middleware for NoSQL

Fábio Coelho Francisco Cruz Ricardo Vilaça José Pereira Rui Oliveira
HASLab - High-Assurance Software Laboratory

INESC TEC and Universidade do Minho
Braga, Portugal

fabio.a.coelho@inesctec.pt
{fmcruz,rmvilaca,jop,rco}@di.uminho.pt

Abstract—NoSQL databases opt not to offer important ab-
stractions traditionally found in relational databases in order to
achieve high levels of scalability and availability: transactional
guarantees and strong data consistency.

In this work we propose pH1, a generic middleware layer
over NoSQL databases that offers transactional guarantees with
Snapshot Isolation. This is achieved in a non-intrusive manner,
requiring no modifications to servers and no native support for
multiple versions. Instead, the transactional context is achieved
by means of a multiversion distributed cache and an external
transaction certifier, exposed by extending the client’s interface
with transaction bracketing primitives.

We validate and evaluate pH1 with Apache Cassandra and
Hyperdex. First, using the YCSB benchmark, we show that the
cost of providing ACID guarantees to these NoSQL databases
amounts to 11% decrease in throughput.

Moreover, using the transaction intensive TPC-C workload,
pH1 presented an impact of 22% decrease in throughput. This
contrasts with OMID, a previous proposal that takes advantage of
HBase’s support for multiple versions, with a throughput penalty
of 76% in the same conditions

Keywords—NoSQL; Transactions; Snapshot Isolation;

I. INTRODUCTION

Providing continual availability and support for millions of
users – some of the core properties of the cloud computing
paradigm – has been a major business opportunity for cloud
service providers. The high availability goal along with the
competitiveness of storage systems drew an increasing number
of businesses to migrate their systems into the cloud and, thus
reducing ownership and maintenance costs.

Up until recently, information systems relied almost exclu-
sively in relational database management systems (RDBMS).
These are well matured systems, which provide a standard SQL
access interface with a programming abstraction that provides
transactional semantics, usually with ACID guarantees. How-
ever, relational systems proved so far unable to sustain the non-
functional characteristics of the cloud computing paradigm:
high availability and scalability. This is mainly due to their
rigid, monolithic and centralized architectures.

To cope with this demand, a new class of database systems
emerged. These are non-relational, typically just based on a
key/value data model, and usually, they do not provide a
complex structured query language (just simple put and get
primitives). These systems are often referred to as NoSQL
databases. Regardless of its specific data model or API,
a NoSQL database is expected to be highly available and

scalable. Key to these two characteristics are their inherent
distributed design, weak consistent data replication and trans-
actionless operation.

However, the downside of using NoSQL databases is that
much of the complexity now needs to be handled at the
application level. Specifically, most of the highly efficient
processing provided by SQL query engines inside RDBMS
needs now to be done by the application, and the lack of a
transactional programming model requires that hard problems
such as concurrency control and failure recovery are now
explicitly handled by the programmer. On the one hand this
makes application programming much more demanding and
error prone and, on the other, severely impairs the migration
of legacy applications to the cloud.

In this paper we present the design and implementation
of an elegant, non intrusive middleware system that is able to
endow a typical NoSQL database with a transactional interface
offering ACID guarantees. The proposed transactional middle-
ware, pH1, preserves the interface of the underlying NoSQL
database allowing operations to be bracketed in a transac-
tional context offering Snapshot Isolation [1] as its isolation
criterion. It relies on the optimistic execution of concurrent
transactions that are certified at commit time. If by committing
two concurrent transactions the isolation criterion would be
violated then one of them is simply aborted. Each transaction
runs on a private virtual snapshot of the database without any
interferences of concurrent transactions. To achieve this, pH1
implements a multiversion distributed cache of the database,
closely synchronized with the persistent NoSQL database.
This is called the Non Persistent Version Store (NPVS) and
along with the transactional context is the cornerstone of our
approach.

The remainder of this paper is organized as follows: Section
II and III offer an overview of some key concepts. Section IV
describes the design and architecture of the main components
of pH1 and Section V briefly describes its implementation.
Section VI presents the assessment of the system. Section VII
goes through related work and Section VIII concludes this
work.

II. TRANSACTIONAL SYSTEMS

Transactional systems introduce the concept of transaction.
A transaction is a sequence of operations whose execution
traditionally satisfies the following ACID properties:

Atomicity: Either all or none of the operations within a
transaction are successfully performed;



Consistency: Transactions preserve system constraints, tak-
ing the system from a valid state to another valid state;
Isolation: The execution of concurrent transactions preserves
the semantics of the defined consistency criterion or isolation
level;
Durability: The effects of successful transactions are durable
even in the presence of faults.

A transaction that is able to successfully complete is said
to commit, otherwise is said to abort.

A. Snapshot Isolation

Transactional systems allow the co-existence of concurrent
transactions, which may lead to several incidents related to
data being accessed and modified concurrently. Such events are
called anomalies and are formally described in [1] as a charac-
terization of four main isolation levels. Namely these isolation
levels are: read uncommitted, read committed, repeatable read
and serializable (these levels are here presented from the least
to the most strict level).

A different isolation level, currently the default in most
commercial RDBMS is called Snapshot Isolation [1], [2]. It
uses both multi-version concurrency control and timestamps in
order to avoid using locks [3], allowing a transaction to work
over a consistent snapshot of data. This is presented as one of
the main advantages of this isolation level, as a transaction is
never blocked performing a read operation (which it is the case
for concurrency control based on mutual exclusion), potentially
increasing the level of concurrency.

Snapshot isolation works by creating two timestamps for
each transaction. Upon the start of a transaction, a start
timestamp (Ts) is assigned and, this particular transaction will
observe all versions up to Ts. When the set of operations
within a transaction ends, the transaction will try to commit,
being assigned at that time a commit timestamp (Tc), if the
transaction is allowed to commit. It should be noted that
a transaction will only be allowed to commit if no other
concurrent transaction has modified the same set of tuples
(i.e a write-write conflict). From the moment a transaction is
committed, all following transactions will be able to observe
its modifications.

The Snapshot Isolation criterion avoids all anomalies de-
scribed in the ANSI SQL standard [1], [3]. However, an
anomaly called write skew may still occur. A write skew occurs
when at least one safety feature for a system is disregarded, due
to write-write synchronization problems, which causes Snap-
shot Isolation not to be serializable. Nonetheless, Snapshot
Isolation is usually the most strict isolation level found in
RDBMS, and for a wide array of applications it is possible
to achieve a serial execution [4] or even to fully implement
serializability [5].

B. Transaction ordering and certification

Snapshot Isolation requires the use of two modules: a
timestamp generator to produce both the Ts and Tc timestamps,
as well as, a certification authority to verify the existence of
write-write conflicts and thus decide on whether a transaction
should successfully commit or abort.

The timestamp generator issues new timestamps in an
increasing monotonic way, which ensures total order as a
stamp issued for transaction Tj is greater than the one for Ti,
providing that Ti→ Tj.

The certification authority will use the timestamps that
characterize a transaction to verify the existence of con-
currency violations (i.e. write-write conflicts). Formally, two
transactions characterized by [TsA, T cA] and [TsB , T cB ] are
said to be concurrent if TsA ≥ TsB or TsB ≥ TsA and
TsA < TcB or Ts≤TcA. In other words, when a transaction
wants to commit, the certification authority will verify if there
is a concurrent transaction operating over the same data items
as the transaction waiting to commit. On the one hand if
there is, and due to a write-write conflict, the certification
authority will not allow the transaction to commit, causing it
to be aborted. On the other hand, if no concurrent transaction
conflicts the transaction successfully commits.

III. NOSQL DATABASES

From a user’s perspective, NoSQL databases differ from
traditional relational databases by not encoding expressive data
relationships, but being instead based in a simple key/value
data model, and much as a consequence not providing a
complex query language but generally minimal programming
interfaces. In addition, typically, these new databases run in a
distributed environment composed by hundred or thousands of
computing nodes.

Actually, in order to promote high availability and scala-
bility, NoSQL databases run in a more laid-back consistency
criteria when compared with their relational counterparts.
Some implementations use a relaxed consistency criteria called
eventual consistency [6]. Running at this consistency level,
requests are forwarded asynchronously, which may create
periods where stale data can be read. For a comprehensive
survey on the current NoSQL database offer, the interested
reader is referred to [7]. For the purpose of this work we
selected Cassandra and HyperDex, some of the most popular
NoSQL databases.

A. Cassandra

Cassandra [8] is a distributed NoSQL database developed
within Facebook to enable it to cope with large amounts
of write operations while trying to achieve low latency read
operations. Cassandra follows a fully decentralized architecture
built on top of cheap commodity computing nodes that connect
in the form of a logical ring. It follows a flat design in
what concerns to the roles taken by each node. Cassandra
adopts the BigTable’s data model, being modelled in a multi-
dimensional sorted map, without provision for multi-version
tuples. Data is organized in structures called Column Families,
which resemble a table in the relational model. The data
objects held in Cassandra are accessible through an API that
allows simple put and get primitives. With such API, there is
no complex querying mechanism available.

Cassandra follows one of two possible partition strategies
to shard data objects across replicas: random or ordered. By
default, the random partitioning strategy is applied, which uses
a horizontal partitioning strategy called consistent hashing [9].
The replication used by Cassandra depends on whether the



cluster is spread across a single or several data centers. With a
single data center, Cassandra uses a simple strategy replication
mechanism that is aware of a replication factor k.

When a tuple is inserted, it is firstly placed on the local
node, being afterwards forwarded to the next k−1 nodes in the
logical ring. Each Cassandra node can answer read and write
requests. Whenever a client establishes a connection to a node,
this specific node becomes the coordinator for that specific
request. The coordinator uses its awareness of the replication
strategy to decide what nodes should be contacted to fulfil the
request. If it is a write request, the coordinator contacts all the
online replicas (despite the replication factor k in place) that
should hold the object according to the placement strategy. In
the case of a read request, the coordinator contacts the k nodes
imposed by the replication level. During the read procedure,
if inconsistencies are detected, Cassandra uses the timestamp
information present in each data object to provide the client
with the most updated object. Afterwards, the coordinator re-
establishes the inconsistent replicas by forcing them to update
the specific data object (read repair request). This procedure
may cause a situation where update operations might not be
readable from every node. Therefore, during this period, a
client read request over the data items involved in the read
repair request may retrieve stale data.

Past versions of Cassandra (prior to version 2.0) did
not offer any sort of transactional guarantees with ACID
semantics. Newer versions of Cassandra introduce the concept
of Lightweight transactions [10]. However, what actually is
provided is a set of conditional read and put operations, trading
isolation and atomicity for high availability and fast write
performance. Thus, Cassandra’s API still distances from a fully
transactional API with atomicity and isolation at transaction
level.

B. HyperDex

HyperDex [11] is a new distributed and scalable NoSQL
database that is trying to change the pace in current NoSQL so-
lutions by natively supporting queries using secondary indexes
and strong data consistency guarantees, but still without trans-
actions. While most NoSQL databases that support horizontal
scaling either use a hashing function to map keys to computer
nodes (like Cassandra) or partition the keyspace into several
contiguous regions that are then assigned to several nodes (like
HBase and BigTable); HyperDex uses a new object placement
strategy called hyperspace hashing that accounts for several
attributes when mapping objects to computing nodes.

Hyperspace hashing creates a multi-dimensional euclidean
space, where each dimension corresponds to a single search-
able attribute. The hyperspace is split into several regions that
are then assigned to a single server. The task of choosing a
holding server for an incoming request is led to a manager node
called coordinator that identifies the server responsible for a
specific region. The data partitioning implied by HyperDex
significantly reduces the amount of servers that need to be con-
tacted to answer a request. However, tying each key attribute
to a dimension in the keyspace could become unmanageable
as the hyperspace volume would grow exponentially with the
number of dimensions. To avoid such problem, HyperDex par-
titions each space into smaller subspaces, each one accounting

for several key attributes as a dimension. Applying this data
partitioning strategy reduces the global dimensionality of the
space and the subsequent number of servers contacted to fill
in a request.

As other NoSQL databases, HyperDex achieves fault-
tolerance by replicating regions in more than one server.
Previous NoSQL systems would use eventual consistent update
mechanisms, allowing a certain replica to accept updates con-
cerning a key at a latter point in time. However, changes in the
set of replicas from multiple concurrent updates could possibly
result in inconsistencies across subspaces. To contradict this,
HyperDex introduces a new replication strategy called value
dependent chaining that is able to provide total order of
replicas while performing updates on a given key.

As far as transactional operations is concerned, HyperDex
does not natively provide support for such kind of operations.
However, its data placement and data replication strategies are
the basis to a an add-on called Warp [12].

IV. PH1

The pH1 middleware layer positions itself between the
client and server of the NoSQL database, introducing transac-
tional guarantees. It extends the client interface exported by the
NoSQL database with commands to start and end transactions.
After starting a transaction, the client will then execute a
sequence of operations according to the NoSQL API but now
in a transactional context. Once these operations are finished,
the client will invoke an end transaction method, and pH1 will
determine whether the transaction can successfully commit or
should be aborted. pH1 offers Snapshot Isolation for which it
will be providing a multi-version abstraction of the underlying
NoSQL database. The pH1 was built in order to be generic
and independent of the NoSQL database. That is, in principle,
it can be used with any NoSQL database.

The architecture of pH1 is based on two different modules:
(i) the Transaction Manager (TM) and (ii) the Non Persistent
Version Store (NPVS). The TM (in the form of the transac-
tion’s write-set) and the NPVS represent two data sources used
by the middleware. In addition, there is a third data source
that is the NoSQL database. By data sources, we mean that
data resides in these three modules, which will be accessed
differently according to the operations being performed.

The middleware relies on another module the Timestamp
Oracle (TSO). The TSO is an external certifier and timestamp
generator reused from the OMID [13] project by Yahoo!. To
be able to recover from failures, the TSO in OMID uses
BookKeeper, a distributed logging service as a Write Ahead
Log (WAL). The write procedure to this WAL is handled by
OMID’s TSO client, which we use in pH1. The articulation
between the NPVS and the TSO modules will enable pH1
to provide Snapshot Isolation. While the first will keep all
the versioned tuples of data, the TSO will act as an oracle,
providing new timestamps to newly created transactions and,
it will also keep track of the modifications done by each
transaction, deciding whether a transaction should commit
or otherwise abort in the case of conflicts occurring during
concurrent execution.

In essence, the pH1 middleware should be able to scale
with the number of clients by the adding more pH1 instances to



the system. Figure 1 depicts a configuration with two instances.
Each instance shares access to the NoSQL database and to
the same TSO module. The different NPVS instances commu-
nicate with each other by means of a group communication
protocol. Over the following Sections, we describe the role of
each module.

A. Transaction Manager.

The transaction manager is a central module of pH1,
exporting and keeping the transactional context of each active
transaction in the system and creating a proxy in-between
modules. The transaction manager will provide to the client
a simple interface comprised of two operations, which will
enable it to (1) start a new transaction and (2) ask for the
transaction to be terminated.

1) Start Transaction: The request of a new transaction is
brokered by asking the certifier module for a new timestamp
(Ts). As previously introduced, each transaction will have
a private snapshot of the data items being modified in that
transaction (write, update and delete operations). This refers
to the transaction’s write-set, one of the three data sources
used by pH1, so the transaction can read its own writes as
defined by the Snapshot Isolation level.

2) Try Commit: When the client wants to terminate the
current transaction, it will ask the transaction manager to
try commit the current transaction. The transaction manager
forwards the modifications of the current transaction to the
certifier module, which will decide if it can be committed or
if it should abort. In case the certifier decides the transaction
should commit, it will reply to the transaction manager with
the commit timestamp and the transactional operation flush
is executed.

B. Transactional Operations.

In the context of a transaction, the client can perform a
group of primitive operations that comply with the operations
exported by the API of most NoSQL databases. Namely, it
can perform read, scan, write and delete operations.
Additionally, there is a fifth operation, the flush operation
that can only be executed by the transaction manager. Each
one of these operations is executed in the context of one
transaction. Besides the write-set, a single transaction contains
a start timestamp (Ts) and a commit timestamp (Tc).

1) Write Operation: The write operation, as depicted in
Algorithm 1 will enable the client to insert or update a data
item in the NoSQL database. However, when a client performs
a write operation in the context of a transaction, that operation
is not immediately flushed to the NoSQL database. Instead, it
remains in the transaction’s write-set and its kept there until
the end of the transaction. If the transaction is committed
then the modifications are persisted in the NoSQL database,
or discarded if the transaction is aborted.

2) Delete Operation: The delete operation enables the
client to remove items from the NoSQL database. The unroll
of a delete operation is similar to the write operation in
what concerns to the steps of its execution, as it is actually
only executed when the transaction can commit. Algorithm 2
depicts this operation. The major difference from the write

Algorithm 1: TM: Write operation
Data: table, key, column, value
searchKey ← table+ key + column
if !WriteSet.contains(searchKey) then

WriteSet.insert(searchKey)

WriteSet.addWriteOp(searchKey, value)

operation lies in the fact that this operation adds a remove
operation to the transaction’s write-set.

Algorithm 2: TM: Delete operation
Data: table, key, column
searchKey ← table+ key + column
if !WriteSet.contains(searchKey) then

WriteSet.insert(searchKey)

WriteSet.addRemoveOp(searchKey)

3) Read Operation: The read operation allows the client
to read a data item. The algorithm behind this operation is key
to ensure that the system complies with the Snapshot Isolation
criterion. As previously mentioned, pH1 uses three different
data sources: (i) the transaction’s write-set, (ii) the NoSQL
database and (iii) the NPVS. According to the Snapshot
Isolation criterion, when reading an item, a given transaction
is expected to read the most recent version up to its start
timestamp (Ts). Therefore, the order in which the data sources
are accessed is fundamental to determine the latest version of a
given tuple. As a result of pH1’s architecture, the latest version
of a tuple will be found in the different data sources in this
specific order:

1) Transaction’s write-set: If it was modified by the current
transaction;

2) NoSQL database: If the most recent transaction that
modified that item had successfully committed prior to
the beginning of the current transaction;

3) NPVS: If it was modified by a transaction that success-
fully committed after the start of the current transaction
(i.e. a concurrent transaction).

The protocol of the Read Operation is depicted in Algo-
rithm 3. First, it will verify if the given tuple exists in the trans-
action’s write-set. If it does, it is returned because it is the latest
version available. If it does not, then the NoSQL database is
checked. If in fact the NoSQL database holds the tuple and the
associated version check passes (Ts ≥ NoSQLcontent.T c),
the tuple is returned. On the contrary, if the NoSQL database
does not have the latest version (ts < NoSQLcontent.tc), the
NPVS is checked and if the tuple exists there, the latest version
according to Ts is returned. Please note that the NPVS may
hold several versions for a given tuple, making this verification
needed. Once the read operation can successfully retrieve a
given tuple from one of the three data sources, all the left data
sources are skipped.

Algorithm 3 establishes the standard procedure regarding a
read operation. Nevertheless, the fact that we are dealing with
NoSQL databases may cause issues related to the underlying
consistency model (for instance eventual consistency) of some



Fig. 1: Overview of a configuration with two pH1 instances.

Algorithm 3: TM: Read operation
Data: Table, Key, Column, Ts
searchKey ← table+ key + column
if WriteSet.contains(searchKey) then

return WriteSet.read(searchKey)
else

NoSQLcontent ← NoSQL.read(searchKey)
if NoSQLcontent ! = null then

if Ts > NoSQLcontent.T c then
return NoSQLcontent

else
NPV Scontent ←
NPV S.read(searchKey, Ts)
return NPV Scontent

else
NPV Scontent ←
NPV S.read(searchKey, Ts)
return NPV Scontent

NoSQL databases. As previously stated in Section III, when
executing a write operation, a NoSQL database may acknowl-
edge the success of the write operation, while it may not have
been successfully forwarded to all participating nodes. This
behaviour may become a problem when reading a tuple from
a node in the NoSQL database that has not yet been updated.
Therefore, if during the read, the NoSQL database retrieves
an empty result, the NPVS is checked to verify if the key
exists. If it does, we may be in the presence of the illustrated
issue and the version in the NPVS is returned if it belongs to
a concurrent transaction. If it does not, the key never existed
and no more than a null is returned.

4) Scan Operation: The scan operation enables the client
to perform a read operation comprised of a set of several keys.
This operation must also comply with the Snapshot Isolation
criterion, returning the latest version of every key in the scan
operation according to its snapshot. The inherent algorithm
behind this operation follows the exact same steps as the one
for the read operation. The only difference lies on the fact that
it is iteratively for each key instead of just one.

5) Flush Operation: When the client finishes all the op-
erations within a transaction, it will forward to the transaction
manager a request to try commit the current transaction. As

previously described, the transaction manager will forward
the modifications of the current transaction (the transaction’s
write-set) to the TSO module, which will decide upon the
commit or abort of the transaction. In the case the TSO
successfully commits the transaction, it will issue a commit
timestamp (Tc) and the transaction manager will invoke the
flush operation to make changes durable.

When the flush operation is called, the transaction may hold
several operations in its write-set that can invalidate themselves
(e.g. write(x) and delete(x)). To avoid situations like such,
the commit operation submits the transaction’s write-set to a
conciliation procedure that removes such issues.

The NoSQL database should hold the latest version of
any tuple. As a result, before writing the new values of the
transaction into the NoSQL database, the NPVS is updated
with the existing tuples in the NoSQL database, which can
be done asynchronously. When the NPVS acknowledges the
writes, the transaction’s write-set is flushed to the NoSQL
database. This can actually be done asynchronously and not
only at the time of flush. When the current transaction is
allowed to commit and gets a Commit Timestamp, the TSO
will not immediately update the current start timestamp (i.e.
increment it). The TSO will wait until the current committing
transaction flushes its modification to the NoSQL database,
and only after that, update the current start timestamp so new
transactions can observe the latest updates. In the meantime,
the TSO provides a batch of timestamps that span from
the start to the commit timestamp of the transaction that is
performing the flush. If we didn’t do so the Snapshot Isolation
criteria could be violated. As a result, the TSO never blocks
the timestamp acquisition, and thus no transaction is ever
prevented from starting.

As transactions commit, the transaction manager no longer
needs to hold information regarding those transactions. Thus,
periodically, the transaction manager verifies which is the
oldest active transaction and dictates the removal of all data
regarding transactions prior to that.

C. Non-Persistent Version Store

As previously introduced, the Snapshot Isolation criterion
requires the maintenance of versioned tuples. In order to
support a wider range of NoSQL databases, specially those that



do not natively support multi-version tuples, we introduced the
NPVS in pH1 to manage and store tuple versions.

The architecture of the Non-Persistent Version Store
spreads along a group of individual and equal nodes, building
a homogeneous distributed repository system. The NPVS can
be configured to use any degree of replication. In the first
place, the reason for using replication in the NPVS is due to
fault tolerance. In other words, NPVS nodes always maintain
their data in memory so if a NPVS node fails all its data is
lost. By using replication (either full or partial) we could still
access the data in other NPVS nodes. Moreover, in pH1 the
user can configure the degree of replication it wants trading off
performance for fault tolerance. When configured for full repli-
cation, each node is able to receive and process client requests.
The individual nodes connect through a channel established
by a group communication toolkit called JGroups [14]. The
JGroups toolkit establishes a channel that enables the reliable
and atomic exchange of messages among group members. This
toolkit creates an abstraction called view that joins all the
members in the channel and also manages its membership.
Besides the management of the view, the toolkit allows for
messages to be sent in a unicast or multicast fashion.

Implementation details:

The client of a NPVS node is a transaction manager
instance. To enable the communication between nodes, the
NPVS system defines two types of messages that will be sent
through the established channel.

1) Write message: This message will hold the versioned
tuples to be replicated across the nodes of the repository;

2) Eviction message: When a node receives an order to
discard all versioned elements up to a given version, it
uses this message to multicast that information to the
remainder repository nodes.

Each NPVS node exports to the transaction manager a very
simple API, comprised of only two operations:

1) Write operation: Each and every node of the NPVS
can handle a write operation. A write operation will hold the
corresponding value and version to be associated to a given
table, column and key. Upon the reception of such request,
the node that received the request stores the versioned element
and sends a write message through the established channel.
When it receives the message from the group communication
service (GCS), it informs the client that the request has been
successfully completed.

2) Read operation: The read operation will enable the
transaction manager to access the versioned tuples. Due to the
replication strategy in place, every node holds a full copy of
versioned tuples within the system, which enables each node
to answer this operation. During this operation, the node that is
handling it only performs a lookup to the desired key, returning
it if it exists.

D. Timestamp oracle and certifier

The timestamp oracle and certifier used in pH1 was devel-
oped by Yahoo! in the context of the OMID [13] project. Simi-
larly to pH1, the OMID project was developed to allow NoSQL

databases to be compliant with the transactional paradigm. The
underlying NoSQL database used is HBase [15] and currently,
this project only supports this implementation. Moreover, the
system is highly coupled to the underlying NoSQL database
and, thus assumes it already provides multi-versioning.

The OMID project uses a snapshot isolation compliant
certifier, that does not use mutual exclusion primitives to
enable the execution of concurrent transactions, but as pH1,
uses timestamp based concurrency. The modularity of the
OMID project, allowed us to re-use its certifier module, since
it is actually decoupled from the data persistence layer. This
module is responsible for two main functions: (i) generating
new timestamps and (ii) certifying transactions.

The generation of timestamps must ensure that each times-
tamp is unique and, thus totally ordered. Specifically, the need
for total order is key to the correct behaviour of the entire
system, as described in Section II, guaranteeing that timestamp
B is greater than A if A precedes B (A→ B). The timestamp
increment is dictated by the transaction manager when it starts
a new transaction, and also when the certifier determines a
transaction to be committed.

The certification process is based on the information held in
the certifier concerning all previously committed transactions
and the modifications made by the transaction being certified.
Only then, the certifier will be able to assess if the current
transaction is concurrent with any transaction and if so, if
there is a write-write conflict. If no conflict is detected, the
certifier authorizes the transaction to commit. On the contrary,
if the transaction conflicts with another previously committed
or concurrent transaction, it is aborted and its changes are
discarded.

In OMID, the TSO holds information regarding all com-
mitted transactions on the system, along with its modifications.
To tolerate the failure of the TSO module, OMID introduces
BookKeeper, a distributed logging service, that works as a
Write Ahead Log (WAL), where it dumps the state of every
committed transaction on the system. This allows to recover
from a failure of the TSO without loosing information regard-
ing previously committed transactions.

V. IMPLEMENTATION

The pH1 middleware, which includes all the aforemen-
tioned modules, was implemented in Java. Additionally, bind-
ings to the two NoSQL databases were used, along with an
event driven asynchronous communication toolkit called Netty,
which allowed the link between the transaction manager and
the TSO.

The communication among the nodes that build the Non-
Persistent Version Store was achieved through the use of a
group communication toolkit (JGroups [14]). As far as the
versions used in each NoSQL database, we used Apache
Cassandra version 1.0.10 and Hyperdex version 1.0.5.

As previously stated, pH1 uses the same timestamp oracle
and transaction certifier as in OMID, the TSO. For the imple-
mentation of pH1, we used the same TSO configuration as in
the OMID project, placing one Bookeeper node along with the
TSO module, so that it could recover from a possible failure



without loosing information regarding previously committed
transactions.

VI. EVALUATION

Along this section we present the evaluation of pH1 over
two different perspectives. Firstly, we quantify the overall
throughput loss imposed by the introduction of transactional
guarantees and a per operation latency analysis. For this
matter, we used Yahoo!’s YCSB [16] benchmark. Secondly, we
evaluate pH1’s versatility under a TPC-C workload, comparing
the results achieved for pH1 with OMID [13] by Yahoo!.

A. YCSB

The Yahoo Cloud Service Benchmark is a benchmark that
allows the comparison among data stores designed for the
cloud computing paradigm. In other words, Yahoo! developed
this benchmark because both the paradigm and the access
pattern of such data stores are quite different from the ones
used by traditional benchmark systems, mostly designed for
relational databases.

The YCSB benchmark starts by creating a defined number
of concurrent clients that will try to perform a set of operations
according to a pre-defined workload. The type of operations
available include Read, Scan, Delete and Update operations.

We have modified the YCSB benchmark system to enable
the existence of multiple update operations in a single op-
eration, that is, a single operation run inside a transactional
context. To do so, we introduced an operation called Multi
Update in which we create an update transaction comprised
of ten single update operations.

1) Configuration and tests: To perform the evaluation we
relied in a configuration comprised of five identical machines,
each of which is equipped with an Intel i3-2100-3.1GHz 64bit
processor, 8GB of RAM and SATA II (3.0 Gbit/s) hard drives.
These machines are interconnected by a switched Gigabit
Ethernet and all of them ran Ubuntu 12.04 LTS as its operative
system.

The five used machines were distributed as follows: each
of two machines ran a NoSQL database node, one the TSO
module and each of the remaining two ran a YCSB client, co-
located with a pH1 instance. The NPVS nodes in each instance
were configured to use a full replication strategy so that it is
able to provide fault tolerance as previously described.

We divided the tests in two runs, a first one where we
used the Cassandra NoSQL database and a second one where
we used the Hyperdex NoSQL database. In each of these
runs, we ran the benchmark with and without pH1, measuring
the throughput and latency penalty registered by providing
transactional guarantees.

Each run was divided in two stages: a first stage were
the underlying NoSQL system was populated with data –
1,000,000 entries with about 1KB each – and a second stage
where the benchmark client ran the specified workload. The
workload was configured to run 25 concurrent clients in each
machine, under a workload that amounted to 450 thousand
operations according to the following distribution: 45% Read
operations, 30% Scan operations, 12.5% Update operations

and 12.5% Multi-Update operations. All experiments were
performed under a uniform distribution of data in which all
keys selected by the YCSB client are equally likely to be
chosen.

2) Results: Figure 2 presents the results achieved for the
described experiments. In what concerns the latency evalua-
tion, the numbers depicted concern the average per-operation
latency of both YCSB instances from five independent runs.
Figure 2(a) shows that in all operations, independently from the
underlying NoSQL database the introduction of pH1 caused an
increase in latency, with the exception of the Multi-Update
operation. All these operations were hampered by the cost
of starting and ending each transaction, which justifies the
differences. However, in both NoSQL databases used, the
Multi-Update registered a smaller latency when pH1 was used.
This is due to the fact that when using pH1, each single
operation in the Multi-Update operation was performed in
batch as opposed to the respective NoSQL database without
pH1, where each Multi-Update operation is comprised of ten
single Update operations.

Cassandra Hyperdex
Native (K Op/sec) 1.336 2.886
pH1 (K Op/sec) 1.164 2.655

Penalty (%) 13 9

TABLE I: Relative throughput loss

In both runs, the introduction of pH1 and thus the provision
of transactional guarantees registered a very similar cost,
measured in throughput loss. Table I depicts the registered
difference where the use of Cassandra as the underlying
database accounted to 13% throughput loss, in comparison to
9% when using Hyperdex.

B. TPC-C

In order to verify the versatility of our middleware layer,
we used a significantly different workload. For this purpose
we used PyTPCC, an implementation of the OLTP standard
workload TPC-C for NoSQL databases, which allowed us
to make a comparison with Yahoo!’s OMID. We extended
PyTPCC in order to provide an implementation for HyperDex.

This workload uses 5 different types of transactions to
simulate a scenario where a company composed of several
warehouses, distributed across several districts, processes or-
ders placed by clients. The transactions performed by this
workload are comprised of several read and update operations
unlike the previous benchmark. TPC-C uses data scattered
along 9 different tables, where only 8% of operations are read
operations. The remainder 92% are update operations, which
characterizes TPC-C’s workload as write heavy.

The throughput of this workload is measured in tpmCs
or in other words transactions per minute of New-Order
transactions.

1) Configuration and tests: The evaluation presented in
this section comes as a result of two different experiments,
which enabled the comparison of the throughput penalty
introduced by pH1 and OMID. To achieve this comparison,
each experiment was divided in two settings, testing the



 0

 20

 40

 60

 80

 100

 120

Update Multi-Update Read Scan

La
te

nc
y 

(m
s)

Operation Type

HyperDex
pH1+HyperDex

Cassandra
pH1+Cassandra

(a) Per Operation Latency comparison

 0

 0.5

 1

 1.5

 2

 2.5

 3

HyperDex Cassandra

Th
ro

ug
hp

ut
 (O

p/
se

c 
x 

10
00

)

NoSQL database

Native
pH1

(b) Throughput comparison

Fig. 2: Assessment of the penalization introduced by pH1.

underlying NoSQL store used by the system with and without
the respective transactional systems.

Both experiments ran under a TPC-C workload character-
ized as follows: 45% New Order transactions, 45% Payment
transactions, 5% Order Status transactions and 5% Stock Level
transactions.

In both experiments, each run was also divided in two
stages: a first stage where the TPC-C database was populated
with 10 warehouses resulting in a database with roughly 5GB
and a second stage in which each client ran the specified
workload.

For the first experiment we considered OMID, which can
only operate with HBase as its underlying NoSQL database.
In this experiment we used a configuration comprised of 6
machines with the same specification as introduced for the
YCSB setup. The HBase cluster was deployed using 4 of the 6
machines in a configuration where one machine ran the HBase
Master node co-located with the HDFS Name Node and each
of the remaining 3, a Region Server co-located with a Data
Node. Besides the HBase cluster, one machine was devoted
to OMID’s transactional certifier and the remaining machine
ran one instance of the benchmark co-located with OMID’s
transactional client. For this experiment, the single instance of
the benchmark exercised a total of 100 concurrent clients, in
runs that lasted for 60 minutes.

For the second experiment we considered pH1 using Hy-
perDex as its underlying NoSQL database, in a configuration
comprised of 7 machines. The HyperDex cluster was deployed
in 4 of these 7 machines, in which one machine ran the
HyperDex Coordinator node and each of the remaining 3 ran
an HyperDex Daemon. As in the previous experiment, one
machine ran the transaction certifier of pH1 (the same used
in OMID), and each of the remaining two ran an instance
of the benchmark co-located with pH1, in a total of 50
concurrent clients each, totalling 100 concurrent clients. Also,
to provide fault tolerance, the NPVS nodes in these machines
were configured to use a full replication strategy.

2) Results: The results depicted in Figure 3 concern the
average of 5 independent runs for both experiments.

Concerning the first experiment, HBase without transac-
tional guarantees ranked at about 7,740 tpmC or new order
transactions per minute. As expected, there was a throughput

penalty when OMID was introduced for the TPC-C workload,
which ranked at about 1,857 tpmC or new order transactions
per minute. This results amount to a throughput penalty of
76%.

In the second experiment, Hyperdex without transactional
guarantees ranked at about 3,800 tpmC or new order trans-
actions per minute. Also as expected, there was a throughput
penalty when pH1 is introduced for the TPC-C workload. In
detail, this second experiment ranked pH1 at about 3,000 tpmC
or new order transactions per minute. This results amount to
a throughput loss of 22%. The depicted results are consistent
with those of YCSB, namely the introduction of transactional
guaranteed incurred in a throughput penalty.

 0

 1

 2

 3

 4

 5

 6

 7

 8

HBase OMID Hyperdex pH1

Th
ro

ug
hp

ut
 (k

 tm
pC

)

Fig. 3: Assessment of the penalization introduced by pH1.

When establishing a comparison with the results achieved
during the YCSB experiment, the slightly higher throughput
penalty registered in the current experiment is a clear conse-
quence of the write-heavy nature of this benchmark. Please
recall that while in the workload of the YCSB experiment
only 25% were write operations; the transactions of the current
workload are built from mostly read-modify-write operations,
which makes this difference expected.

HBase HyperDex
Native (K tmpC) 7.740 3.876
OMID (K tmpC) 1.875 -
pH1 (K tmpC) - 3.036

Penalty (%) 76 22

TABLE II: Relative throughput loss



The summary of results depicted in Table II shows that
pH1 achieved a throughput penalty almost 4 times lower than
OMID. This results are specially relevant since pH1 reuses the
transaction certifier module of OMID. Also, it is worth noticing
that a key difference between OMID and pH1 lies in how
operations are orchestrated at commit time. On the one hand, in
pH1 the instruction to flush the modifications of a transaction
only comes after a transaction is successfully committed by
the transaction certifier; while in OMID, write operations by
a transaction are actually persisted in the NoSQL database
at the time they are executed. With such mechanism, if the
certification of the transaction dictates that it should abort, the
respective modifications have to be rolled back, which does
not happen in pH1. In addition, in OMID the various tuple
versions are persisted in the NoSQL database, which implies
a greater effort to manage and retrieve them. On the contrary,
pH1 does not persist the older tuple versions in the NoSQL
database: they are transiently stored in the NPVS module.

Even though we cannot claim on pH1’s scalability due to
the rather small test setup used, we believe that the underlying
components of pH1, namely the TSO, do not currently harm
the chances for scalability. In OMID, the TSO is able to scale
to high transaction rates. Still our architecture is pluggable and
would allows us to use a more scalable option as [17].

Therefore, we can claim that the better results achieved
are the result of our contribution, which makes use of our
multi-version distributed cache as a way to achieve Snapshot
Isolation, surpassing the problems caused by not having to
rollback transaction modifications and relieve the NoSQL
database of the burden to persist and manage tuples versions.

VII. RELATED WORK

There are currently several projects that aim at provid-
ing transactional and strong data consistency guarantees over
NoSQL databases. Namely: CloudTPS [18]; MegaStore [19];
ElasTras [20]; Percolator [21]; OMID [13]; Warp [12]; Wal-
ter [22]; CumuloNimbo [17]. Also, projects as: SCORe [23];
GMU [24]; NMSI [25] have introduced protocols that leverage
the state of the art in partial and replicated transactional
systems.

The CloudTPS system offers transactional ACID guaran-
tees over any NoSQL implementation. To do so, it introduces
several local transaction managers (LTM). Each of them holds
a copy of a partition of the data held in the NoSQL database;
allowing several LTM instances to exist, and scale-out as
demand grows. Each instance will be responsible to ensure
the consistency in its own partition. With its multi-instance
architecture, the CloudTPS system uses a two phase commit
protocol to enable transactions that might hold data from
different partitions. In pH1, we reused some architectural
features of CloudTPS, such as the fact that is not tied a specific
NoSQL database and the possibility to have several instances
working together. However, pH1 distances from the CloudTPS
system as each instance is not responsible for a specific data
partition, but rather for the group of transactions that were
initialized within that specific transaction manager. Also, pH1
does not use mutual exclusion, but instead, timestamp based
concurrency.

The MegaStore and ElasTras follow a quite similar ap-
proach as the CloudTPS system. The main differences between
these projects and the pH1 middleware are some architectural
features and the isolation level used.

The Percolator system shares the same isolation level
as our contribution (Snapshot Isolation) however, it does so
by using a distributed approach over BigTable using mutual
exclusion primitives. The use of mutual exclusion primitives
eases conflict detection while performing write operations,
however, the fact that read only transactions also need to
acquire locks has a great impact in performance. pH1 steps
away from Percolator by using timestamp based concurrency
control and thus avoiding the use of locking primitives.

In contrast to Percolator, the OMID project implements
Snapshot Isolation but does it over HBase [15]. Like pH1,
OMID relies on timestamp based concurrency to offer Snap-
shot isolation over HBase, but the management of multi
version elements is done natively by HBase. In pH1 the
NoSQL database only hold the most recent data required by
the isolation criterion in a durable way. The versions held in
the NPVS only concern concurrent uncommitted transactions
and can be removed as soon as these transactions commit.

Warp is a transactional toolkit that operates on top of
HyperDex [11], providing a transactional context with ACID
guarantees. Warp operates under an one-copy serializable
isolation criterion, that is enabled by a new commit protocol
named linear transactions. Briefly, this new commit protocol
makes use of the underlying HyperDex deployment and its
server chain construction to perform two passes across each
chain. While on the first pass, servers ensure the readiness of
every tuple within a transaction, on the second, the last server
in the first chain decides if the transaction is to be committed
or aborted, and then forwards its decision the the remainder
servers in the chain.

SCORe proposes a partial replication technique along with
the introduction of validation and abort-free life cycle for
read-only transactions based on GMU. SCORe uses a 2PC
protocol for validation and persisting write operations. The
response to the client happens once all updates have been
flushed. Read-only transactions can be executed right away
and be exempted of any certification procedure. In comparison,
pH1 uses deferred writes for update transactions and read-
only transactions, although not blocking, may be executed in
a previous snapshot.

Walter and NMSI also introduce new variations for the
Snapshot Isolation criterion, enabling it to support replicated
data sources. Walter introduces Parallel Snapshot Isolation
(PSI) under which a transaction within a given replica is
able to observe a consistent snapshot and use a common
ordering. Between replicas, PSI ensures a causal ordering of
transactions, which the authors claim to enable scalability
while relying in asynchronous mechanisms to share transac-
tions across replicas. NMSI ensures that read only transactions
are never blocked, as in pH1, and genuineness as only replicas
involved make steps to execute.

CumuloNimbo is a PaaS platform that aims to bring the
transactional paradigm to cloud infrastructures. CumuloNimbo
provides syntactic and semantic transparency, allowing appli-
cations that run in a centralized infrastructure to be ported with



no modifications to work on top of this PaaS, and still benefit
from the high scalability and elasticity.

Although pH1 shares with the aforementioned projects,
the objective of providing transactional guarantees, it tries to
create a generic solution that may be used with any NoSQL
database. pH1 reuses some key architectural features, such as:
(i) multi-instance execution, (ii) timestamp based concurrency
and (iii) the Snapshot isolation level. However, pH1 positively
distances from projects like Percolator and OMID that are tied
to specific NoSQL implementations, contributing to a truly
generic solution, as it is able to provide Snapshot Isolation
even when working with NoSQL databases that do not have
support for versioned tuples.

VIII. CONCLUSION

In this paper, we presented pH1, a middleware layer that
attempts to cover the lack of transactional guarantees of most
NoSQL implementations today by proposing a non intrusive
transactional middleware layer that can be used on top of a
generic NoSQL database.

The approach is based on the client interface of the
underlying NoSQL database extending it with the capability
to perform operations in a transactional context. As the main
features of this middleware layer, we highlight: (i) the possi-
bility to execute ACID compliant transactions with Snapshot
Isolation and (ii) the fact that by extending the simple NoSQL
interface it has a minimal impact on the database clients.

We tested our prototype on top of Apache Cassandra
and HyperDex using two different benchmarks. In order to
evaluate the overall cost of adding transactional guarantees.
Firstly, we used Yahoo!’s widely used NoSQL benchmark,
YCSB, to evaluate the inherent cost of using pH1 in an
overall and per-operation basis. The achieved results showed
that the overall cost of introducing transactional guarantees is
moderate, namely 11% on average.

Secondly, we used an implementation of the OLTP TPC-
C workload to assess the versatility of our middleware, by
exposing it to a significantly different workload, mainly com-
posed by read-modify-write operations. We also established a
comparison with Yahoo!’s OMID, which provides Snapshot
Isolation transactions over HBase. The presented results show
that we were able to achieve a significantly lower throughput
penalty and still keep our middleware modular and generic to
any NoSQL database, when comparing with OMID, which is
tied to HBase. We are then led to conclude on the validity of
our approach and the positive consequences to offering strong
consistency over NoSQL stores.

ACKNOWLEDGEMENTS

We would like to thank D. Manivannan and the anony-
mous reviewers for their helpful comments. This work was
part-funded by project CoherentPaaS: A Coherent and Rich
PaaS with a Common Programming Model (FP7-611068) and
ERDF– European Regional Development Fund through the
COMPETE Programme (operational programme for competi-
tiveness) and by national funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) within project FCOMP-01-0124-
FEDER- 037281.

REFERENCES

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ANSI SQL isolation levels,” SIGMOD Rec., vol. 24,
no. 2, May 1995.

[2] D. R. K. Ports and K. Grittner, “Serializable snapshot isolation in
PostgreSQL,” Proc. VLDB Endow., 2012.

[3] S. Revilak, P. O’Neil, and E. O’Neil, “Precisely serializable snapshot
isolation,” in ICDE. IEEE, 2011, pp. 482–493.

[4] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Trans. Database Syst., vol. 30,
no. 2, pp. 492–528, Jun. 2005.

[5] M. Cahill, U. Röhm, and A. Fekete, “Serializable isolation for snapshot
databases,” ser. SIGMOD ’08. ACM, 2008.

[6] W. Vogels, “Eventually consistent,” vol. 52, no. 1. New York, NY,
USA: ACM, Jan. 2009, pp. 40–44.

[7] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec.,
vol. 39, no. 4, pp. 12–27, May 2011.

[8] A. Lakshman and P. Malik, “Cassandra - A Decentralized Structublue
Storage System,” in LADIS’09, 2009.

[9] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in STOCK,
New York, NY, USA, 1997.

[10] C. Team, “What’s new in Apache Cassandra 2.0,” Apache Cassandra,
Tech. Rep., 2013. [Online]. Available: http://www.datastax.com/
wp-content/uploads/2013/09/WP-DataStax-WhatsNewC2.0.pdf

[11] R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: A distributed,
searchable key-value store,” ser. SIGCOMM ’12. New York, NY,
USA: ACM, 2012, pp. 25–36.

[12] ——, “Warp: Multi-key transactions for key-value stores.” HyperDex,
Tech. Rep., 11 2013. [Online]. Available: http://hyperdex.org/papers/
warp.pdf

[13] Y. M, Ferro.D, Kelly.I, Junqueira.F, and Reed.B, “Lock-free transac-
tional support for distributed data stores,” ICDE, 2014.

[14] N. Carvalho, J. Pereira, and L. Rodrigues, “Towards a generic group
communication service,” in On The Move To Meaningful Internet
Systems, International Symposium on Distributed Objects, Middleware,
and Applications (DOA), R. Meersman and Z. Tari, Eds., vol. 4276,
2006, Proceedings Paper, pp. 1485–1502.

[15] L. George, HBase: The Definitive Guide, 1st ed. O’Reilly Media,
2011.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC’10, 2010.

[17] R. Jimenez-Peris, M. Patiño-Martinez, K. Magoutis, A. Bilas, and
I. Brondino, “Cumulonimbo: A highly-scalable transaction processing
platform as a service,” ERCIM News, 2012.

[18] W. Zhou, G. Pierre, and C.-H. Chi, “CloudTPS: Scalable transactions
for web applications in the cloud,” IEEE Transactions on Services
Computing, vol. 99, no. PrePrints, 2011.

[19] J. Baker, C. Bondç, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson,
J. M. L´eon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in (CIDR),
Jan. 2011, pp. 223–234.

[20] S. Das, D. Agrawal, and A. El Abbadi, “Elastras: an elastic transactional
data store in the cloud,” ser. HotCloud’09. Berkeley, CA, USA:
USENIX Association, 2009.

[21] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in SOSDI, 2010.

[22] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in SOSP, 2011.

[23] S. Peluso, P. Romano, and F. Quaglia, “Score: A scalable one-copy
serializable partial replication protocol,” in Middleware, 2012.

[24] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues, “When
scalability meets consistency: Genuine multiversion update-serializable
partial data replication,” in ICDCS, 2012.

[25] M. S. Ardekani, P. Sutra, and M. Shapiro, “Non-monotonic snapshot
isolation: scalable and strong consistency for geo-replicated transac-
tional systems,” in SRDS, 2013.


