
Holistic Shuffler for the Parallel Processing
of SQL Window Functions

Fábio Coelho(B), José Pereira, Ricardo Vilaça, and Rui Oliveira

INESC TEC & Universidade do Minho, Braga, Portugal
facoelho@inesctec.pt, {jop,rmvilaca,rco}@di.uminho.pt

Abstract. Window functions are a sub-class of analytical operators that
allow data to be handled in a derived view of a given relation, while
taking into account their neighboring tuples. Currently, systems bypass
parallelization opportunities which become especially relevant when con-
sidering Big Data as data is naturally partitioned. We present a shuffling
technique to improve the parallel execution of window functions when
data is naturally partitioned when the query holds a partitioning clause
that does not match the natural partitioning of the relation. We eval-
uated this technique with a non-cumulative ranking function and we
were able to reduce data transfer among parallel workers in 85% when
compared to a naive approach.

1 Introduction

Window functions (WF) are a sub-group of analytical functions that allow to
easily formulate analytical queries over a derived view of a given relation R.
They allow operations like ranking, cumulative averages or time series to be
computed over a given data partition. Listing 1.1 presents one window function
that is expressed in SQL by the operator OVER, together with a partition by
(PC) and an order by (OC).

Listing 1.1. Window Function example.

select rank () OVER(Pa r t i t i on By A Order By B) from R

The growing Big Data trend is shifting the processing of these functions to
cloud environments deploying computation to a distributed mesh of computing
nodes, where data and processing are naturally partitioned. The distributed
execution of queries leverages on data partitioning as a way to attain gains
associated with parallel execution. Nevertheless, the partitioning strategies are
typically governed by a primary table key, which only benefits the cases where
the partitioning of a query matches that same key as depicted in Fig. 1. When
the query has to partition data according to a different attribute in a relation,
it becomes likely that the members of each partition will not all reside in the
same node, which compromises the final result for a subgroup of non-cumulative
analytical operators, such as rank, since all members of a distinct partition need
to be handled by a single entity, in order not to incur in unnecessary sorting
steps, which is the most costly operation [3].

c⃝ IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
M. Jelasity and E. Kalyvianaki (Eds.): DAIS 2016, LNCS 9687, pp. 75–81, 2016.
DOI: 10.1007/978-3-319-39577-7 6

76 F. Coelho et al.

Fig. 1. Data partitioning according to the primary key (PK).

In this paper we propose an Holistic shuffler which according to the par-
titioning considered by the ongoing window function will instruct workers to
handle specific partitions according to the data sizes they hold, minimizing data
transfer among workers. We present the design and action of the shuffler which
is based on prior knowledge of the data size distribution of each column in the
relation, reflecting the data size held in each partition rather than considering
the actual data value as seen in common use of database indexes. The prelimi-
nary evaluation of our mechanism shows that our approach is able reduce data
transfer by 85% when compared with a naive approach.

Roadmap: In the remainder of this paper, Sect. 2 introduces the distribution
considered and Sect. 3 presents the design and architecture of the Holistic Shuffler
we propose. Section 4 accesses our approach. Section 5 briefly reviews related
work and overviews our contributions.

2 Data Transfer Statistics

The use of indexes [5], histograms [6] and other heuristics are now a staple fea-
ture in modern database systems, as they allow to expedite operations, avoiding
full scan operations over relations. More recently, these strategies started to
be present in cloud infrastructures [4], allowing for processing on primary and
secondary attributes.

Fig. 2. Partition and Global Histogram construction.

Histograms are commonly used by query optimizers as they provide a fairly
accurate estimate on the data distribution, which is crucial for a query planner.
An histogram allows to map keys to their observed frequencies. Database systems
use these structures to measure the cardinality of keys or key ranges. Without
histograms, the query planner would have to assume uniform distribution of data,

Holistic Shuffler for the Parallel Processing of SQL Window Functions 77

leading to incorrect partitioning, particularly with skewed data [7], a common
characteristic of non synthetic workloads.

When a query engine has to generate parallel query execution plans to be
dispatched to distinct workers, each one holding a partition of data; having
histograms like the aforementioned ones is an asset, but it does not completely
present an heuristic that could be used to enhance how parallel workers would
share preliminary and final results. This is so as such histograms only introduce
and insight about the cardinality of each partition key. In order to improve
bandwidth usage, thus reducing the amount of traded information, the histogram
also needs to reflect the volume of data existing in each node, instead of just
considering the row cardinality.

2.1 Histogram Construction

The cornerstone of the contribution we present is based on merging the knowl-
edge for row cardinality and average row size for each partition. Both could be
seen as global metrics that a given query engine may be able to produce and
maintain, as this type of information is already used for similar purposes. The
cadence at which the histogram should be updated was left outside of the scope
of this paper due to space constraints. Nevertheless we note it as a relevant
topic, since the optimal performance of any heuristic based approach is entirely
connected with its own representativity. Figure 1 presents the result of hash par-
titioning a relation in 3 workers, according to key PK. The histogram to be built
will consider the cardinality of each value in each attribute of the relation for
each single partition. Since the construction of the histogram should not be done
during query planning time, it cannot know beforehand the partitioning clauses
induced by queries. As such, we consider all distinct groups of values in each
attribute. Each partition will contribute to the histogram with the same num-
ber of attributes as the original relation, plus a key, reflecting the data in that
partition. Afterwards, each worker should be able to share its partial histogram
with the remainder workers in order to produce the global histogram.

Algorithm 1. Histogram Construction in Partition n
1: procedure count distinct keys(attr)
2: foreach key : attr
3: count ← count(distinct)
4: size ← size(key)
5: hist Pn(key, attr) ← (count, size)

6: Pn ← [attr1, attr2, attrn]
7: hist Pn ← [key, attr1, attr2, attrn]
8: function Global Histogram(Pn)
9: for each attr : Pn

10: count distinct keys(attr)

78 F. Coelho et al.

Algorithm1 governs how each partition histogram (hist Pn) should be built.
Briefly, each attribute (attr) is traversed and for each key, the total number of
distinct occurrences of that key is computed, together with its size. The pair
of values is then added to the histogram. The tables in Fig. 2(a), (b) and (c)
present the resulting histograms for each partition according to Fig. 1.

When all workers have completed computing the histogram regarding its
own physical partition, they need to share it with a designated worker, so that
the global histogram is also computed. The global histogram will traverse each
physical partition histogram and evaluate, for each key, which is the physical
partition that holds the largest volume (in size, evaluating the cardinality ×
average row size). The table in Fig. 2(d) depicts the final result of the global
histogram. The global histogram will have the same number of attributes of each
partition histogram. Please note that the keys for both the physical partition and
the global histograms are not the primary keys of the relation, but rather the
distinct values found in each attribute during the construction of each partition
histogram. Therefore, we provide a brief example on how to read this histogram.
Consider that a given query requires data to be partitioned according to attribute
A. Then, the histogram informs that key 1 and 2 have the largest volume of data
respectively in partitions p1,p3 and, and regarding key 3, partitions p2 and p3
both hold the same volume.

3 Holistic Shuffler

The Holistic Shuffler leverages on the data distribution data collected by the
Global Histogram in order to expedite shuffling operations. The Shuffle operator
can be translated into a SEND primitive that forwards a bounded piece of data
to a given destination, considering the underlying network to be reliable. During
the workflow for processing a window operator, there are two different moments
where data needs to be shuffled. The first moment occurs immediately after the
operator starts, and its goal is to reunite partitions, thus fulfilling the locality
requirement. The second moment occurs in the end of the operator and it is
intended to reconcile partial results in order to produce the final result.

Both operators define distinct goals regarding the destinations that need to
be chosen for each forwarding operation. Therefore, we establish two shuffle oper-
ators, the local shuffle and the global shuffle contemplating each set of require-
ments. The Local Shuffle will dispatch rows of a given partition to the worker
responsible for that partition as dictated by the Global histogram. Algorithm2
depicts the behavior of the operator. As each row is read from scanning the
partition, the value contained in that row for the attribute that dictates the
partition clause is collected (partition). This value is then used together with
the partitioning attribute to obtain the destination worker from the global his-
togram. If this row is not meant to be handled by the ongoing worker, then it is
forwarded to the correct worker.

Holistic Shuffler for the Parallel Processing of SQL Window Functions 79

Algorithm 2. Local Shuffle Operation
1: worker id

2: row ← [key, attr1, attrn]

3: hist Pn ← [key, row]

4: partition by ← attr1
5: function LShuffle(local partition)

6: for each row : local partition

7: partition ← row[attr1]

8: destination ← hist pn[partition, attr1]

9:
10: if worker id ̸= destination then

11: SEND(destination, row)

Algorithm 3. Global Shuffle Operation
1: worker id
2: master worker ← hist Pn

3: function GShuffle(aggregated data)
4: foreach row : aggregated data
5:
6: if worker id ̸= master worker then
7: SEND(master worker, row)

The Global Shuffle will forward all aggregated rows to the worker that will
hold the overall largest data volume, which will from now on designate as master
worker. By instructing the workers that hold the least volume of data, we are
promoting the minimal usage of bandwidth possible. Algorithm3 reflects the
behavior for the Global Shuffle operator. The input data considered by the Global
Shuffler is composed by the ordered and aggregated rows, both produced by
earlier stages of the worker work flow. Such rows will now have to be reconciled
by a common node, which for this case will be dictated by the master node,
as previously stated. Upon start, the Global Shuffle operator will interrogate
the histogram regarding the identity of the master node. Afterwards, as each
aggregated row is handled by the operator, it is forwarded to the master worker,
if the master node is not the current one.

4 Evaluation

Along the current Section, we present the preliminary evaluation for the contri-
butions we propose. In order to evaluate our contribution, we used RX-Java [2]
to simulate the parallel execution of the window operator in several workers.
This framework establishes bindings to the Java language, enabling it to use
the semantics of Reactive Programming [1]. We selected this framework as it
allows to establish a series of data streams, mimicking the window operator data
flow. Throughout the evaluation, we employed a single ranking query (Listing 4)
holding a window function over a synthetically-generated relation as in TPC-
C’s Order Line relation, holding 10 distinct attributes. The values considered
for each of these attributes were distributed according to TPC-C’s specification.
The generated data composes 100 distinct partitions, each one with 500 rows.
Globally, the Order Line relation held 500K tuples.

select rank () OVER (pa r t i t i o n by OL D ID order by OLNUMBER)
from Order Line

The experiments were performed on a system with an Intel i3-2100-3.1GHz
64 bit processor with 2 physical cores (4 virtual), 8GB of RAM memory and
SATA II (3.0Gbit/s) hard drives, running Ubuntu 12.04 LTS as the operating
system.

80 F. Coelho et al.

 1
 2
 4
 8

 16
 32
 64

 128
 256

 0 2 4 6 8 10 12

K
 tu

pl
e

ro
w

s

workers

Naive Holistic

(a) Average Forwarded Rows for both stages

 1

 2

 4

 8

 16

 32

 64

 0 2 4 6 8 10 12

K
 tu

pl
e

ro
w

s

workers

Naive Holistic

(b) Forwarded Rows for the Shuffle Local

Fig. 3. Comparison results between the Naive and Holistic approach.

For comparison purposes, we report the results by using a naive approach
and our Holistic Shuffler. The naive approach, instead of using any knowledge to
forward data, disseminates all data among all participating workers. The results
in both pictures are depicted according to a logarithmic scale, in the average of
5 independent tests for each configuration.

The Holistic technique we propose required in average only 14.7% of the rows
required for the Naive approach to reunite all the partition in each computing
node, as depicted in Fig. 3(a). The large difference is justified by the fact that the
naive approach reunites partitions by forwarding data among all participating
nodes, which intrinsically creates duplicates in each node, growing in proportion
to the number of nodes. The Local Shuffling stage is depicted in Fig. 3(b), in
which we varied the number of computing nodes that participate in the compu-
tation of the ranking query, verifying the number of rows that were forwarded
according to each technique.

5 Related Work and Conclusion

Despite its relevance, optimizations considering this operator are scarce in the
literature. The work by [3] or [8] are some of the exceptions. Respectively, the
first overcomes optimization challenges related with having multiple window
functions in the same query, while the second presents a more broad use of
window functions, showing that it is possible to use them as a way to avoid
sub-queries and reducing execution time down from quadratic time.

In this paper we proposed an Holistic Shuffler, tailored to be used for the
efficient parallel processing of queries with non-cumulative window functions.
The design is based on a statistical method that can be used to reduce the
amount of data transfered among computing nodes of a distributed query engine,
where data is naturally partitioned. Moreover, the preliminary evaluation we
present shows that by applying this methodology we were to reduce in average
85% of data transferred among computing nodes. As future work, we plan to
translate this approach to a real query engine.

Acknowledgments. This work was part-funded by project LeanBigData: Ultra-
Scalable and Ultra-Efficient Integrated and Visual Big Data Analytics (FP7-619606),

Holistic Shuffler for the Parallel Processing of SQL Window Functions 81

and by the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation - COMPETE 2020 Pro-
gramme within project ≪POCI-01-0145-FEDER-006961≫, and by National Funds
through the FCT – Fundação para a Ciẽncia e a Tecnologia (Portuguese Foundation
for Science and Technology) as part of project UID/EEA/50014/2013.

References

1. Reactive programming (2015). http://reactivex.io
2. Reactive programming for java (2015). https://github.com/ReactiveX/RxJava
3. Cao, Y., Chan, C.Y., Li, J., Tan, K.L.: Optimization of analytic window functions.

Proc. VLDB Endowment 5(11), 1244–1255 (2012)
4. Chen, G., Vo, H.T., Wu, S., Ooi, B.C., Özsu, M.T.: A framework for supporting

DBMS-like indexes in the cloud. Proc. VLDB Endowment 4(11), 702–713 (2011)
5. Garcia-Molina, H.: Database Systems: The Complete Book. Pearson Education,

India (2008)
6. Poosala, V., Ganti, V., Ioannidis, Y.E.: Approximate query answering using his-

tograms. IEEE Data Eng. Bull. 22(4), 5–14 (1999)
7. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved histograms for selec-

tivity estimation of range predicates. ACM SIGMOD Record 25, 294–305 (1996).
ACM

8. Zuzarte, C., Pirahesh, H., Ma, W., Cheng, Q., Liu, L., Wong, K.: Winmagic: sub-
query elimination using window aggregation. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pp. 652–656. ACM
(2003)

