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Abstract—In this paper we discuss the development and clinical
evaluation of a wireless platform for health signs sensing. The
sensors measure physical activity, ECG, blood oxygen saturation,
temperature and respiratory rate. An important aspect of the
approach is that the sensors are integrated into one waist-worn
device. A mobile phone collects data from this device and uses
data fusion in the scope of a decision support system to trigger
additional measurements, classify health conditions or schedule
future observations. In these decisions, the user’s current physical
activity plays an important role as the validity of many health
signs measurements is strongly related to physical activity. Due
to the integration of the sensors and the use of data fusion it is
possible to accurately identify health risks and to react promptly.
During clinical trials, for which proper ethical approval was
obtained, the system was used by healthy elderly volunteers in
Limerick (Ireland) and Ancona (Italy). Results of these trials are
also discussed in this paper.

I. INTRODUCTION

Throughout the world, population characteristics are chang-
ing at an alarming rate [1]. For example, world-wide the num-
ber of citizens 60 years or over was estimated to be 688 million
in 2006. By 2050 their numbers will have increased to almost
two billion. This demographic trend is largely due to the vast
improvements in health care and ironically, it is exactly this
important aspect of our society that will suffer most. Recently
the European FP6 project CAALYX [2] (Complete Ambient
Assisted Living Experiment) was successfully completed. In
this project with partners from 6 different European nations,
a suite of sensors in a body area network is used to gauge the
medical condition of elderly users, thus lessening the strain
on traditional health services. The physiological parameters
measured in the CAALYX system are: blood pressure (BP),
heart rate (HR), blood oxygen saturation (SpO2), temperature,
respiratory rate and weight. A common problem with the
ageing is an increase in the incidence of falls due to a general
deterioration in motor control and in the integrity of musculo-
skeletal structures. The results of a fall can be dramatic,
leading to long hospitalisation and, frequently, death as a direct
or indirect consequence of the fall [3]. For this reason, and as
recent physical activity is an important factor in determining
whether or not it is suitable to perform a certain measurement

at a particular time, a falls and mobility monitor was integrated
with an ECG, SpO2 and temperature sensor into one de-
vice, dubbed the ”wearable light device” (WLD). The weight
scales and blood pressure meter are stand-alone devices that
communicate with the system through a pc application. The
elderly people are equipped with the WLD, which wirelessly
relays the gathered data to a 3G enabled phone. The data are
then relayed to a server, which can be consulted by health
practitioners. The server relays events and alerts automatically
to a care centre specialised in processing these events and
alerts. Figure 1 illustrates the CAALYX system. This paper

Fig. 1. The CAALYX system

discusses the design and technical and clinical tests performed
with the WLD. Due to space constraints the other parts of the
CAALYX system will not be further discussed in this paper. In
section II the design and development of the WLD, the sensors
it constitutes and the software necessary to control the device
are described. Section III details the clinical trials performed
with the sensors and conclusions can be found in section IV.

II. DESIGN OF THE WIRELESS HEALTH SENSOR PLATFORM

A. Hardware

The wireless health sensor platform consists of an ECG
monitor, SpO2 sensor, temperature sensor and fall and mobility
sensor. By combining measurements from the ECG monitor

978-1-4244-5335-1/09/$26.00 ©2009 IEEE 1678 IEEE SENSORS 2009 Conference



Fig. 2. WLD hardware

and the SpO2 sensor, a measure of the respiratory rate is ob-
tained indirectly. The thus obtained physiological parameters
can be used to diagnose a wide range of health issues. To
ensure a high quality of gathered data, mobility information
is used to schedule the measurements. The WLD hardware is
depicted in figure 2.

1) ECG sensor: The ECG sensor consists of an amplifi-
cation stage with integrated electrode contact measurement
functionality. The ECG waveform is recorded with a resolution
of 24 Bits and a sample rate of 1 kHz in order to obtain high
quality signals as a basis for further processing. To suppress
artifacts and reduce base line drift the one channel ECG uses
an additional third electrode. The raw ECG signal is filtered
to reduce the always present 50/60 Hz noise caused by the
mains frequency. Furthermore a bandpass filter is applied
to reduce several other noise sources. After filtering, the
processed signal is fed into the r-wave detector. The resulting
time stamps of the r-waves are used to calculate the heart
rate with high precision. In order to suppress false readings
due to artifacts, the WLD performs a plausibility analysis
of the measured heart rate data and if a measurement is
not considered valid, a zero measurement is sent to indicate
that a measurement indeed has taken place. Those invalid
measurements are filtered by the software on the N95 and
only the remaining valid measurements are transmitted to the
server. A further analysis of the ECG signal is used to extract
features required to determine the respiratory rate (RR). Those
are:

• The energy of the r-wave
• Variations in heart rate
• Variations in Pulse Transit Time (PTT)

The respiratory rate is calculated from different signals and
the results are weighted for their quality and then a selection
is combined to the output. As the signals apart from the ECG
(PPG, PTT) depend on the finger to be in the finger clip,
in most cases only the ECG was used for calculation. The
RR calculation is very sensitive to artifacts in the ECG as the
algorithm it is based on has to extract very subtle features from
the ECG signal. Therefore a strict classification for validity is

done with the resulting values and only those gained from
stable signals of high quality are labelled as valid. Under
laboratory conditions it was observed that only when a person
is sitting and not speaking or moving energetically, a reliable
output can be gathered.

2) Blood Oxygen Saturation: A pulse oximeter is integrated
in the WLD and enables the non invasive determination of
the blood oxygen saturation. For the measurement process the
absorption of light of two different wavelengths through the
finger is determined. The patient wears a flexible finger clip
that has the light sources and detectors integrated. In addition
to the SpO2, a photoplethysmograph (PPG) is recorded and
used as a source of information for the respiratory rate
detection. The processing of the recorded signal is complex
and therefore is performed by a separate micro controller.
Through a combination of the ECG and the PPG data, the
pulse transit time can be determined. This is the time a pulse
wave takes to travel from the heart to an extremity (i.e. the
finger with the clip here). The WLD classifies the state of
the sensor and the reliability of the measurements in several
ways and is capable of recognizing and reporting a number of
problems (e.g. too much ambient light and motion artifacts).
Importantly only when a finger is detected to be inserted and
the sensor has done a first analysis of the pulse waves and a
self calibration is performed, measurements classified as valid
are delivered.

3) Temperature: The temperature is measured with a skin
surface sensor that uses a temperature dependent resistor that
is integrated in a flat disc. The sensor was positioned in skin
fold in the groin area of the user. The resulting measurement is
corrected with calibration parameters in the main processor of
the WLD. A new temperature value is obtained every second.

4) Fall and Mobility: The fall sensor is based on the
measurement of acceleration in three degrees of freedom. The
algorithms run on a Texas Instruments MSP430F1611. This
processor was chosen for its low power consumption, sizeable
memory (48kB flash with 256B user flash and 10kB RAM) and
relatively high speed (8MHz). The MSP430F1611 is equipped
with a 16 bit RISC processor, 3 DMA channels, a 12 bit
ADC converter with 16 channels, a 12 bit DA converter, a
hardware multiplier, 2 independent timers, 2 USARTs which
can implement UART, SPI or I2C communication and a watch
dog. The Freescale MMA7261QT tri-axial accelerometer is
a low cost accelerometer with selectable outputs between
±2.5 − 10g1. The principle of operation is based on sensing
changes in capacity due to flexing of moveable beams under
the influence of accelerations. With a power consumption of
500µA, the sensor is ideally suited for low-power applications.
The measured accelerations are filtered using on-board single
pole switched capacitor filters and can be directly fed to an
AD converter.

5) Geo referencing: Every minute, the GPS receiver in the
mobile phone will attempt to obtain a GPS fix. This period
was defined after making a trade-off between power efficiency

1g Is the gravitational constant in m
s2 .
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and the required precision with which the location of the
elder needs to be known. As elderly users will often be in
their own homes where it will be difficult to obtain a reliable
GPS fix, a mechanism to detect this situation was included in
the CAALYX system. Upon detection of a wireless link with
hardware in the home, the N95 notified the system of this fact
thus offering an alternative positioning method.

B. Software

The mobile phone software was built on J2ME (Java for
mobile) technology, which is available for the majority of
commercial mobile phones including the Nokia N95 used in
the CAALYX system. The software uses the standard Java
Application Programming Interfaces (API’s) defined by the
Java Collections Framework (JCF), to interact with the mobile
device’s resources, such as the Java Bluetooth specification
(JSR 82), Java location specification (JSR 179) to access
the GPS chipset of the N95, and the Java Web-Services
specification (JSR 172), to interact with the Caretaker’s Web
services. Although defined by the Java community, the actual
implementation of these API’s is done by the manufacturers
of the mobile devices. As a result, the phone based CAALYX
software is portable across different devices. The phone based
control software is responsible for data collection from the
WLD, the correct inference of the user’s health status from that
data, and for reporting critical situations to the health server.
Additionally, this software is responsible for the execution
of scheduled monitoring procedures. The inference process
uses medical knowledge and inference rules with threshold
values that are user specific. Rules and thresholds are down-
loaded from the health server. In addition to reporting critical
situations, this software is also responsible for detecting the
position of the user using the GPS chipset of the mobile phone.
The position is used to geo-reference the alerts, as well as to
detect wether the user is lost or disorientated.

1) Observation Patterns and Observations: Conceptually,
Observation Patterns are a procedure composed of a set
of process steps, in which it is possible to define a work
flow for a sensor-based application, featuring data collection,
data fusion and data classification. The observation patterns
are encoded using the XML language and follow an XML
scheme, which has been specifically designed to be used
in this prototype. This scheme uses the same concepts and
types of instructions as the ones used in the Sensor Model
Language [4] for the definition of process chains, but is
slightly different in the actual encoding to keep overhead to
a manageable size. The definition of an observation pattern
may be divided in two parts: entry points and the actual
process steps which define the observation work flow. The
entry points can be the desired monitoring schedule for each
observation, the health events that trigger a specific process
chain or context restrictions. In this particular prototype, an
important context restriction was the desired physical activity
state to start an observation procedure, such as being at rest.
The execution of an observation pattern encompasses three
types of process steps: data collection, data fusion and finally

Fig. 3. An Observation pattern Workflow example

data classification. The data collection establishes which vital
signs need to be collected and in what order. Observation data
originating from health sensors is then fused and higher level
information is extracted. The actual fusion of information is
managed by a set of domain-specific axioms which build up
and constitute a decision tree, relating the measured physical
parameters to user-specific thresholds. Certain branches of
the decision tree may trigger other process chains, in which
new measurements are obtained and new rules are applied.
The data classification step evaluates the conditions from the
decision tree that were activated during the previous step,
leading to a conclusion concerning the user’s health status
and corresponding priority level. In figure 3 an example of an
observation pattern can be seen.

Observations are a description of a finite event. In the
CAALYX system, Observations were the result of the execu-
tion of the observation pattern procedures, and they aggregated
all the relevant results from such procedures, such as vital sign
measurements and health conditions verified. Observations
provide the following information:

• Measurements
• Conclusions
• Level of Priority

The concept of observation was adopted from the Observation
Adaptive Model Pattern [5], proposed by Joseph Yoder .

2) Logical Architecture: The logical architecture of the
mobile device, follows a black-board style [6]. This type of
architectures is used mainly in artificial intelligence systems,
and conceptually it consists of a set of independent knowledge
sources, that publish facts on a central repository, where data
becomes available to all knowledge sources. Once new facts
are published on the repository, it notifies each of the knowl-
edge sources about the new facts. This particular architecture
was chosen to allow a hybrid event-oriented/scheduled ap-
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Fig. 4. Logical Architecture for the Mobile Phone Control Software

proach to save processing resources, and to allow components
to be independent of each other. This independence maximizes
component reusability from a development perspective, but
it also improves reliability in runtime, since failures are not
propagated between components. There are several knowledge
sources within this software, that are responsible for handling
the different resources and processing tasks:

• The Observation Engine knowledge source
• The Sensor Network knowledge source
• The Health Server Interface knowledge source
• The Location knowledge source

The Observation Engine knowledge source is the most
important component in the mobile phone software, since
it is responsible for all control and decision processes. The
approach used relies on the execution of the work flow defined
in section II-B1, which is started when health events are
verified or when time-scheduled events are triggered. This
way, a complete monitoring approach is provided, since the
scheduled events overcome the possible incompleteness of a
strictly event-driven approach. This knowledge source is able
to listen to all types of relevant events of the observation
patterns that are being executed and to interpret all types
of steps that constitute the observations. The collection of
measurements is achieved by publishing requests in the repos-
itory to obtain measurements. These requests are attended to
by the sensor network knowledge source, which will publish
the measurements when they are available. This component
is able to follow the work flow defined by user observation
patterns (section II-B1). The execution starts when health or
scheduled events are posted on the repository. The scheduled
events overcome the possible incompleteness of a strictly
event-driven approach, since it can happen that no health
events are raised and thus no observations are generated. The
existence of such type of events guarantees that the mini-
mum required health information is obtained. The observation
engine is capable of executing all observation patterns. The
most complex instructions are the ones that handle the mea-

surement collection. Due to the fact that measurements may
not be available when required, these instructions require an
asynchronous mechanism. This mechanism was implemented
by publishing requests in the repository, which are monitored
by the sensor network. When measurements are available, the
sensor network will post them back to the repository, and the
measurements will be available to be used by the observation
engine. To improve the effectiveness of this mechanism, a
cache strategy based on time depreciation was implemented.
As a result measurements can be used by different observation
patterns during a certain time window.

The Sensor Network knowledge source uses the Bluetooth
stack of the mobile phone to interact with the Wearable Light
Device, by transmitting messages following the protocol de-
fined. The functionalities provided by this knowledge source,
are to publish the health, fall, and activity report events in the
repository and configure the Wearable Light Device to report
health events according to the user’s specific thresholds. In
addition, this knowledge source is able to receive and execute
requests to collect specific measurements. After requests are
received, the sensor network knowledge source interacts with
the WLD to obtain the measurements, applies filtering tech-
niques (such as averaging) over those measurements and posts
the resulting data in the repository.

The Health Server knowledge source guarantees the reli-
able bi-directional exchange of medical information with the
server. It receives Observation Patterns from the server and
integrates them in the repository. Additionally it transmits all
observations, fall events, health events and physical activity
reports that are detected within the system.

The Location knowledge source is responsible for the
interaction with the built-in GPS of the Nokia N95. It collects
the GPS positions of the elderly person, and posts these
positions in the repository, so that they can be attached to the
alerts and observations that are transmitted to the server. This
component is also responsible for all geodetic calculations
necessary to detect if the user is too far away from a set of
points.

3) Embedded WLD software: The software running on the
WLD consists of several parts that run within a preemp-
tive multitasking environment. The following main functional
blocks can be identified:

• Main state machine and system management
• ECG recording and filtering
• Joint PPG and ECG analysis (heart rate, ptt, respiratory

rate)
• Medical Event Monitor
• Communication with the pulseoximeter
• Communication with the fall sensor
• Bluetooth communication
• Power management

The Main state machine handles non medical events that
affect the device behaviour including commands received
by Bluetooth. Additionally the power supply and results of
continuous self-test are monitored here. The recorded ECG
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is immediately filtered after recording and then written to a
buffer.

Several ECG Analysis tasks read from this buffer and feed
their analysis results a a set of FIFO buffers.

The Medical Event Monitor constantly compares the anal-
ysis results with configurable thresholds if the corresponding
vital sign is configured for monitoring. To calculate advanced
parameters like the PTT, data streams from different sources
must be joined and precisely correlated. Therefore the low
rate data from the pulseoximeter is tagged with high resolution
time stamps to be aligned with the ECG signal. Any occurring
clock skew between the different data sources is detected and
corrected by comparing fill rates and fill levels in the buffers.
Low level communication with the pulseoximeter, fall sensor
and Bluetooth module take place in interrupt routines to keep
the latency small and avoid data loss.

Bluetooth communication takes place in separate tasks.
The information to be transmitted is put into a send queue and
multiplexed in packets of different types before transmission
to the Bluetooth communication module takes place. In order
to simplify the pairing and search process of the Bluetooth
connections, the WLD has the role of a slave and will
accept the connection of every master that can successfully
authenticate itself and has the same version number of the
used transmission protocol. The fall and mobility sensor, as
an independent device housed in the WLD, can utilize the
Bluetooth functionality from the latter. This cable replacement
feature is realized by tunnelling the data stream from the fall
and mobility sensor multiplexed with all other data streams
through the Bluetooth connection. A demultiplexer in the
phone based software can easily extract the fall and mobility
sensor’s data and thus a totally independent communication
with this sensor is obtained.

The Power management includes monitoring of the battery
voltage and detection of a connected charger. When a charger
is connected, the device will switch itself off such as to prevent
confusing the external charger circuitry by drawing current
other than for charging the batteries.

4) Embedded fall and mobility sensor software: The fall
and mobility sensor continuously monitors the acceleration of
the user. Using appropriate thresholds, both in acceleration
and in time, the algorithm establishes whether the user has
fallen and whether or not the user has recovered from this
fall. While making its decisions, the algorithm takes into
account the orientation and position of the user, the time (s)he
needs to recover from a stumble and the relative time that
the user spends lying, sitting or standing after a suspected
fall. In addition to giving reliable information as to whether
family, care givers or emergency services should be warned,
the algorithm also assists health carers to assess the patient’s
well-being and mobility trends over a much longer time-
scale. This is done through the extraction of mobility data
from the acceleration measurements. Using a state machine
the 3D acceleration information is used to constantly track
the user’s current activity. This information is gathered in
mobility reports, which summarise the relative time spent

sitting, lying, standing and walking. These reports are sent
to the mobile phone on a regular basis to aid the software
on the mobile phone in choosing an appropriate scheduling of
measurements. Further functionality of the fall and mobility
sensor includes communication protocols using Bluetooth, a
dedicated versatile high-level message protocol, a calibration
facility for the onboard accelerometers and local storage of
accelerometer data, mobility data and generated messages on
an on-board µSD card.

III. CLINICAL TRIALS

A. Clinical Trials in Limerick

The fall and mobility sensor hardware integrated in the
WLD was initially used in trials performed in Limerick (Ire-
land). Both fall trials and trials identifying activities of daily
living (ADL) were performed. Fall trials were performed with
young health subjects and ADL trials were performed with
both healthy young volunteers and healthy elderly volunteers.
The simulated falls study involved 10 young healthy male
subjects performing simulated falls onto large crash mats. The
subjects fell from a specially constructed platform under the
supervision of a physical education professional. Each subject
performed eight different fall types and each activity was
repeated three times. The subjects ranged in age from 24-
35 years (27.2±3.61 years), body mass from 68 to 111 kg
(84.2±14.43 kg), and height from 1.65 to 1.96m (1.81±0.102
m). All gave written informed consent and the University
of Limerick Research Ethics Committee (ULREC) approved
the protocol. The simulated falls performed were: forward
falls, backward falls, lateral falls left and right all performed
with both legs straight and with knee flexion similar to those
performed in the study by [7]. The results of these trials show
excellent sensitivity of the fall algorithms for the various falls
from a standing to a lying position. Only 1 fall out of a total of
240 was not identified as a fall by the fall and mobility sensor.
Further trials investigated the capabilities of the fall algorithms
to correctly identify various ADL as non-fall events. These
trials were conducted inside the University of Limerick and in
the Limerick region with ethical approval of the ULREC. In
addition to the 10 young healthy subjects, the study involved
10 elderly volunteers (>65 years) performing scripted ADL
in their own homes. All volunteers performed 3 repetitions
of 6 different ADL, thus leading to a total of 360 activities
performed. Only 1 ADL was detected as a fall, which leads
to an overall sensitivity of 99.7 %. In a further experiment,
elderly volunteers used the device in an unscripted trial for
a period of up to 8 hours. During this period, the elderly
volunteers were free to perform their normal daily routines,
whilst the fall and mobility monitor detected potential falls
and extracted the user’s mobility patterns. In these trials it
was established that the integrated device did not obstruct the
elderly user significantly in carrying out his/her daily routine.

B. Clinical Trials in Ancona

Upon the successful completion of the trials in Limerick,
the CAALYX system was deployed in Ancona (Italy) and
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used by both care-home based and independently living elderly
citizens. In these clinical trials, which were performed over a
3 month period, 10 elderly volunteers, 4 nurses, 2 care givers
and 1 general practitioner used the system. At the same time
the system was used remotely by geriatricians to monitor the
trial results and provide feedback to the elder or their general
practitioner if necessary.

1) SpO2: It was found that the time between inserting
the finger and obtaining the first reliable reading, depends
on several parameters (physical features of the user, motion
of the sensor, ambient light) and was measured to be in
the range of 12 seconds to 1.5 minutes. Therefore users
were asked to keep their finger in the clip for about two
minutes. The resulting percentage of valid measurements was
71%. Additional filtering of invalid measurements on the N95
resulted in an overall percentage of measurements considered
valid by the doctors of 82.4%.

2) Temperature: While the general function of the temper-
ature sensor had been proven under laboratory conditions the
results in the trials showed a relatively low reliability. This was
caused mainly due to the dependence of the the quality of the
measurements on the immediate surroundings of the sensor.
The medical validation shows that about 40% of the values
can be correctly correlated to the user’s body temperature.

3) Heart Rate: The percentage of heart rate measurements
that were classified as valid by the WLD was 78%. That means
that 22% of the attempted measurements were not available
(e.g. caused by low contact quality) or were disturbed by noise
(e.g. generated by motion artifacts). The combination of clas-
sification in the WLD and interpretation of these results in the
N95 resulted in a total percentage of heart rate measurements
considered valid by doctors of 98%.

4) Respiratory Rate: As reported in section II-A the respi-
ratory rate can only be accurately measured if the subject is at
rest. This was confirmed by the results from the trial. From the
transmitted measurements 14% were marked as valid. From
those 94.7% were rated satisfactory by the doctors in the
medical validation.

5) Geo referencing: The elder’s position can be requested
by their caretaker through a web interface as illustrated in
figure 5. During the trials in Ancona, the geo referencing
system was found to be reasonably reliable. The GPS receiver
in the N95 gives reliable results when the elderly user is
outside. However, as expected, the GPS fix is very poor when
the user is in an inside environment.

6) Qualitative feedback from users: Feedback from elderly
users, geriatricians and caretakers was generally positive. El-
derly users indicated to feel decidedly safer in the knowledge
that the CAALYX system provides continuous monitoring
of their health. Medical professionals indicated that, even
though the system will not replace consults with the doctor,
it does provide a useful means of obtaining a more complete
assessment of the user’s health.

Fig. 5. Example of a geo-referenced Position

IV. CONCLUSIONS

In this paper, the mobile sensor system of the CAALYX
project was presented. This mobile sensor system consists
of an ECG, SpO2, temperature, respiratory rate and fall
and mobility sensor, all integrated in one device, coined the
Wearable Light Device. Through a mobile phone, the device
communicates with a server which allows health professionals
to intervene in case of a wide variety of health threats. In
addition, the software on the mobile phone uses data fusion
in the scope of a decision support system to trigger additional
measurements, classify health conditions or schedule future
observations. Clinical trials performed with the devices were
discussed and the results clearly show the possibilities and
benefits of this approach.
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