
Efficient SQL Adaptive Query Processing in Cloud Databases Systems

Clayton Maciel Costa
High-Assurance Software Lab /

INESC TEC
Instituto Federal do Rio Grande do

Norte / Universidade do Minho
Ipanguaçu, Brasil / Braga, Portugal

clayton.maciel@ifrn.edu.br

Cicília Raquel Maia Leite
Software Engineering Lab

Universidade do Estado do Rio
Grande do Norte
Mossoró, Brasil

ciciliamaia@gmail.com

António Luís Sousa
 High-Assurance Software Lab /

INESC TEC
 Universidade do Minho

Braga, Portugal
als@di.uminho.pt

Abstract – Nowadays, many companies have migrated their

applications and data to the cloud. Among other benefits of this
technology, the ability to answer quickly business requirements
has been one of the main motivations. Thereby, in cloud
environments, resources should be acquired and released
automatically and quickly at runtime. This way, to ensure QoS,
the major cloud providers emphasize ensuring of availability, CPU
instance and cost measure in their SLAs (Service Level
Agreements). However, the QoS performance are not completely
handled or inappropriately treated in SLAs. Although from the
user’s point of view, it is considered one of the main QoS
parameters. Therefore, the aim of this work consists in
development of a solution to efficient query processing on large
databases available in the cloud environments. It integrates
adaptive re-optimization at query runtime and their costs are
based on the SRT (Service Response Time) QoS performance
parameter of SLA. Finally, the solution was evaluated in Amazon
EC2 cloud infrastructure and the TPC-DS like benchmark was
used for generating a database.

Keywords - cloud computing; service level agreement;
performance; service response time

I. INTRODUCTION
Nowadays, many companies have migrated their

applications and data to the cloud due to the benefits of this
technology. For example, the applications and data stored in the
cloud can be accessed anywhere independent of local software
platform. Another important benefit is the significant reduction
of costs and time of experimentation and development when
compared with local infrastructure because it eliminates the need
of one or more physical servers in company increasing the space,
minimizing the necessity of specialists for repairs.

In the cloud computing model, the cloud providers have to
optimize their profits while servicing several customers. This is
obtained recurring to some level of abstraction (virtualization)
according to the type of service, such as: storage, processing,
bandwidth and active user accounts [1]. To ensure QoS (Quality
of Service), there are SLA (Service Level Agreements)
associated to the service delivery. The SLA is a formal contract
defined between a cloud service provider and its customers that
describe the level of service expected from provider. SLAs are
output-based in that their purpose is specifically to define what
the customers expect to receive. The SLA is composed of
several metrics on the levels of availability, functionality,
performance, penalties, billing, etc [1]–[3]. This work focuses

on the SRT (Service Response Time) performance parameter of
SLA, which corresponds to the total time between time that the
request/query arrives to the provider and at the time, it completes
its execution in the system.

Following this context, adaptive query processing has the
ability to dynamically and automatically allocate or release
resources (elasticity of resources) during the query runtime. This
technique is very important when statistical information about
the services available may be minimal and the availability of
physical resources may change. This is a typical scenario of
cloud environments. However, traditional and adaptive query
optimzers' main objective is to reduce response time. Moreover,
in the context of cloud computing, users and providers of
services expect to get answers in time to guarantee the service
SLA.

The performance parameters of a SLA are the most
important requirements for most customers when they decide to
migrate their applications to the cloud. Because these parameters
are directly related to the performance of their applications in the
cloud. Therefore, from the user’s point of view, they are
considered one of the main QoS parameters [4]. Nowadays, one
can see that the major cloud providers like Amazon [5] and
Google [6] emphasizing availability, CPU instance and cost
measure. Therefore, the SRT performance parameter is not
completely handled or inappropriately treated in SLA.

The measuring of SRT parameter in SLA is a very complex
task because it depends on many system variables, such as
request type, database model and current rate system
performance. Furthermore, it is common in a cloud environment
that the requests rate is highly unpredictable. Therefore,
guaranteeing a specific response time for any level of request
rate is regarded as a significant challenge to the paradigm of
cloud computing. Moreover, the growth of data stored in the
cloud makes this challenge ever harder.

Therefore, the aim of this work consists in development of a
solution to efficient query processing on large databases
available in the cloud environment. It integrates adaptive re-
optimization at runtime of the query and their costs are based on
the SRT QoS parameter. Moreover, it is restricted to relational
database access requests, it has not restriction of elasticity and/or
scalability of their algorithms and a non-intrusive approach.
Finally, it was evaluated utilizing Amazon EC2 cloud
infrastructure small instances type and the TPC-DS [7] like

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

114

benchmark was used for generating an OLAP database of
structured data.

This paper is organized as follows. Section 2 presents related
works. Section 3 presents the strategies for adaptive processing
of different types of queries in cloud databases systems. Section
4 shows the experimental evaluation. Finally, Section 5 shows
the conclusions and future works.

II. RELATED WORKS
Currently, several researches have been focused in search of

techniques for efficient query processing in the cloud. As
shown in Table I, the works in [8]–[17] do not use the strategy
of monitoring during requests execution. The algorithm in [18]
provides adaptive optimizing the response time of queries. The
algorithm partitions and adaptively identifies the best level of
parallelism for each query. The authors propose an adaptive
provisioning algorithm for only select-range queries and
consider variations in performance of VMs (Virtual Machines).
However, it does not observe the SLA agreement and does not
specify the frequency of the monitoring algorithm during query
execution. The work in [4] presents an adaptive SLA-oriented
resource manager. However, it only predicts the provisioning
of resources and does not check DBMS variables for database
access requests, addressing only the level of the application
server layer. The approach in [19] uses the strategy of regular
monitoring intervals during requests execution and therefore
does not consider that VMs may have different performance. In
addition, it limits its scope to single pipeline queries (queries
without joins). The approach in [20] presents a non-intrusive
framework for adaptive queries processing in database
implanted in cloud environment. This work observes query
response time of the SLA contract; makes adaptive monitoring
considering the heterogeneous environment, and therefore, it
considers that the VMs may have different performances.
However, the scope is limited only to select-range queries.

This way, we can observe that most works in the literature
focus on shorter execution time of a query and on the prediction
of resources to be used for query through the current system
context. These works may not be suitable in highly
unpredictable environments on the availability of resources. In
turn, others works emphasize on adaptive query processing.
However, they present limitations of elasticity and/or
scalability in their algorithms, the absence of adaptive
monitoring query processing, use of intrusive solutions and/or
use proprietary technology and do not use formalisms in
defining the QoS parameters in their solutions and as a result,
the same service may have different understanding among
cloud service providers.

III. ADAPTIVE QUERY PROCESSING IN THE CLOUD
This Section presents the solution for efficient adaptive

processing of different types of queries (database access
requests) in cloud environment. This way, it will presented the
definition of a request and the strategies of execution for each
type of request.

A. Requests
In computational context, a request corresponds a task to be

executed by a Web Service sent by a customer who has access
to this service. This work focuses on database access requests

on OLAP applications in the cloud environment. A request
message is a SQL query composed by one or more tables and it
can be of different types.

TABLE I. RELATED WORKS

Therefore, to better understanding of proposed solution, the

requests were classified between three types, according to level
of complexity: (i) Type 1 Requests represent the select-range
and/or select-aggregation requests. Select-range are the
database access requests that will return only tuples that are in
a given range of a table. An index can be used to select the
tuples. The range is used when a column, key or not, is
compared with a constant using: =, <>, >, > =, <, <=, IS NULL,
<=>, BETWEEN or IN; (ii) Type 2 Requests represent the
database access requests that uses one or more of the following
operators: cross join, inner join, left outer join, right outer join
or full outer join. Finally, (iii) Type 3 Requests represent the
database access requests that use aggregation, joins, union,
grouping and/or nesting operators. They can be UNION,
INTERSECTION, EXCEPT, ANY, IN, UNIQUE, EXISTS,
NOT EXISTS, GROUP BY, HAVING, ORDER BY or FETCH
WITH.

B. Metadata and Performance
It is worth noting that before the effective execution of a

request, it is replicated to a metadata server. The metadata has
main objective extract, process and store information about the
request that will be useful to its execution. Furthermore, the
metadata monitors the real-time performance of each slave node
with the aim to make estimates query execution. The following
are presented main information of metadata:
Request Costs: To estimate the cost of a request, in this work
was used the EXPLAIN command that shows query plan chosen
by the DBMS optimizer. The query plan or query execution plan
is the sequence of operations DBMS performs to run a request.
The values obtained does not represent the correct estimated cost

Related Work Adaptive
Query

Processing

Based on SRT
on the SLA

contract

Restriction of
Query

Provisioning
or Release of

Resources

[8], [21] No Yes Not restricted Provisioning
of Resources

[9] No No Not restricted Provisioning
of Resources

[18] Yes No Select-range Provisioning
of Resources

[4] Yes Yes Not applied Provisioning
of Resources

[10] No Yes Not applied Provisioning
of Resources

[19] Yes Yes Select-range
Provisioning
and Release
of Resources

[14] No Yes Not restricted Not applied

[12], [11] No Yes Not restricted Provisioning
of Resources

[15] No No Not restricted Provisioning
of Resources

[13] No Yes Not restricted Provisioning
of Resources

[16] No No Not restricted Provisioning
of Resources

[20] Yes Yes Select-range
Provisioning
and Release
of Resources

[17] No Yes Not restricted Provisioning
of Resources

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

115

if the query is too complex, but it serves as a basis for estimating
the request performance. The EXPLAIN command returns the
variables: cost, rows and width. The cost estimates are measured
in units of disk I/O. An operator that reads a single block of
8.192 bytes (8K) from the disk has a cost of one unit. CPU time
is also measured in disk I/O units, but usually as a fraction. For
example, the amount of CPU time required to process a single
tuple is assumed to be 1/100th (0,01) of a single disk I/O.
Finally, the rows variable corresponds the number of tuples to
be returned of a request and the width variable corresponds the
quantity of bytes of each returned tuple. Therefore, the total cost
is the sum of the quantity of disk pages to access the data plus
the quantity of returned rows times 0,01, i.e. cost=disk_pages
+rows * 0,01.
Request Types: As defined previously, the requests that will
executed are classified between three types, according to
complexity level. The result of classification are used to trace a
request-profile that will used by other requests in search of
similar characteristics. Therefore, the EXPLAIN command of
DBMS can too be used to obtain these information.
Probability of SRT Violation: Based on the requests of the
similar characteristics that executed on the provider, it is
calculated the probability of SRT violation. Let be the
percentage of times that the response time of similar requests
was bigger than SRT. If exceeds 50%, the query plan will
take on a pessimistic approach, which consists to use more
computational cost to decrease the probability of SRT violation.
If does not exceeds 50%, the query plan of request will
take on an optimistic approach, which consists to use enough
computational cost to execute .
Performance Monitoring: To get the current performance of a
slave node in this work were used the variables util and iowait
of mpstat and iostat tools. They are very important to identify
problems of CPU and device saturation and percentage of CPU
time during which I/O requests were issued to the device
(bandwidth utilization for the device). In metadata these values
of each slave node are updated and stored in the metadata at
regular intervals. Finally, whether this percentage is above 80%,
the slave node is unavailable for executing requests, because
there is too much risk of not meet the expectations of query
response, else, on multiprocessor systems is used mpstat tool
and through the iowait is checked the each CPU core
availability. Case all CPU cores is above 70%, the slave node is
unavailable, else, case at least one core is below 70%, the slave
node is available to execute requests. In uniprocessor systems, it
is checked only global iowait, not being necessary the use of
mpstat tool.

C. Query Processing: FlowChart
In summary, Figure 1 shows the flowchart of possible

execution plans to execute a request. For Type 1 Requests, the
requests are partitioned in the initial provisioning and its
subqueries are distributed according to the current performance
of each slave node in order to have an execution plan that
ensures the SRT. For this, it will be used the metadata variables
(statistical data). Therefore, during the execution of each
partition, the monitoring checks the elapsed time and estimates
the probability of SRT violation.

For Type 2 Requests, they are initially executed the
partitioning of request according to its simple nested loops and

if exists, its predicates. Then, each subquery is executed
according to the Type 1 Requests. After all process, the result
is unified in accordance with its joins.

For Type 3 Requests, they can be executed using a
pessimistic or optimistic approach. The pessimistic approach is
used when the of similar requests is greater than 50% and
the optimistic approach when the is less than or equal to
50%.

1

Type 1

Statistical
Data

Initial
Provisioning

R1 R2 R3

R1,1 R2,1 R3,1

Monitoring Monitoring Monitoring

Type 2

Equi Join
Partitioning

R2 RN...

Begin

Request
Type

Request

Type 3

2

3

Statistical
Data

Request
Replication

Initial
Provisioning

Pessimistic Optimistic

R1

R1 R2 RN...

Initial
Provisioning

Exception

R1

Figure. 1. Flowchart of query processing for each type of request.

The adaptive query processing algorithm (AQP Algorithm)
is shown below. For each type of request is used a strategy of
partitioning and execution. After its execution, a result of
request is presented to customer and for the provider is
presented request information, such as SRT violation, elapsed
time of request etc. The information of SRT violation is
important for the provider to understand the reasons of the
violation and to make decisions to reduce the problem.

AQP ALGORITHM (R, TR, ET): RETURN RESULT
 ET; //Elapsed Time = RSRT - ET.
 R; //Request
 TR; //Type of Request
 METADATA; //Metadata Class
 SLAVE_NODE[0..i]; //Available Slave Nodes
1. BEGIN
2. SWITCH(TR)
3. CASE 1: //Type 1 Request
4. IF (R.hasPredicate(“WHERE T.pk = <<value>>;”))

//Exception
5. AQP(R,3,ET);
6. ELSE
7. Partition[0..i] = METADATA.getSelectedSlaveNode(R,

SLAVE_NODE[0..i]);
8. FOR EACH Partition DO
9. RESULT += DQM(Partition, ET, 1,

SLAVE_NODE[j]);
10. ENDFOR
11. RETURN RESULT;
12. ENDIF
13. BREAK;
14. CASE 2: //Type 2 Request
15. Partition[0..i] = PartitionEquiJoin(R);
16. FOR EACH Partition DO

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

116

17. SubResult [0..i] = AQP (Partition,1,ET);
18. ENDFOR
19. RETURN JOIN(SubResult);
20. BREAK;
21. CASE 3: //Type 3 Request
22.

SelectedSlaveNodes[0..i]=METADATA.getSelectedSlaveNodes(R,
SLAVE_NODE);//all nodes > ET

23. IF (METADATA.getProbability(R) == OPTIMISTIC)
24. RESULT = DQM(R,ET,3,SelectedSlaveNodes[i]);
25. ELSE //All slave nodes satisfies ET
26. RESULT = DQM(R,ET,3,SelectedSlaveNodes[0..i/2]);
27. ENDIF
28. RETURN RESULT;
29. BREAK;
30. ENDSWITCH
31. IF(ET > RSRT)
32. METADATA.setViolation(TRUE);
33. ENDIF
34. END

The monitoring algorithm verifies, periodically, the

possibility of a query to be executed before a SRT. Therefore,
the DQM (Dynamic Query Monitoring) algorithm reevaluates
each subquery at runtime and checks the possibility of SRT
violation, whether it is low, and the query continues its
execution; otherwise, the query will be re-optimized in AQP
algorithm.

The monitoring will check the request execution progress.
Whether the performance of slave node decreases, the system
can try recovering and meeting the recommended SRT or if the
performance of slave node increases, the system can use that to
its advantage. Therefore, monitoring is adaptive with non-
regular intervals, because the framework uses a strategy is based
on following variables: CPU, memory and processing and
reading percentage in DBMS of each slave node used by request.
Thus, this work considers that slave nodes can have different
performance.

The challenge of monitoring algorithm is to monitor in the
best time. It should not be so frequent, since original queries
would be partitioned into many subqueries. Thus, the overload
added can prejudice more than help. Moreover, it should not be
infrequent, because if that happens, it may be difficult to make
corrections in a timely manner and avoid possible penalties.

DQM uses historical data of similar requests to establish the
most efficient number of partitions for monitoring. Thus, the
algorithm checks the request selectivity and the current
performance of the first slave node in the initial provisioning.
When there are no statistical data, by default, if the request
selectivity is less than 10.000 tuples, the component will
fragment the request within 2 partitions. If it is between 10.000
and 100.000 tuples, the component will fragment the request up
to 4 partitions. If the selectivity is greater than 100.000 tuples,
the framework will fragment the request up to 8 partitions.

When there are statistical data, the number of partitions and
the SRT used in the execution of similar requests are checked in
metadata. Thus, the number of partitions for monitoring is
chosen based on the similarity of request (selectivity) and SRT.
It is important to note that the operations will be realized in the
metadata and will be available now that is required by the
request.

The summary of DQM component algorithm is shown
below. As presented, Type 1 and 3 requests use different
strategies. For Type 1 Requests, the DQM uses monitoring and
adaptive query processing and for Type 3 Requests, it does not
use adaptive query processing, it uses greedy algorithm in
optimistic approach and the fastest execution in set of slave
nodes in pessimistic approach. For the better understanding, the
next section we present samples/examples of the scheduling,
partitioning and monitoring algorithms.

DQM ALGORITHM (R, ET, TR, SLAVENODES): RETURN RESULT
 R; //Request.
 ET; //Elapsed Time: RSRT - ET
 TR; //Type of Request.
 SLAVENODES; //Slave Node to execute R.
1. BEGIN
2. SWITCH(TR)
3. CASE 1: //Type 1 Request
4. Partition[0..i] = Metadata.Partitioning(R);
5. FOR EACH Partition DO
6.

IF((RESULT+=EXECUTE(Partition,SLAVENODES[0])).getElaps
edTime()>T2R)

7. AQP (MERGE(Partition[j..i]),1, ET);
8. ENDIF
9. ENDFOR
10. BREAK;
11. CASE 3: //Type 3 Request
12. //optimistic approach: SLAVENODES.getLength() returns 1.
13. RESULT=EXECUTE(R,SLAVENODES[0..i]));
14. BREAK;
15. ENDSWITCH
16. RETURN RESULT;
17. END

D. Query/Subquery Scheduler
To scheduler of the query is responsible for distributing the

partitions of a request to each slave node available based on its
performance. To do this, Let 2 the Tuple Read Rate, the
estimated time in seconds for a slave node to process a quantity
of tuples: 2 ∗ 1000∗
where corresponds the number of tuples to be returned of
a request, is estimated in units of disk I/O and the
average service time (in milliseconds) for I/O requests that were
issued to the device of a slave node. This last parameter can be
obtain through iostat tool. To better understanding, consider the
R request with SRT received by a cloud provider:
Select * // R
From Table T;

Consider that SRT is 100 seconds and through the Explain
command we have the cost = 368 and rows = 12.000. Moreover,
consider that SN1 is an available slave node and it has Svctm =
13 milliseconds. Thus, 2 of SN1 presents read rate of 250
tuples/seconds. Thus, SN1 ensures the SRT because it was
estimated that SN1 in 100 seconds could process 25.000 tuples.

It is worth noting that equation do not consider CPU
overhead as well as the use of DBMS cache. However, it
presents an estimate used only in the initial provisioning. Thus,

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

117

at query processing, the 2 is calculated by dividing the
number of rows retrieved () by the time to retrieve them
(): 2

For complex queries, the strategy is similar to select-range
queries. However, the rows variable is obtained by sum the
quantity of tuples accessed by each query execution plan
operator. Even if more than one operator uses these tuples and/or
if these tuples are not part of the result. As well as select-range
queries, this work considers that all access to a tuple block (on
disk or temporary data pagination) is a cost I/O.

It is worth noting that this estimate does not consider the
CPU overhead. However, the overhead of temporary data
pagination is considered, since it does not distinguish the
repetition of tuples during each step of the query execution plan.

Therefore, if we have the current speed of tuples read rate
per second of a slave node, it is possible to partition a request in
accordance with the estimated time to execute the request on
each node. For not violate the SRT, the sum of the times for each
partition to execute a subquery, according to the times of each
slave node (SN), it has to be less than the SRT: 2 2 ⋯ 2

In this work, the partitioning strategies depends on the type
of request and we consider that the all tables are clustered by
primary key.

For example, assume that a cloud provider receives the
following select-range request R with SRT:
SELECT * // R
FROM table T
WHERE T.pk >= 1000 and T.pk < 5000;
such that pk is the primary key of table T.

Considering that primary key values of T are sequential,
without gaps between values, then we can extract rows = 4.000
tuples. Besides, consider that SRT is 100 seconds and that initial
provisioning is a single slave node (SN1) such that the current
moment 2 = 20 tuples/sec.

Consequently, the initial provisioning using only SN1 will
bring a penalty to be paid by the provider because it was
estimated that SN1 in 100 seconds will process in 2.000 tuples.
In this case, it is necessary to allocate a new slave node (SN2) to
help. Assume that 2 = 10 tuples/sec then only 1.000 tuples
can be processed in 100 seconds. Then, a new slave node (SN3)
is required to process the request. Then, consider 2 = 10
tuples/sec.

At this point, it is possible that three slave nodes are
sufficient to process R and ensure the SRT. R is rewritten in
three subqueries: R1, R2 and R3, the first one is executed in SN1,
the second one in SN2 and the third one in SN3, respectively.
Note that in this case a virtual partitioning is used (i.e. we
partition using the predicate of the primary key) to divide R in
R1, R2 and R3.
SELECT * // R1
FROM table T
WHERE T.pk >= 1000 and T.pk < 3000;

SELECT * // R2
FROM table T
WHERE T.pk >= 3000 and T.pk < 4000;

SELECT * // R3
FROM table T
WHERE T.pk >= 4000 and T.pk < 5000;

Using only three slave nodes do not guarantee that the
quality defined in SRT will be met, because the cloud
environment is unstable and the performance of nodes can
change during the queries execution. Therefore, a proactive
approach based on statistical data in metadata indispensable use.
For this, the query are partitioned in such a way that the
performance of the nodes can be monitored at a frequency that
allows other nodes to be added when necessary in order to ensure
the SRT.

An important issue is the monitoring frequency. If too
frequent, the original queries would have to be partitioned into
many subqueries. Thus, the overload added could prejudice
more than help. If monitoring is infrequent, it may be difficult to
make corrections in a timely manner and avoid possible
penalties.

The partitioning process uses historical data about the
request containing information about how long it was necessary
to process similar requests (same type of request), including the
number of partitions used. From this information, it is possible
to monitor efficiently the request execution.

Consider for example, in similar requests, 2 partitions were
used for each partition of the initial provisioning. Then, R1 is
partitioned in two requests:
SELECT * // R1,1
FROM table T
WHERE T.pk >= 1000 and T.pk < 2000;

SELECT * // R1;2
FROM table T
WHERE T.pk >= 2000 and T.pk < 3000;

When R1,1 is done, it have the first opportunity to monitor
the query execution performance in a non-intrusive way.
Consider that 70 seconds were spent to execute R1,1. This means
that the performance 2 was below of predicted, which
leads to a completion time with the expected processing of the
next subquery of 140 seconds. However, this value is above the
SRT. Thus, it starts a revision of the initial provisioning for that
SRT can be satisfied. Before reviewing, the remaining partitions
will be merged in a single query.

In this case, a solution relocates remain subquery to another
slave node. Suppose a new slave node (SN4) is such that 2 = 30. Thus, all the 1.000 remaining tuples can be read
by SN4 in 30 seconds in the best-case scenario, and that does not
lead to a violation of SRT. To monitor the request execution, it
is again partitioned into two, each of the following way:
SELECT * // R1,2,1
FROM table T
WHERE T.pk >= 2000 and T.pk < 2500;

SELECT * // R1,2,2
FROM table T
WHERE T.pk >= 2500 and T.pk < 3000;

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

118

Consider that performance is stable and it is able to finish
their workload on schedule. Thus, the same strategy can be
applied in the processing of R2 in SN2 and R3 in SN3. This
partitioning method using the primary key as the partitioning
attribute is the same for similar select-range requests and similar
requests with aggregation.

For requests with joins (Type 2 Requests), it rewrites the
query separating all tables of FROM clause. Consider that a
cloud provider receives the following trivial select-join request
R with SRT:
SELECT * // R
FROM table T1, table T2
WHERE T1.fk = T2.pk;
such that T1.fk the foreign key referenced by the primary key T2.pk.

The request R is rewritten in two subqueries, R1 and R2:
SELECT * // R1
FROM table T1;

SELECT * // R2
FROM table T2;

In this case, R1 and R2 will be executed utilizing strategies of
Type 1 Requests. Thus, it is used the partitioning methodology
described for Type 1 Requests. As well as the monitoring and
provisioning of slave nodes to execute the rewritten query is
made the same way. Finally, after the execution of all partitions
the slave node that executed R1 makes the join to present the
result.

For complex requests and others not shown here (Type 3
Requests), it adopts the strategy of seeking the set of available
slave node with 2 enough to process the request that ensures
the SRT. This strategy are adopted before due to the highly
complexity of estimates costs and making partitioning.
Therefore, this type of request does not use monitoring nor
adaptive partitioning during query execution. Consider the
following a complex request with SRT is 100 seconds and rows
= 200.000 tuples.

In the optimistic approach, the greedy strategy is adopted, in
which only one slave node executes the request and it is expected
that it ensure the SRT. Now consider three slave nodes, SN1,
SN2 and SN3, with 2 = 4.000 tuples/sec, 2 =
2.000 tuples/sec, 2 = 1.000 tuples/sec, respectively. In
this case, the algorithm using greedy strategy chooses SN1
because it was the first and enough in such a way to execute R
within the SRT. In pessimistic approach, the algorithm strategy
is to choose half the number of slave nodes available with the
highest 2 to execute request R. Consider four available slave
nodes, SN1, SN2, SN3, SN4, with 2 = 4.000 tuples/sec, 2 = 2.000 tuples/sec, 2 = 1.000 tuples/sec and 2 = 1.500 tuples/sec, respectively. Then, the algorithm
replicates the request R for SN1 and SN2, in such a way that
least one can ensure the SRT.

In the worst-case scenario, if there is no slave nodes that
meets the SRT, the closest node to meet the SRT in terms of 2
is selected. Monitoring the slave node to process this type of
request is made after its processing, when it is checked violation
or not of SRT and metadata updates its information.

IV. EXPERIMENTAL EVALUATION

A. Experimental Environment
The strategies presented was implemented in using the Java

language and concurrent programming with threads and API
based on OpenMP (Open Multi-Processing) [22]. It was
deployed in the Amazon EC2 cloud infrastructure using small
instances. Due to the limitations of Amazon, it was used 20
VMs, each one with an Intel Xeon Processor with turbo up to
3.3GHz, 1.7 GB of main memory and 160 GB of disk storage.

It was created an AMI (Amazon Machine Image) of a VM
with the database. This image allows startup new VMs quickly.
The Amazon EBS (Elastic Block Store) was used to storage the
AMI. Each VM runs the Ubuntu 12.04 operating system and
PostgreSQL 9.3 DBMS. This work focuses on OLAP
applications with very large and complex database. Thus, the
TPC-DS like benchmark was used to generate a database of
approximately 13 GB, fully replicated in all VMs. Therefore, the
database generated represents the customer data.

B. Methodology
The experiments aim at showing the efficiency of queries

processing strategies proposed in this work. This way, it will
check the ability to avoid penalties associated with SRT
violation and the elasticity of the algorithm in according to the
number of VMs allocated when processing queries. For Type 1
and Type 2 Requests, the experiments consisted to stress the
system using 10 workloads and each workload having 10 queries
of the same type. For Type 3 Requests, as the strategy is
predictive and queries are complex, 5 workloads were used, each
workload having 5 queries of the same type. Finally, the
experiments were performed using 10 workloads and each
workload having 10 queries of several types of requests.

The minimum amount of required machines is a complex
task. Therefore, previous tests were performed using a fixed
number of VMs. Thus, the minimum number of machines was
found for the workload of the experiments. However, if new
workloads arrive to the system, it will be necessary to perform
extensive experiments again to obtain a new configuration of
service provider. The arrival time of the queries workloads was
disposed uniformly varied distribution (non-uniform
distribution): each workload arriving at a random time intervals
between 10 and 60 seconds. This distribution is closer to real
environments, since the unpredictability of workloads arriving
to the system and performance variation are characteristics of
cloud environments. Moreover, it was used different values of
SRT, from the most restricted to the most relaxed.

Seeking more accurate results for each type of request,
experiments were repeated 10 times. Finally, to eliminate any
possible interference between successive experiments, in
particular, effects of other queries already executed, the OS
cache was deleted and the DBMS has been restarted before
executing the queries workloads again.

For each experiment, the number of virtual machines used
are observed in accordance with time. To calculate the
computational cost it was enough to observe the number of
virtual machines used by each query. Finally, the query runtime
is measured according to the strategies described in previous
Section.

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

119

C. Results
For Type 1 Requests, the Figure 2 shows experiments of

select-range queries with the arrival of workloads following the
non-uniform distribution. The graphs present the number of
VMs used by time in seconds and the SRTs used were 80, 100
and 120 seconds. The queries predicate may be on a non-key
attribute or on a key attribute.

It is important to emphasize at this point that when the
attribute is not a primary key, our strategy scans all tuples of the
table, and i.e. all tuples are checked to verify whether they satisfy
the predicate. Thus, this type of queries requires more processing
time than the select-range that have a predicate on key attribute.
Consequently, this causes the increase of VM computational
cost, since the response time is higher. According to the results,
it can see the increase and decrease of the workloads on the
system and the elasticity on the number of virtual machines
allocated to execute the queries. When the SRT is more
restricted, the computational cost is higher or equal to the
computational cost of the most relaxed SRT, this happens to
avoid penalties. Moreover, the computational cost is higher
when the workloads arrive at random times (non-uniform
distribution) if compared to uniform distribution. We believe
that the system may not recover quickly when there is an
unexpected overload resource, and seeking quick reaction to
execute the queries, the algorithm allocates more VMs to
execute the workload in SRT time. Consequently, the
computational cost increases.
 For Type 2 Requests, experiments were realized in queries
with or without SQL predicate. Then, the primary difference
between these types (Type 1 and Type 2 Requests) is the query
partitioning and merge of their results. Figure 3 shows the
experiments with the arrival of workloads following the non-
uniform distribution. As in previous experiments, the SRT was
varied, the most restricted SRT was 130 seconds and the most
relaxed SRT was 180 seconds. The partitioning time of queries
was not considered because the low complexity of queries used
in the experiments. However, it was observed that the merging
of the results cause a higher time to execute queries,
approximately 10% more than the select-range requests. Finally,
it is important to observe that in the most restricted SRT, the
ninth workload reached the limit of the infrastructure service
provider. For Type 3 Requests, the experiments were realized
with complex queries obtained from the TPC-DS. As shown in
previous sessions, the following graphs show the number of
VMs allocated by time in seconds and the SRT was varied, the
most restricted SRT was 800 seconds and the most relaxed SRT
was 1200 seconds. However, due to the complexity of these
queries and the limit of VMs available in service provider, it was
used only 5 workloads and each workload having 5 complex
queries. According to proposed strategy of this work, the
experiments stressed the system searching a VM that could
execute successfully a query in SRT time (optimistic approach)
or executing a query over a set of VMs that one VM could
execute successfully the query in SRT time (pessimistic
approach). Therefore, it is not used monitoring nor adaptive
partitioning during query execution. Figure 4 shows the results
of experiments following the non-uniform distribution of

workloads. We can observe that due to the strategy used in this
work a large number of VMs are used since the first query
workload. In addition, in accordance to the strategy presented,
the algorithm chooses through the metadata the optimistic or
pessimistic strategy for executing a query and after its execution
the metadata are updated. However, we believe that the decrease
in the use of virtual machines after the third workload happened
due to the algorithm starts to use more often the optimistic
approach. Consequently, the queries were being executed
successfully. Moreover, it can observe that due to the complexity
and selectivity of the queries, there is a greater overhead for the
ending its results.

Figure. 2. Type 1 Requests (Select-Range): average virtual machines used for

workloads randomly arriving between 10 and 60 seconds for the SRTs:
80, 100 and 120 seconds.

Figure. 3. Type 2 Requests: average virtual machines used with workloads

randomly arriving between 10 and 60 seconds for the SRTs: 130, 150 and
180 seconds.

Figure. 4. Type 3 Requests: average virtual machines used with workloads

randomly arriving between 10 and 60 seconds for the SRTs: 800, 100 and
1200 seconds.

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

120

Finally, experiments were realized using all requests types
over the same queries workload. According to the strategies
proposed in this paper, it was obtained similar results to previous
ones. The main overhead is of the algorithm having to classify
each query to be executed. After classifying the query, the query
is executed according to the already mentioned strategies. Figure
5 shows the experiments with the arrival of workloads non-
uniform distribution. The graph show the number of VMs used
by the time in seconds. However, unlike previous experiments,
each query after classification has a different SRT, according to
their type of request. For several moments, it can see the limit of
the provider’s infrastructure is reached; however, it has not been
exceeded. Thus, it can see the increase and decrease in
workloads due to elasticity in the number of allocated virtual
machines to execute all queries. It is important to observe that
no penalty occurred with all queries. Finally, the results of all
experiments shown that the proposed solution reacts to the
resources variation of the environment and to different sizes of
workloads. The strategies ensured that the SRT was satisfied in
a non-intrusive and automatic way.

Figure. 5. All Type Requests: average virtual machines used with workloads

randomly arriving between 10 and 60 seconds.

V. CONCLUSIONS
In this work, it was presented partitioning, monitoring and

provisioning strategies for adaptive processing of different types
of queries (database access requests) in cloud environment. The
strategies were implemented in a framework and the
experiments were evaluated in Amazon EC2 cloud
infrastructure. This work focuses on OLAP applications because
this kind of environment the adaptive processing produces
positive effects at query runtime.

Given the increase and decrease of the workloads, it can see
the elasticity in the number of virtual machines allocated by the
methods proposed to execute queries. Furthermore, results show
that the solution reacts to the resources variation of the
environment and to different sizes of workloads. A solution
ensures that the SRT is satisfied in a non-intrusive and automatic
way. Finally, our proposal was effective to avoid the penalties in
the execution of queries and the SRT was satisfied in all
experiments without incurring penalties. As future work, we
intend to develop adaptive strategies for more types of queries.
Moreover, we intend to improve the cost model involving others
SLA parameters, such as resiliency, throughput and efficiency,
since they are important measures to evaluate the performance
of services in cloud infrastructures.

ACKNOWLEDGMENT
This work was supported by Federal Institute of Rio Grande

do Norte, University of Minho and Institute for Systems and
Computer Engineering, Technology and Science – INESC TEC.

REFERENCES
[1] CSMIC, “Service Measurement Index Introducing the Service

Measurement Index (SMI),” no. July, pp. 1–8, 2014.
[2] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud

computing services,” Futur. Gener. Comput. Syst., vol. 29, no. 4, pp. 1012–
1023, 2013.

[3] V. C. Emeakaroha, M. a S. Netto, R. N. Calheiros, I. Brandic, R. Buyya,
and C. a F. De Rose, “Towards autonomic detection of SLA violations in
Cloud infrastructures,” Futur. Gener. Comput. Syst., vol. 28, no. 7, pp.
1017–1029, 2012.

[4] W. Iqbal, M. Dailey, and D. Carrera, “SLA-Driven Adaptive Resource
Management for Web Applications on a Heterogeneous Compute Cloud,”
in 1st International Conference on Cloud Computing (CloudCom ’09),
2009, pp. 243–253.

[5] “AWS EC2 Service Level Agreement,” 2015. [Online]. Available:
http://aws.amazon.com/ec2-sla. [Accessed: 15-Jun-2015].

[6] D. Sanderson, Programming Google App Engine:, 2nd ed. O’Reilly Media
| Google Press, 2012.

[7] Transaction Processing Performance Council, “Tpc BenchmarkTM Ds,”
2012.

[8] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguadé, “Dynamic
CPU Provisioning for Self-managed Secure Web Applications in SMP
Hosting Platforms,” Comput. Netw., vol. 52, no. 7, pp. 1390–1409, 2008.

[9] Amazon Web Services, “Auto Scaling: Developer Guide,” 2015.
[10] J. Rogers, O. Papaemmanouil, and U. Cetintemel, “A generic auto-

provisioning framework for cloud databases,” in IEEE 26th International
Conference on Data Engineering (ICDE’10), 2010, pp. 63–68.

[11] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis, “Schedule
Optimization for Data Processing Flows on the Cloud,” in Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data, 2011, pp. 289–300.

[12] J. Zhao, X. Hu, and X. Meng, “ESQP : An Efficient SQL Query Processing
for Cloud Data Management,” in 2nd International Workshop on Cloud
Data Management (CloudDB’10), 2010, pp. 1–8.

[13] Y. Chi, H. J. Moon, H. Hacıgümü, J. Tatemura, H. Hacigümüş, and J.
Tatemura, “SLA-Tree: A Framework for Efficiently Supporting SLA-
based Decisions in Cloud Computing,” in 14th International Conference
on Extending Database Technology (EDBT/ICDT ’11), 2011, p. 129.

[14] C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan, “Workload-
aware Database Monitoring and Consolidation,” in ACM SIGMOD
International Conference on Management of Data, 2011, pp. 313–324.

[15] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware Elasticity
Provisioning System for the Cloud,” in 31st International Conference on
Distributed Computing Systems (ICDCS’11), 2011, pp. 559–570.

[16] J. Cerviño, E. Kalyvianaki, J. Salvachúa, and P. Pietzuch, “Adaptive
provisioning of stream processing systems in the cloud,” in IEEE 28th
International Conference on Data Engineering Workshops (ICDEW),
2012, pp. 295–301.

[17] R. Mian, P. Martin, and J. L. Vazquez-Poletti, “Provisioning data analytic
workloads in a cloud,” Futur. Gener. Comput. Syst., vol. 29, no. 6, pp.
1452–1458, 2013.

[18] Y. Vigfusson, A. Silberstein, R. Fonseca, B. F. Cooper, and R. Fonseca,
“Adaptively Parallelizing Distributed Range Queries,” in VLDB
Endowment, 2009, vol. 2, no. 1, pp. 682–693.

[19] D. Alves, P. Bizarro, and P. Marques, “Deadline Queries: Leveraging the
Cloud to Produce On-Time Results,” in IEEE 4th International Conference
on Cloud Computing, 2011, pp. 171–178.

[20] T. L. Coelho Da Silva, M. a. Nascimento, J. A. F. De Macêdo, F. R. C.
Sousa, and J. C. Machado, “Non-intrusive elastic query processing in the
cloud,” Comput. Sci. Technol., vol. 28, no. 6, pp. 932–947, 2013.

[21] Í. Goiri, F. Julià, J. O. Fitó, M. Macías, and J. Guitart, “Supporting CPU-
based guarantees in cloud SLAs via resource-level QoS metrics,” Futur.
Gener. Comput. Syst., vol. 28, no. 8, pp. 1295–1302, 2012.

[22] OpenMP.org, “About the OpenMP ARB,” 2013. [Online]. Available:
http://openmp.org/wp/about-openmp/.

2016 IEEE Conference on
Evolving and Adaptive Intelligent Systems

121

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

