A Human Centered Perspective for Mobile Information Sharing

and Delivery

Anténio Sousa Carlos Baquero

José Orlando Pereira Rui Oliveira*

Francisco Moura

Universidade do Minho, Braga, Portugal

{als, cbm, jop, rco, fsm}@di.uminho.pt

May 1996

1 Introduction

Recent developments in portable computing made
possible widespread use of small hand held com-
puters [7], in particular, the so called personal di-
gital assistants (PDAs). Unsurprisingly, user ex-
pectations on these portable devices are quite dif-
ferent from those usual on their static counter-
parts. In addition to host mobility, the availability
of portable communication devices leads to qualit-
ative changes in the problems faced when building
distributed systems in this environment.

Developers targeting mobile systems must be
aware of these changes in order not to frustrate
user expectations, namely, concerning which ap-
plications people wish to carry in their pockets.
The most obvious of these are personal informa-
tion management (PIM) and personal communica-
tion applications.

This paper focus on the design and implementa-
tion of a suitable communication layer to be used
with groups of mobile systems, targeted to support
personal information management and exchange ap-
plications. A PIM was used as case study, focusing
on the problems raised by the process of scheduling
meetings.

As a first step, the environment is evaluated in
order to establish some facts and assumptions that
should shape the system. We also think that the
observation of human behavior, in particular the
study of human information interchange techniques

*Current address: Laboratoire de
d’Exploitation, EPFL, Switzerland

Systemes

and protocols presents a simple, yet fruitful, mean
of gathering insight on possible protocols for inter-
action among mobile hosts. This is specially true
when mobile computing is used to support human
information exchange. Finally, the object replica-
tion system developed is introduced and a proto-
type implementation are briefly described.

This work was developed within the AMIGOS
project. The main goal of this project is to provide
transparent support for semi-connected operations
on mobile computers running standard operating
systems.

2 Environment

The first step to clearly understand and reason
about a distributed mobile system is to understand
the differences from a traditional distributed sys-
tem without support for mobile hosts.

In this kind of system, portable machines can
spend some of their time connected to a global
internetwork, connected to another mobile ma-
chine through a peer-to-peer link, or, most of their
time, disconnected. In addition, the connection
to the internetwork may be established through
an high bandwidth traditional local area network
or through an wireless network like GSM. Of
course, these different forms of connection should
be taken into consideration as they have very dif-
ferent cost/bandwidth ratios.

Due to their hierarchical fixed structure, tradi-
tional distributed systems subliminally induce users
to communication patterns that closely follow this

structure [5, 6]. Examples can be found on the
structured location to location channels implicit in
e-mail, FTP and HTTP communications. Such
mechanisms force the users to know the locations of
their communication peers, instead of just having
to know with whom they intend to communicate.

Additionally, traditional routing protocols used
to deliver data rely on the assumption that machines
are not physically moving, even if they consider the
fact that more than one path can be used to reach
them. In other words, in a network of fixed hosts,
each one of them has probability 1 of being in a
well known place and 0 probability of being any-
where else. With mobile hosts, there are a lot of
places where the probability of the host being there
is greater than 0 even if it never reaches 1. Anyway,
data addressed to a specific host should be spread
to all locations where the probability of the host
being there exists.

While in traditional distributed system the net-
work is expected to be available most of the time,
a mobile host is only useful as long as it is able
to operate disconnected for long periods. In short,
while the first might have to wait for the fault to be
corrected to restore normal behavior, the second is
expected to perform well even if it will not be able
to reach the network for a long time.

The fact that mobile hosts spend most of their
time disconnected leads to network partitions that
are much more frequent and not transient. This
means that the probability of being able to find two
hosts that need to exchange information in the same
partition, so as to establish an end-to-end transfer,
is scarce. This calls for the use of third parties to
mediate transfers [1, 4, 2].

One way to increase the probability of two ma-
chines being in the same partition is to consider peer
to peer interaction between mobile hosts. This al-
lows direct exchange of data among them as well
as the use of each other as a mediator in multi-step
process as described above. This should increase
the possibility of data reaching its destination as
soon as possible.

Even if mobile communication devices such as
cellular phones and wireless networks allow port-
able machines to be permanently connected to in-
ternetworks, the fact that bandwidth in these com-
munication channels is often limited and expensive,
is for some applications as useless as no connection
at all. This is usually called semi-connected opera-

tion: the mobile hosts is considered both connected
and not connected depending on the application.

An interesting is that much of the above reasoning
is valid for very large scale networks too. The op-
posite is also valid, if we think of networks of mobile
computers as wide area networks where distances
grow to infinity, and therefore, some machines be-
come unreachable. This kind of observation is in-
teresting because solutions to problems in wide area
networking can be reused in a mobile environment
and vice-versa.

3 Human interaction patterns

When dealing with problems involving human com-
munication, like scheduling meetings, people usually
are able solve them even if it 1s not possible to es-
tablish some sort of real-time conferencing between
all interested parties. This leads us into thinking
that it should be possible for computers to deal with
similar problems even if they are not simultaneously
connected to a network. Therefore, it 1s reasonable
to assume that the patterns of human communica-
tion that are responsible for human success in this
areas could be adopted as computer communication
patterns.

For instance, let us review some methods used
by people to schedule some appointment involving
a group. When proposing the meeting, the initiator
will usually try to contact as many of the parti-
cipants as possible. For that, he will possibly talk
to them, directly to as many as it 1s possible to
group or to each of them by phone. Then, he will
try to notify them using e-mail, fax, mail or even by
scattering notes in their desks or bulletin boards in
places where they usually go. In order to improve
the chances of success, a smart person will use some
or all of this procedures, probably in the order they
were enumerated.

Some useful lessons can be drawn from the modus
operand: described. First, when possible, direct
real-time communication to as many of the parti-
cipants is desirable. This can be compared to group
communication protocols. If not possible, deferred
media are used. These can be further classified as
many-to-one and one-to-many. The first is useful
when the location of the target is uncertain but pre-
dictable and consists in spreading the information
in places where it will probably be. The second is

useful when the target itself is unknown, making
the information available where targets can pick it
up. The initiator, might also encourage everyone he
talks to spread the word around and try to achieve
agreement with whoever he meets. This process can
be repeated recursively. When two people from sep-
arate groups, who have already agreed in separate
with the proposed schedule meet, they can merge
their knowledge and use it in future contacts.

This means that indirect multi-step communica-
tion might be used to convey information when an
end-to-end channel cannot be established. Again,
the usefulness of spreading information around, is
confirmed, even when considering third parties in-
volved. Another very important lesson to learn is
that the possibility of individuals acting on their
local incomplete views of the system is very im-
portant. However, this is only useful as long as
different partial views can be merged whenever two
information carriers meet, which sets aside the pos-
sibility of restricting the order in which information
exchanges take place.

From the point of view of each of the people
contacted, it would be nice to have an assistant
to collect information from different sources in an
incoming folder. Yet, it would be nice if this as-
sistant tries very hard to keep the information in
that folder updated and removes duplicate and out-
of-date messages. On the other hand, answering
to each of these messages should be as simple as
placing them in an outgoing folder. The assistant
will then figure out how to send them to all inter-
ested parties, whoever and wherever they are. From
this last observations, we can conclude that people
are not interested in dealing with the aspects of
communication, specially when there is complexity
involved in exchanging messages. What is desir-
able is to have an updated copy of the status of
the shared information available, where it is pos-
sible to make changes that will be known by others.
In other words, replication of mutable objects is a
good attempt to hide the complexity involved in ex-
changing information in heterogeneous, partitioned
networks.

An existing mechanism that resembles this
model, is the distribution of Usenet News. News
groups are replicated across news servers, that com-
municate among them by a variety of protocols.
Each group can be edited in any of the replicas, by
adding news. Eventually, all news will be present

Figure 1: Mobile replication model. (D) Deposit;
(C) client.

in all servers. This validates the idea that problems
faced in wide area networks are somewhat similar
to those found in mobile environments.

4 Sharing objects

our model focus on replicating data objects. There-
fore, no explicit messages are exchanged. Commu-
nication between elements of the group is accom-
plished by reading and writing their locally avail-
able copies.

Information to be shared is partitioned into ob-
jects. 'These objects reside in deposits. Clients
connect to deposits in order to inspect and modify
information contained in individual objects. This
means that one deposit must exist in each possible
partition of the network (figure 1).

When a client creates a new object in a deposit it
will eventually be copied to other deposits, in order
to make it available to whoever it may concern.

Everytime a client wishes to read an object, it
retrieves a copy of the local representative of the
object from a deposit. It can also write on this
copy. When it desires to make changes permanent,
it sends its copy of the object back to the deposit,
thus issuing a new revision. The most recent re-
vision of each object in each deposit is considered

Clients

GC RT

[N
N\
IF \

.

REP

e-mail uucp ?
A 1
\
N v
Other deposits

Figure 2: Implementation architecture. (GC)
Garbage collector; (RT) routing subsystem; (IF)
client interface; (REP) repositories; (TA) transport
agents.

the local representative of this object. Deposits are
free to discard revisions which are superseded by
newer revisions.

When two deposits manage to exchange inform-
ation, they attempt to merge their contents. This
means that revisions that are not yet shared, are
copied. After that, more than one revision of an ob-
ject may be found in any of the deposits. If neither
revision derives from the other they are said to be
concurrent, and thus, both carry unique informa-
tion. In order to find a local representative of the
object, the deposit will ask the first client available
to issue a suitable merge which will supersede both
concurrent revision and become the local represent-
ative.

5 Implementation

This section focus on the implementation of the rep-
lication layer proposed. The reference architecture
for the deposit is shown in figure 2. Its main fea-
Each
repository is just raw storage for object revisions.

ture is a set of passive object repositories.

The existence of multiple repositories per deposit
is necessary to distinguish incoming, outgoing and
locally available revisions.

The interface module (IF) is in charge of hand-
ling clients requests. Tt provides revisions as needed
and notifies clients of the arrival of new revisions to
the deposit. This can be initial revisions (i.e. new
objects) targeted to the client or new revisions of
objects already in use. It also handles new revisions
issued locally, which it stores in the repositories.
An important function of this module is detecting
the need to merge concurrent revisions. This must
be done in order to provide a single local represent-
ative of each object. The merging itself is done by
the client.

The routing subsystem just moves objects around
the repositories according a set of rules. It thus is
used to select objects from any of the incoming re-
positories and make them locally available or ready
to leave, by copying them to one of the outgoing
repositories.

The garbage collector is in charge of deleting re-
visions which are obsolete, either because they were
superseded by newer ones or due to real time con-
straints. The garbage collector is also used to per-
form smart loop avoidance.

Transport agents are responsible for delivering
objects stored in outgoing repositories to one or
more foreign deposits, where the corresponding
agent places them in an incoming repository. This
architecture provides optimum flexibility to integ-
rate different protocols, suited to the characteristics
of the underlying communication infrastructure.

A prototype implementation closely following the
architecture outlined above, was developed on the
Unix operating system. Repositories are represen-
ted as file system directories, with each revision
being stored in a separate file. An API is available
to C++ programmers, consisting of a proxy for the
deposit and a base class for replicated objects. This
is an abstract class, as methods for handling noti-
fications from the deposit must be overridden.

The routing daemon relies on external tables and
revision headers, in order to establish where each
file should be sent to. Although currently these
tables are configured by the system administrator,
they can be in the future generated and kept up to
date by a specialized protocol.

In this implementation, transport agents are any-
thing able to take files from one directory corres-
ponding to an outgoing repository to another dir-
ectory, probably in another machine, belonging to a
second deposit. In Unix, there is a plethora of mech-

anisms satisfying this requirement such as NFS,
FTP, UUCP, mail, Usenet News and even floppy

disks and manual intervention.

6 Conclusions

Although a centralized server or a reliable group
communication protocol would allow us to main-
tain a consistent view of the system, they would
be prohibitive in a mobile computing environment,
as frequent network partitions would render them
unavailable most of the time. Similar conclusions
were drawn by [3], although our work is less con-
cerned with consistency and more with the difusion
of data.

To circumvent the problem, weak consistency
protocols provide high availability, allowing concur-
rent reads and writes in each of the replicas. On the
other hand, only the careful study of each applica-
tion guarantees a correct behavior in the presence of
inconsistency. The replication platform described is
thus an valuable tool to evaluate real life problems,
collect data, draw conclusions and plan future work.

The flexible architecture of the implementation
is also very important, in order to test different
communication protocols suited to the heterogen-
eous and rapidly changing nature of communication
networks.

References

[1] A. Acharya and B. Badrinath. Delivering mul-
ticast messages in networks with mobile hosts.
In 13th Conference on Distributed Computing
Systems. May 93.

[2] Arup Acharya. Structuring Distributed Al-
gorithms and Services for Networks with Mo-
bile Hosts. PhD thesis, Graduate School - New
Brunswick Rutgers, New Jersey, USA, May
1995. Available as GIT-CC-95-12.

[3] T.Greenberg A.Downing and J.Peha. OSCAR:
A system for weak-consistency replication. In
Proceedings of IEEE Workshop on the Manage-
ment of Replicated Data, 1990.

[4] S. Alagar and S. Venkatesan. Causally ordered
message delivery in mobile systems. Technical

report, Santa Cruz, USA, dec 1994.

[6] B. Badrinath, A. Acharya, and T. Imielinski.
Handling mobile clients: A case for indirect in-
teraction. Technical report, Rutgers University,
New Brunswick, 1994.

[6] B. Badrinath, T. Imielinski, and A. Virmani.
Locating strategies for personal communication
network. In IEEE GLOBECOM 92 Workshop
on networking of personal communications ap-
plications. December 1992.

[7] Mark Weiser. Ubiquitous computing. I[EEE

Computer Hot Topics, October 1993.

