
Collaborative and privacy-aware sensing for observing urban
movement patterns
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Abstract. The information infrastructure that pervades urban environments represents a
major opportunity for collecting information about Human mobility that would be very im-
portant across many application domains. However, this huge potential has been undermined
by the overwhelming privacy risks that are associated with such forms of large scale sensing.
In this research, we are concerned with the problem of how to enable a set of autonomous
sensing nodes, e.g. a Bluetooth scanner or a Wi-Fi hotspot, to collaborate in the observation
of movement patterns of individuals without compromising their privacy. We describe a novel
technique that generates Precedence Filters and allows probabilistic estimations of sequences
of visits to monitored locations and we demonstrate how this technique can combine plausible
deniability by an individual with valuable information about aggregate movement patterns.
The results provide a promising step towards the application of new stochastic techniques in
large scale sensing.
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1 Introduction

The ubiquity of the information technology infrastructure that increasingly pervades urban
environments constitutes a major opportunity for sensing Human activity. The large scale
collection of such data may give new insights into the dynamics of city life and the digital
fingerprint of the urban environment.

Wi-fi and Bluetooth hotspots are particularly interesting for that purpose. Given their
widespread presence and their inherent communication with personal devices, they can
easily be leveraged as general purpose platforms for massive sensing and actuation in urban
spaces. However, this huge potential has been undermined by the overwhelming privacy
risks that are associated with such forms of large scale sensing. Given that many detectable
devices would be personal devices, their presence at a particular location is a reliable
representation of the presence of the respective owner. Consequently, a record of Bluetooth
or Wi-Fi sightings holds the potential to become a large scale tracking system capable of
detecting the presence, movements and patterns of individuals.

In this research, we are concerned with the problem of how to enable a set of au-
tonomous sensing nodes, e.g. a Bluetooth scanner or a Wi-Fi hotspot, to collaborate in the
observation of movement patterns of individuals without compromising their privacy. We
aim to understand to what extent it would be possible to use these ubicomp infrastructures
to generate valuable information about macro-level movement behaviors while dealing with
privacy challenges.
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Our approach is based on a stochastic technique that can characterize the sequence of
presences in the monitored areas, with a parameterized fidelity that protects user privacy.
Our Precedence Filters algorithm combines properties found on counting bloom filters and
vector clocks, providing a solid approach to the detection of sequences of presences. It
enables us to provide probabilistic answers to questions such as: “Are the individuals in
this art gallery likely to have visited a given art museum first?” or, in a shopping mall,
“Which shops are visited most likely after the movie theater? and before the theater?”. The
data collection system can be calibrated in a way that each individual(actually its MAC
address pseudonym) has a given chance, say 50%, of not having been in a reported location
or done a given reported transition, thus protecting its privacy and supporting plausible
deniability.

To support the evaluation of the approach, we compare the accuracy of the causality
traces estimated by the application of the algorithm with the ground truth corresponding
to the causality traces generated from perfect information about node transitions. The
evaluation confirms the expectations that a higher fidelity on collective movement patterns
can be supported by lower fidelity in the individual traces, thus further improving individual
privacy protection.

The contributions of this paper are twofold: we describe a novel technique that shows
how causality principles can be applied to support collaborative and privacy-aware sensing
of macro-level movement patterns between a set of autonomous nodes; we demonstrate that
those techniques can be parameterized in a way that is able to combine plausible deniability
by an individual (50% or more false positives) with valuable information about aggregate
movement patterns (little more than 10% false positives). The results provide a promising
step towards the application of new stochastic techniques in large scale sensing.

2 Related Work

Anonymity Tang et. al [27] describe a sensing method through which personal devices can
become anonymous sensors reporting the number of nearby devices without compromising
their own or other people’s privacy. In this case, individuals do not need to be sensed,
and this work demonstrates how given a specific sensing goal, it can be possible to devise a
technique that limits the collected information to those goals and thus significantly improves
the privacy vs utility tradeoff. The use of pseudonyms is perhaps the most obvious way
to achieve anonymity when individuals need to be identified in subsequent observations.
However, using the same pseudonym for a long time makes it easy for an attacker to gather
enough history on an individual to infer its habits or true identity. This is particularly true
for spatial data. Previous work has shown how anonymous location traces can easily be
re-identified by considering the likely home address of a person [20] or the Home/Work
location pair [16].

Montjoye et. al have shown that even coarse datasets provide little anonymity [9].
Based on fifteen months of human mobility data for one and a half million individuals,
their study reveals that four spatio-temporal points are enough to uniquely identify 95% of
the individuals. To try to mitigate this issue, Beresford and Stajano in [5] proposed an idea
which relied upon pseudonym exchange. They introduced two new concepts: mix zone and
application zone. The aim is to conceal information in the mix zone so that users can safely
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change pseudonyms when getting in and out of these zones. Based on a different concept, k-
anonymity, Gruteser and Grunwald [17] were the first to investigate anonymity as a method
to attain location privacy. According to them, a subject is considered to be k-anonymous
with regard to location information, if and only if she is indistinguishable from at least
k − 1 other subjects with respect to a set of quasi-identifier attributes. Bigger values of k
correspond to higher degrees of anonymity. They proposed a middleware architecture and an
algorithm capable of adjusting location information resolution in spacial and/or temporal
dimensions in order to comply with a specific k-anonymity requirement. Geddik and Liu’s
ClickCloak algorithm [13, 14] allows each user to define her own minimum acceptable value
for k (kmin), as well as the maximum acceptable values for temporal and spacial resolution.

Mokbel et al. in [26] use the k-anonymity concept as well. They presented the Casper
framework which consists of two main components, a location anonymizer and a privacy-
aware query processor. The location anonymizer blurs the location information about each
user according to that user’s defined preferences (minimum area Amin in which she wants to
hide and minimum value for k). The query processor adjusts the functionality of traditional
location-based databases to be privacy-aware. It does so by returning cloaked areas instead
of exact points when queried for location information. Unlike the previous k-anonymity
based approaches that require a centralized trusted server (Anonymizer) in order to com-
pute the cloaking regions, Ghinita et al. in [15] use a decentralized peer-to-peer approach.
This fixes two issues inherent to the centralized server approach: Fault Tolerance – the
anonymizer is a single point of failure and the system cannot work without it. Security –
all requests must go through the anonymizer, so in case it becomes compromised it would
result in a serious security threat.

Our technique can be described as a form of anonymity, but because we never register
any individual identifier, the technique is not prone to re-identification attacks that could
compromise the entire trace of previous locations of an individual.

Obfuscation Obfuscation based techniques usually degrade the “quality” of the informa-
tion in order to provide privacy protection. Even tough this may seem comparable to what
k-anonymity based techniques do, there is a key difference: obfuscation based techniques
allow the actual identity of the user to be revealed (thus making it suitable for applications
that require authentication or offer some sort of personalization [22]). Duckam and Kulik
[10] were the ones who introduced the idea of obfuscation for location privacy. They talk
about three distinct types of imperfection that can be present in spatial information:

– Inaccuracy - lack of correspondence between information and reality. E.g. “Paris is in
Spain”

– Imprecision - lack of specificity in the information. E.g. “Paris is in Europe”

– Vagueness - special type of imprecision that concerns the existence of indeterminate
borderline cases [11]. E.g. “Paris is in Western Europe”. This is a vague statement since
there is no clear definition about the its borders.

Any of these types of imperfection can be used to obfuscate an individual’s location. In
this particular case, the authors use imprecision to degrade the quality of the location in-
formation. They adopt a discrete model for space representation through the use of graphs.
Another example of an obfuscation based approach was shown by Ardagna et al. in [3]
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and later improved in [2, 4]. Their obfuscation process allows users to express their privacy
preferences using another concept of theirs called relevance. Relevance is a value in the
range ]0, 1] and it represents the relative accuracy loss in location measurement. It tends
to 0 when the location measurement is highly inaccurate and it is equal to 1 when the
location measurement achieves the best accuracy allowed by the location technique in use.
The higher the relevance the lower will be the location privacy. There are other examples of
obfuscation approaches that are not only oriented to location data but to the degradation of
data in general [1, 18]. In these approaches, privacy is obtained through the generalization
of the information. This procedure is done resorting to generalization trees [1] or generaliza-
tion graphs [18]. Even though there are several techniques that allow reducing the quality
of raw location information, we found no approach that allows for the characterization of
device sighting sequences with adjustable fidelity.

3 System Model

The model in which we base our work assumes the existence of a network of heterogeneous
and autonomous nodes that collaborate in the tracking process. While we may consider
various types of sensing nodes, for the remainder of this paper we will assume the use of
Bluetooth devices. In this case, our sensing node would be some sort of Bluetooth scanner
with the ability to discover nearby devices and obtain information about their MAC address,
the timestamp of the sighting, the type of Bluetooth protocols supported by the devices,
among others.

Our model does not impose restrictions on the type of information collected by the
scanners or how it is used by the local node. We do, however, want to limit the information
that each node is going to share with the rest of the system to the minimum information
possible that is still able to support the detection of movement patterns. We need to be able
to detect the same device on different nodes, but for this specific purpose and to minimize
the amount of information collected, we can ignore information such as the duration of the
sightings, the timestamp in which they occurred, the device name, supported Bluetooth
protocols, among others. Our algorithm will only use the device’s MAC address.

In their everyday life and depending on their specific needs, people visit several different
places. For instance, a person P1 wants to buy a new laptop. To do so, she visits store S1

which does not have the model she wants. She then visits store S2 which is out of stock and
afterwards store S3 where the price is a little steep. She ends up buying the laptop in store
S4. To represent this behavior we introduce the concept of mobility traces. A mobility trace
is simply the representation of the places visited in the order by which they were visited.
In this specific case, the mobility trace of P1 is MTP1 = {S1, S2, S3, S4}. Our mechanism,
Precedence Filters, allows the recording of information relative to the individual traces of
people, in a manner compatible with plausible deniability. That information can later be
processed/mined to obtain more accurate data about the habits of the aggregate of all
individuals. For instance, in this example, the order in which the stores were visited might
be an indicator of their reputation/popularity.

Whenever a device is sensed, the sighting node records that event locally. This infor-
mation is then used in the computation of device transitions between the system’s multiple
nodes. The place where that computation occurs depends on the system’s architecture. Our
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mechanism can be deployed in either centralized or decentralized architectures. In a cen-
tralized system configuration, the computation has to be done in the server since only it has
enough information to do so. Each node only shares its local information with the server.
On the other hand, with a decentralized architecture, nodes can do the processing locally.
The local information each node possesses is shared with the other nodes, thus allowing all
the nodes to have access to the data. Both models have advantages and disadvantages. For
instance, the centralized approach is not fault tolerant, if the server crashes the tracking
system stops working. This does not happen in the decentralized approach given that the
same information is stored in multiple nodes (redundancy). The system can keep on work-
ing even if some of the nodes fail. Compared to the centralized version, the decentralized
model also has greater availability as a result of the information redundancy. However,
as a consequence of the exchange of information between all the nodes, the decentralized
scenario has a bigger burden on the network when compared to the centralized one.

In order to achieve the goal we set ourselves, and taking into account the constrains
presented by our model, our solution is based upon the following set of assumptions:

– Even though we cannot make assumptions about how each individual node will han-
dle the observed Bluetooth addresses, our solution should never require the Bluetooth
address or any other information that could uniquely identify individuals to ever leave
the sensing node.

– No system element should, at any given time, have all the information necessary to
accurately determine the path of a single individual.

– The aggregate result that a node can create about the set of all visiting devices should
be accurate enough to be useful in human mobility observation scenarios, e.g. most
common paths, similarity level between places.

– There are no communication failures in the system and the exchange of information
between any two nodes is faster than the time it takes for a person to move between
them. This ensures that the order in which the sightings are recorded is correct, i.e.,
when a person goes from node A to node B, node B must already have the information
that she was in A.

4 Precedence Filter Algorithm

This section describes the behavior of Precedence Filters. However, to do so, we must first
do a brief overview of the techniques in which they are based, namely Counting Bloom
Filters [12, 25] and Vector Clocks [19, 24].

4.1 Bloom Filters

Bloom Filters (BFs) were created in 1970 [6] by Burton Howard Bloom. They are a simple
and space efficient data structure for set representation where membership queries are
allowed. Bloom Filters allow false positives but do not allow false negatives, i.e, when
querying a Bloom Filter about the existence of an element in a given set, if the answer is
no, then the element is definitely not in the set, but if the answer is yes, the element might
be in the set.

A Bloom Filter for representing a set of n items S = {x1, x2, x3, ..., xn} is traditionally
implemented using an array of M bits, all initially set to 0. Then, k independent hash
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functions are used {h1, h2, ..., hk}, each one mapping the element of the set into a random
number uniformly distributed over the range {1, ...,M}. For each element x of the set
(x ∈ S) the bits of the positions hi(x) are all set to 1 for 1 ≤ i ≤ k. A location can be
set to 1 multiple times. Due to the independence of the hash functions, nothing prevents
collisions in the outputs. In extreme cases it is possible to have h1(x) = h2(x) = ... = hk(x).
To prevent this, we use the variant of Bloom Filters presented in [7] which partitions the M
bits among the k hash functions, creating k slices of m = M/k bits. This ensures that each
item added to the filter is always described by k bits. Given a Bloom Filter BFS , checking
if an element z ∈ BFS , consists in verifying whether all hi(z) are set to 1. If they aren’t,
then z is definitely not present on the filter. Otherwise, if all the bits are set to 1, then it
is assumed that z belongs to BFS although that assumption might be wrong. This false
positive probability exists because the tested indices might have been set by the insertion
of other elements. Figure 1 illustrates such an example.Bloom Filters 
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1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 

{x,y,z} 

Checking if w belongs to the set 

w 

hash_fun2 
hash_fun3 

hash_fun1 

Fig. 1. Bloom Filter with k = 3, M = 21 and m = 7, containing elements {x, y, z}. Querying for the
presence of element w yields a false positive.

The false positive probability P can be obtained using equation (1), where p is the ratio
between the number of set bits in the slice and the slice size m. The fill ratio p can be
obtained through equation (2).

P = (1− p)k (1)

p = 1−
(

1− 1

m

)n

(2)

Furthermore, given a maximum false positive probability P , and the number n of dis-
tinct elements to store, equations (3) and (4) can be used to estimate the optimal number
of bits required by a Bloom Filter to store those n elements, M = m ∗ k.

k = log2

(
1

P

)
(3)

m =
n ∗ |lnP |
k ∗ (ln2)2

(4)
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Counting Bloom Filters Counting Bloom Filters (CBFs) were presented in [12] although
they were only given this name later in [25]. They were introduced in order to allow the
deletion of elements from the Bloom Filters. Suppose that we have a set that changes over
time, where elements are inserted and deleted. The insertion of elements can be easily done
using a normal Bloom Filter, hash the element k times and set the bits to 1. Unfortunately
the delete operation cannot be accomplished simply by reversing the process. The resulting
positions from the hash functions cannot be set to 0, because each position may be hashed
by some other element from the set.

In a Counting Bloom Filter, each position is a small counter rather than a single bit.
When an item is inserted the corresponding counters are incremented, and when the item
is deleted the same counters are decremented. We just have to choose sufficiently large
counters, in order to avoid counter overflow.

4.2 Vector Clocks

Broadly speaking, a distributed system consists in a set of processes connected through a
network. Each of these processes’ internal state can only change through the occurrence of
events. There are three kinds of events: message sending, message reception and state tran-
sition events deriving from the normal execution of the process. In a distributed system,
processes can only communicate using message passing as there is no shared memory. In
this context and considering the ordering of events in an asynchronous model (since no as-
sumptions should be made about timing), several strategies to cope with this asynchronicity
were devised. One of the most prominent is vector clocks.

In order to better understand how Vector Clocks work, we must first comprehend the
concept of causality. Causality is a relation through which we can connect two events, a
first event (known as the cause) and a second one (the effect).

In the context of Distributed Systems, causality is expressed using the happens-before
relation [21] denoted by the → symbol. For instance, given 2 events, x → y, reads as x
happened-before y, and means y might be a consequence of x.

The happens-before relation has the following properties over any given event:

– ∀a, b, c if a→ b and b→ c, then a→ c (transitivity);
– ∀a, a 9 a(irreflexivity)
– ∀a, b if a→ b then b 9 a (antisymmetry)

Vector Clocks were introduced by Colin Fidge [19] and Friedemann Mattern [24] in
1988 and are a practical implementation of the happens-before concept. In this algorithm,
each process Pi has a vector of integer values V Ci[1..n] where n is the number of processes,
maintained by the following set of rules:

1. In the beginning, all the positions from the vector are set to 0
2. Each time the state of a process Pi changes (send, receive or internal event), it must

increment the value V Ci[i], i.e, (V Ci[i] = V Ci[i] + 1).
3. Each time a process Pi sends a message, its vector V Ci should be enclosed in that

message.
4. When a process Pi receives a message m, it must update its vector using the formula:
∀x : V Ci[x] = max(V Ci[x],m.V C[x]), where m.V C symbolizes the vector clock at-
tached to m.
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Figure 2 shows a concrete example of the above rules in a distributed system with 3
processes.

P1

P2

P3

[2,2,0]

[2,2,3][0,0,1] [2,2,2]

[2,1,0]

[2,3,3]

[1,0,0] [2,0,0] [3,0,0] [4,3,3]

Fig. 2. Vector Clocks

Vector Clocks are able to accurately represent the causality relation and the partial
order it defines. Given any two distinct events x and y:

∀(x, y) : (x→ y)⇐⇒ (V Cx < V Cy)

Where V Cx < V Cy stands for:

(∀k : V Cx[k] ≤ V Cy[k] ∧ (∃k : V Cx[k] < V Cy[k]))

An important property of this mechanism is the result by Charron-Bost [8] proving that
Vector Clocks are the most concise characterization of causality among process events.

4.3 Precedence Filters

By applying some of the previously mentioned general constructs of distributed systems to
the mobility sensing scenario, Bluetooth scanners can be treated as processes and device
sightings as state transition events. Precedence Filters are based upon this idea and provide
accurate mobility information, at a macroscopic level, without neglecting individual privacy.
Precedence Filters can be seen as a vector clock [19, 24] implementation, whose difference
is the use of Counting Bloom Filters [12, 25] (one for each node in the system) by the PFs
instead of integers (one per process) used by vector clocks.

With that in mind, Precedence Filters work as follows: supposing we have a set of
Bluetooth scanners (nodes) S, each node n ∈ S has a Precedence Filter PFn. That PF is
in turn composed of a map of Counting Bloom Filters, one for each node z ∈ S. We use
notation PF z

n to refer to the CBF for scanner z belonging to PFn, as depicted in Figure
3.

All CBFs are initially set to 0, use the same set of hash functions K and have the same
size M = m ∗ k (k is calculated with equation 3 and m is calculated with equation 4). This
ensures that the same device is correctly identified across the several nodes (upon detection
it will be mapped to the same indices). Precedence Filters can also be seen as a matrix
where the number of rows is equal to the number of nodes in the system and the number
of columns is equal to M .

Each time a node n detects a device d, its Precedence Filter PFn is updated according
to the following set of rules:
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S

na nb

nc

FPc

PFcc
PFca

PFcb

Fig. 3. Diagram of relevant entities and data structures

1. Using the set of hash functions K, the node n calculates the set of indices Id. Id consists
on the output from the K hash functions regarding device d, Id =

⋃
f∈K f(d).

2. Node n sends the set of indices Id to all other nodes in S.
3. Each one of the z nodes belonging to Z (Z = S\{n}) replies with a set of tuples RId

z . Rz

contains the previously required Id along with the set of values that each of the CBFs
belonging to FPz had stored in those indices, RId

z = {(i, PF z
z [i]) | ∀i ∈ Id}.

4. Upon the reception of the replies from the other nodes, node n updates its own indices
Id on the CBFs relative to the other nodes with the maximum value received,
PF z

n [i] = max(RId
z [i]), ∀z ∈ Z,∀i ∈ Id, where

RId
z [i] = v → (i, v) ∈ RId

z

5. Lastly, n updates the indices Id on its own CBF (PFn
n ). For each index i ∈ Id, PFn

n [i] =
max(PF s

n[i]) + 1,∀s ∈ S. By adding 1 to the maximum value stored in the other nodes,
the current node “dominates” them in the operation that returns the causality between
the visited places. In other words, this is the key to obtaining the order in which the
places were visited.

This set of rules allows the precedence filters to record information about the precedence
of the locals visited by a device. Given a set of indices Id for device d and any pair of scanners
x and y, we say that the sighting of d in x precedes the one in y, x y if:

x y ⇐⇒ PFx[Id] < PFy[Id]

Where PFx[Id] < PFy[Id] stands for:

∀i ∈ Id : PF x
x [i] < PF y

y [i]

Mobility traces, used in our model to describe the behavior of individuals, characterize
a total order between the places visited. This means that it is always possible to establish
an order between any two places in the mobility trace. However, being based upon the
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happens-before relation [21], Precedence Filters represent partial orders. In this particular
case, for each of the nodes/locations, they can only “remember” the last time each device
was sighted in a given place. For instance, given the mobility trace

MTP = {S1, S2, S1, S3, S2, S4, S1}

where scanners S1 and S2 are visited more than once, in the best case scenario PFs can
obtain CTP = {S3, S2, S4, S1}, which we will refer as a causality trace. This is a consequence
of the irreflexivity and antisymmetry properties from the happens-before relation. However,
we can look at this as a feature of Precedence Filters, a sort of automatic data degradation.
It ensures that the length of the record of sightings for any given device has an upper bound
equal to the number of Bluetooth scanners in the tracking system.

The level of privacy offered by Precedence Filters can be further customized by ad-
justing the CBFs’ false positive ratio (Equation 1). The higher the ratio, the greater the
inaccuracy of the PFs. The occurrence of false positives in the CBFs results in the ap-
pearance of fictitious transitions, i.e., the causal trace obtained from querying the filters,
contains transitions which are non-existent in the original trace. Both these properties are
what allow individual users to plausibly deny the fidelity of the data extracted from the
Precedence Filters.

Ignoring constant and logarithmic factors, the communication and space storage scala-
bility of the technique is dominated by the number of scanners S and the expected number
of devices to monitor, D. Each scanner needs to store state that is linear with the number
of devices O(D). One should note however, that due to lossy compression only a fraction
of the bit size of a MAC address is needed, with smaller fractions for higher privacy (and
lower fidelity). As a whole the system stores state O(SD), and this would be the server
state for a centralized setup. Each time a device is sighted at a given scanner, its network
link will have a communication load of O(S) and induce O(1) communication in other
scanner links, as it collects logarithmic information on a constant number of positions k at
all other scanners. Thus, the maximum communication load induced per sighting is linear
on the number of scanning sites.

5 Metrics and Data Sets

To assess the estimation quality of Precedence Filters we compared the set of transitions
obtained from querying the Precedence Filters with the set of transitions obtained from
the causality traces (baseline), which were themselves obtained from mobility traces. For
instance, given the mobility trace MTP = {S1, S2, S2, S1, S3}, we calculate its causality
trace according to the happens-before relation (that only contains last sighting in each
place), CTP = {S2, S1, S3}. Then we extract the set of transitions, denoted as T , from that
causality trace, T (CTp) = {(S2, S1), (S2, S3), (S1, S3)}. Each transition is a two location
tuple where the first location causally precedes the second. In our scenario, that means the
device was seen in the first location before being sighted at the second location. This set of
transitions is then finally compared to a similar set of transitions obtained from the PFs,
T (PF ).

Metrics To support the evaluation of Precedence Filters, we used two different metrics.
The individual metric which measures the false probability of statements like the following
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– “ individual X visited location S1 before visiting location S2”. For each user u, this
is done by calculating the cardinality of the difference between the transitions belonging
to the causality trace (T (CTu)) and the transitions extracted from the Precedence Filter
(T (PFu)), according to Equation 5.

#((T (CTu)
⋃
T (PFu)) \ (T (CTu)

⋂
T (PFu)))

#(T (PFu))
(5)

The individual metric calculates the relative amount of incorrect information (informa-
tion that is on the CTs and not on the PFs and vice-versa) returned by the Precedence
Filters. However, given the assumption that the exchange of information between nodes is
faster than people, our system never forgets information, i.e., T (CT ) ⊆ T (PF ). Therefore,
Equation 5 can be simplified, resulting in Equation 6.

#(T (PFu) \ T (CTu))

#(T (PFu))
(6)

The global metric quantifies the inaccuracy of information regarding the relative weight
of specific transitions. This enables us to establish the relative importance of each type
of transition, i.e., to know the inherent error in statements like - “2% of the transitions
are from Restaurant Y to Cafe Z”. Assuming that, U represents the universe of all users,
APF =

⊎
u∈U T (PFu) and ACT =

⊎
u∈U T (CTu) are respectively the multiset union of all

transitions in the Precedence Filters and in the Causality Traces and that A[t] is multiset
composed only of the t transitions in A, the global metric for each transition t ∈ A is
calculated according to equation 7. For each transition, we calculate the absolute difference
between its relative weight in the Precedence Filter and its relative weight in the actual
Causality Traces. Then we divide that number by its weight on the Precedence Filters.
This gives us the relative error of the relative weight of the transition.∣∣∣#APF [t]

#APF
− #ACT [t]

#ACT

∣∣∣
#APF [t]

(7)

Real Data set To evaluate the PFs’ performance we used a real data set with information
about Bluetooth sightings by static nodes. This data set was taken from Leguay et al.’s
work [23]. To collect this information, the authors handed out a set of Bluetooth enabled
devices called iMotes to a group of users who carried them in their day-to-day. Additionally,
the authors installed Bluetooth scanners in several places with the purpose of registering
the sightings of iMotes. The dataset contains 18 static nodes and 9244 distinct device IDs,
6439 of which have been sighted only once and were therefore removed. This leaves us with
2805 devices, whose average mobility trace size is approximately 4 and maximum size is
11. Figure 4(a) shows the distribution of total and distinct sightings for all scanners. As
expected, not all places have the same popularity, some are more visited than others, thus
the bigger number of Bluetooth sightings.

Synthetic Data Set Still in the context of evaluating the PF’s performance, we built a
synthetic trace generator. Our motivation came from the need to simulate scenarios with
arbitrary number of locations and users.
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Fig. 4. Number of total and distinct device sightings across the scanners

In a first approach, we tried fitting the statistic distribution of the real data set using
a negative exponential distribution. This would have allowed us to choose an arbitrary
number of sensors, users and trace length. However, after evaluation with Pearson’s Chi-
Square test, it turned out to be a bad fitting. This might be solvable by switching to a more
complex distribution function. Instead we chose to work with the empiric distribution. On
this second approach, it was decided to use the same number of sensors as the real data set,
i.e. 18. This allowed us to simulate the popularity of each sensor/place using the number of
sightings from the real data set as weights. The larger the number of sightings at a sensor,
the bigger its weight is, and the more likely it is to be chosen. Each node is defined by
two parameters, unique sightings and total sightings. We only made use of the latter. The
use of replication3 enabled us to create a simpler and less error prone simulator, capable of
producing as many users as we want, as well as mobility traces with arbitrary length. The
downside of not using the unique number of sightings is that we are assuming that even
though places have different weights, they are the same for everyone, i.e. everyone has the
same probability of choosing a given place, everyone is an “average” person.

Figure 4(b) shows the synthetic distribution obtained using the approach mentioned
above. As expected the results are very similar but not a perfect match. There is a corre-
lation between the number of total and unique sightings which stems from the use of the
“average” person model. Also, the curve from the synthetic data set is smoother, it does
not suffer from the “noise” inherent to raw real data.

6 Evaluation

Using the metrics and data sets previously mentioned, we tested the Precedence Filter’s in-
accuracy across several scenarios, varying both the number of devices and the length of the
mobility traces. Furthermore, each of the scenarios was tested with multiple different set-
tings for the Counting Bloom Filter’s maximum false positive probability (see Equation 1).
A good performance is reflected through high inaccuracy values for individual information
together with low values for global inaccuracy.

3 In statistics, replication is the repetition of an experiment or observation in the same or similar conditions.
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As can be seen in Figures 5, 6, 7 and 8, by increasing the false positive probability
of CBFs, inaccuracy increases as well. Inaccuracy is manifested via the occurrence of fake
(visible on PFs only) transitions, i.e., fictitious transitions. As the false probability increases,
so does the percentage of fake transitions. This is easily explainable. In Bloom Filters, false
positives denote elements wrongfully considered as belonging to the set. Given that in PFs
Bloom Filters are used to record device sightings, the occurrence of false positives generates
fake device sightings, which in turn give origin to fictitious transitions.

As previously explained, both data sets use 18 scanning nodes, what differs is the
number of devices and the length of the mobility traces. To describe the parameters of
each scenario, the following notation is used in the captions: Synthetic/Real-[number of
devices]-[maximum trace length]-[average trace length].
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Fig. 5. Comparison between real and synthetic data set, with same parameters

Figure 5 shows the comparison between a synthetic data set and the real data set.
This synthetic data set will serve as the baseline for all tests because it simulates both
the number of devices and trace length found in the real data set. Our technique performs
better with data from the synthetic data set (Figure 5(a)) than it does with data from
the real one (Figure 5(b)). This is a consequence of the average person simplification we
did for the synthetic data sets. Figure 4 shows that while the number of total sightings
is approximately equal in both data sets, the number of unique sightings is usually bigger
in synthetic data set. This means that the real data set has a greater number of repeated
sightings by user, which in turn means that the average length of the causality traces is
smaller, i.e., even if both data sets have the same number of users and similar sized mobility
traces, the causality traces in the real data set are smaller, explaining the worse performance
of our technique.

For both these data sets, there is a point where the individual accuracy is greater than
the global one, however, when the individual inaccuracy is approximately 50%, the global
inaccuracy is higher than what is desirable. This is a result of the low number of individuals
and small mobility trace sizes of both data sets, as supported by Figures 6, 7 and 8.

Keeping the length of mobility traces constant, Figure 6 shows that Precedence Filter’s
global inaccuracy drops by increasing the number of devices to 104, and then again, although
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Fig. 6. Synthetic data sets with increasing number of devices

little, by increasing that number to 105. In both scenarios, for a false positive probability
of 0.8, PFs provide global inaccuracy below 20% while ensuring that in average, 50% of the
information about any given individual is incorrect.
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Fig. 7. Synthetic data sets with increasing trace sizes

Keeping the same number of devices, while increasing the length of the mobility traces
also improves the Precedence Filter’s global accuracy, as depicted in Figure 7. For instance,
Figure 7(c) shows that by increasing the average and maximum values for mobility traces
respectively to 30 and 100, our technique offers a global error of about 15%, while providing
50% of inaccuracy for individual information. Increasing both the number of devices and
the length of the mobility traces yields the better results, which is not surprising given both
the previous results.

In a scenario with 105 users whose maximum and average mobility trace sizes are re-
spectively 100 and 30, depicted in Figure b8(c), our technique has a global inaccuracy a
little higher than 10% while providing an individual inaccuracy of 50%. This means that,
on average, half of the information about individual transitions is wrong, which we con-
sider to be a value compatible with plausible deniability. To recap, our technique registers
information user transitions. Each user has a set of transitions, and the individual metric
measures, in average, the percentage of those which are fictitious/false. The global metric,
on the other hand, returns the average error regarding the information about the popularity
of specific transitions/paths. Increasing the false positive probability of CBFs increases the
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Fig. 8. Synthetic data sets with increasing number of devices and trace sizes

total number of occurrences of transitions, which is why the individual accuracy drops; yet
the relative weight of each transition remains more stable, thus the behavior of the global
inaccuracy lines.

7 Conclusion

Vast amounts of collective movement patterns could be harnessed and put to good use
in city planning, ad placement, and traffic congestion prevention. The limitations are no
longer of a technological nature and suitable infrastructures are often in place that could
allow mass sensing. Our stance is that privacy is a key limiting factor in this area.

We have presented a technique that provides Precedence Filters. Through the aggre-
gation of probabilistic information about sequences of visits to monitored locations, this
technique is able to reveal information about the relative frequency of transitions. In prac-
tice, frequent transitions can lead to optimizations in transportation systems, discount
policies in businesses and museums, and many other potential applications.

To evaluate the technique we first had to define and propose new metrics to analyze
trace estimation quality. Evaluation was based on a robust trace driven simulation, from
a real mobility dataset, complemented with simulations over longer synthetic traces that
allowed a comprehensive analysis of the long term properties, for higher numbers of users
and longer traces.

The resulting technique is highly adjustable in the degree of privacy and degradation
of fidelity that is required in each potential setting. An important overall property is the
ability to give good quality collective traces from lower quality individual traces. This brings
the best of both worlds, high individual privacy and good collective statistics.
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