
Integration Challenges of Pure
Operation-based CRDTs in Redis

Georges Younes, Ali Shoker, Paulo Sérgio Almeida and Carlos Baquero
HASLab / INESC TEC & Universidade do Minho

Abstract
Pure operation-based (op-based) Conflict-free Replicated Data
Types (CRDTs) are generic and very efficient as they allow for
compact solutions in both sent messages and state size. Although
the pure op-based model looks promising, it is still not fully under-
stood in terms of practical implementation. In this paper, we ex-
plain the challenges faced in implementing pure op-based CRDTs
in a real system: the well-known in-memory cache key-value store
Redis. Our purpose of choosing Redis is to implement a multi-
master replication feature, which the current system lacks. The
experience demonstrates that pure op-based CRDTs can be im-
plemented in existing systems with minor changes in the original
API.

Keywords CRDT, Eventual Consistency, Redis, Pure operation-
based CRDTs

1. Introduction
Eventually consistent replication using Conflict-free Replicated
Data Types (CRDTs) has been widely adopted by the industry
(Shapiro et al. 2011). CRDTs are a materialization of the Strong
Eventual Consistency model, which allows all system replicas to
promptly perform read/write operations, leaving the synchroniza-
tion to a background phase to achieve eventual consistency. More
recently, the pure operation-based CRDT model (Baquero et al.
2014) has been introduced as a generic model to build CRDTs
that can leverage the meta-data provided by the middleware and
reduce the overhead of communication through exchanging more
compact messages. However, although pure op-based CRDTs have
been theoretically outlined in (Baquero et al. 2014), it is not yet
understood how to implement them in concrete systems.

In this paper, we summarize our experience in implementing
pure op-based CRDTs to build a multi-master replication feature
in Redis (Redis), the famous in-memory cache system. We choose
Redis because: (1) it helps us demonstrate how to integrate pure
op-based CRDTS in an existing popular system; (2) we contribute
with the community in building a crucial multi-master feature that
is currently missing in Redis. Our experience reveals that imple-
menting pure op-based CRDTs for many data types is straightfor-
ward, whereas integrating them in an existing system is somehow

[Copyright notice will appear here once ’preprint’ option is removed.]

challenging if the aim is to preserve the legacy API and code-base
intact.

2. Pure Op-based CRDTs
Conflict-free Replicated Data Types (CRDTs) (Shapiro et al. 2011)
are used to replicate data across multiple replicas without immedi-
ate synchronization between them. They are designed in a formal
way to resolve conflicts between replicas using eventual consis-
tency (EC). There are two approaches for CRDTs: Operation-based
CRDTs and State-based CRDTs (Shapiro et al. 2011). The former
broadcasts the update operation itself while the latter broadcasts the
local state to the other replicas. In the “Classical” operation-based
approach in (Shapiro et al. 2011), the replica sends not only the
operation and arguments but also meta-data containing information
that will be needed to achieve convergence. This design may result
in large state size and leads to confusion with the state-based ap-
proach. Pure operation-based CRDTs (Baquero et al. 2014) were
introduced as a solution that offers very compact state size and a
generic framework, independent of the data type.

In the pure op-based CRDT approach, every operation is applied
locally and disseminated to all other replicas via a Tagged Reliable
Causal Broadcast middleware (Baquero et al. 2014). The compact
size of the message is given by the fact that the meta-data needed
to preserve the causal order is provided by the middleware. As a
result, the disseminated message size is reduced to containing only
the operation name and arguments.

Each pure op-based CRDT has the following specification:

• prepare: returns the operation and arguments needed for the
dissemination.

• effect: removes redundant operations from the POLog and
checks for stable operations to move them to the sequential
data type.

• eval: returns the result of the query from the state by combining
the data of the POLog and the sequential data type.

3. Architecture
In order to implement the multi-master replication feature us-
ing pure op-based CRDTs, we integrated three layers into Redis
Server’s code. We present below the three layers, shown in Fig-
ure 1, with a brief description of each layer.

Request handler The handler layer is the intermediate layer be-
tween Redis Client API and the TRCB and CRDT layers. Every
client request is redirected by the original Redis Client API to this
layer. Then, this layer prepares a client object containing the oper-
ation and arguments (if any), serializes it and ships it to the TRCB
layer for dissemination.

1 2016/5/14



Figure 1. The general architecture of our multi-master proposed solution.

Tagged Reliable Causal Broadcast The second layer (TRCB) is
used to broadcast client requests (operations and arguments) to all
nodes in the cluster. This layer tags the client objects received from
the handler with a timestamp needed to guarantee causal delivery at
each node. Also, the TRCB is implemented in a way to guarantee
exactly-once delivery of each client object to each node in the
cluster.

CRDT layer The CRDT layer is where we implement the pure
op-based CRDTs and their related structures, such as the POLog
(Partially-Ordered Log), a map where the key is a timestamp and
the value is the operation and arguments, following the designs
and specifications in (Baquero et al. 2014). In addition to that,
we perform a two-phase POLog compaction to make CRDTs even
more efficient. The first phase removes obsolete and redundant
information from the POLog in a way that does not affect the result
of the queries, keeping only relevant of operations. The second
one is by using causal stability information from the middleware
to discard the timestamps of causally stable operations and move
them from the POLog to the Redis data types.

4. Challenges
In order to implement a multi-master replication feature in Redis
using pure op-based CRDTs we had to figure out solutions for the
challenges we faced. The challenges are in terms of architecture
design, preserving original API with minor changes, reusability
of Redis code, configurability of the system, choice of messaging
pattern and implementation of causal stability. We address, in each
of the subsections below, these challenges as well as our solution
for each of them.

4.1 Design
A major challenge was the choice of the architecture design, as
shown in section 3. On one hand, implementing pure op-based
CRDTs on top of Redis allows us to use Redis primitive data types
as sequential data types for our CRDTs, but this would require us
to implement a new client API. On the other hand, implementing
Redis on top of pure op-based CRDTs preserves the same Redis
client API and uses CRDTs to store the data, but we do not bene-
fit from Redis’ data types and related APIs. Instead, we integrated,
within Redis code, three layers responsible for the replication pro-

cess, keeping the same client API and benefiting from Redis’s data
types as sequential data types in our pure op-based model.

Moreover, from the multithreading perspective, understanding
the way these layers work and how they interact with each other
is crucial for the pure op-based model to work both correctly and
efficiently. The handler layer is always waiting for client requests,
independently from the TRCB and CRDT layers. Both the TRCB
and CRDT layers work independently and in parallel. The TRCB
constantly reads from two buffers (UNIX file descriptors): one con-
taining the client requests and another the peer updates. The TRCB
layer has a subthread, using the subscribe pattern, listening to peer
updates, which runs continuously and independently from the main
TRCB thread which deals with causal reliable dissemination. The
CRDT layer reads operations delivered by the TRCB and adds them
to the POLog. It has a subthread responsible of the 2-phase POLog
compaction process.

4.2 Preserving Redis client API
We implemented most of Redis data types such as keys, strings,
sets, hashes, bitmaps and hyperloglogs due to the ability to map
these data types to pure op-based CRDTs. In the current version
we do not support sorted sets and lists.

The main factor that makes this possible is that the use of
CRDTs is only transient and for replication purposes; the storage
happens in Redis data types. This preserves the original behaviour
of Redis from the application developer’s perspective.

We use the Redis Set as an example to illustrate the changes we
made to implement the pure op-based ORSet specification.

A Redis Set is an unordered collection of strings. The operation
to add an element to a set is SADD and is used as SADD myset
element1, returning 1 if element1 was added to the set, and 0 if not.
The SREM command removes an element from the set using SREM
myset element1, returning 1 if element1 was removed from the set,
and 0 if not. The command SMEMBERS allows the client to query
the set, returning all the elements in the set.

We use a pure op-based observed-remove set (ORSet) to map
the original Redis Set. A pure op-based ORSet has a POLog and
the Redis Set itself used as a sequential data type. No changes were
made to API: the operations are added to the POLog until they
are causally stable and then added to/removed from the Redis Set
using SADD/SREM, returning 1/0 in case of success/failure. For

2 2016/5/14



SMEMBERS, as in the pure op-based model, elements can exist
in both the POLog and in the sequential data type. SMEMBERS
behaves as the original Redis API, and returns the number of
elements by combining those in the POLog with those in the Redis
Set.

4.3 Causal Stability Implementation
The pure op-based model uses the notion of causal stability, to
discard timestamp information of operations once they become
stable and to move them from the POLog to the sequential data
type.

A clock t, and corresponding message, is causally stable at
node i when all messages subsequently delivered at i will have
timestamp u ≥ t.

In order to detect causal stability we designed a mechanism
using two new structures in the TRCB layer, at each node i, in
order to implement this notion of causal stability. The first one is an
N×N matrix called Last Timestamp Matrix (LTM), where N is the
number of nodes and each row j of the LTM is the version vector of
the most recently delivered message from the node j. The second
structure is a version vector called Stable Version Vector(SVV). At
each node i, SV Vi is the pointwise minimum of all version vectors
in the LTM. Each operation in the POLog that causally precedes
(happend-before) the SVV is considered stable and removed from
the POLog, to be added to the sequential data type.

4.4 TRCB communication
The implementation of the pure op-based CRDT model requires a
dissemination middleware that guarantees an exactly-once delivery
that respects causal order. We used the Publish/Subscribe messag-
ing pattern where each node is subscribed to all the others because it
meets best our asynchronous multi-master broadcast requirements.
We tried to use the already existing pub/sub communication imple-
mentation of Redis Cluster and found it was not feasible for two
reasons. The first reason is that Pub/Sub in Redis Cluster works
by broadcasting every publish to every other Redis Cluster node
through a cluster bus. This limits the pub/sub throughput to the bi-
section bandwidth of the underlying network infrastructure divided
by the number of nodes times message size. Pub/sub thus scales
linearly with respect to the cluster size, but in the the negative di-
rection. The second is that the Cluster bus binary protocol is not
publicly documented since it is not intended for external software
devices to talk with Redis Cluster nodes using this protocol.

Many libraries such as RabbitMQ (RabitMQ) provide features
like reliability, but in order to obtain it can lead to trade-offs in
performance. Instead, in order to allow us to have more control
over the implementation trade-offs, we used ZeroMQ (ZeroMQ) as
it is much lightweight and decided to implement a reliable causal
delivery mechanism, enhanced with tagging, over ZeroMQ best-
effort Pub/Sub.

4.5 Reusability of Redis code
In the pure op-based CRDT specification in (Baquero et al. 2014),
each CRDT uses two main structures: the POLog and the sequential
data type. However, the ability to map most of Redis primitive data
types to pure op-based CRDTs allowed us to use the Redis data
types as sequential data types for the CRDT, with the CRDTs being
used only for dissemination and to store data temporarily, before it
is stored in Redis when causal stability is achieved.

In some cases we didn’t even need to change the command im-
plementation. Considering the previous example in subsection 4.2,
the command implementation for both SADD and SREM were used
as is. For SMEMBERS, we had to change the implementation as we
needed to read elements from both the POLog and the Redis Set
and return the combination to the client.

4.6 Configurability
We tried to keep Redis as configurable as possible in the same
intuition of Redis Cluster. A Redis server can be used as a normal
single instance or as a node in a multi-master cluster depending on
the configuration.

5. Conclusion
We showed how pure op-based CRDTs can be integrated in Re-
dis with minor changes in the original system’s API. Three lessons
we learned. First, pure op-based CRDTs are fairly easy to imple-
ment, being generic across multiple data types. Second, integrating
them in an existing system is challenging if keeping the legacy API
intact is an objective. Third, the modular design we used in this im-
plementation makes this model easy to mimic and thus implement
multi-master replication in other systems with few changes.

References
C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based crdts

operation-based. In Proceedings of the First Workshop on Principles and
Practice of Eventual Consistency, page 7. ACM, 2014.

RabitMQ. Rabbitmq - messaging that just works.
https://www.rabbitmq.com.

Redis. An introduction to Redis data types and abstractions.
http://redis.io/topics/data-types-intro.

M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical
report, jan 2011. URL http://hal.upmc.fr/inria-00555588/.

ZeroMQ. Distributed Messaging - zeromq. http://zeromq.org.

3 2016/5/14


