

Universidade do Minho
Escola de Engenharia

Paulo César de Oliveira Jesus

Robust Distributed Data Aggregation

Tese de Doutoramento
Programa Doutoral em Informatica MAP-i

Trabalho efectuado sob a orientacao do

Doutor Carlos Miguel Ferraz Baquero Moreno
e do

Doutor Paulo Sérgio Soares de Almeida

Setembro de 2011

E AUTORIZADA A REPRODUCAO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGACAO, MEDIANTE DECLARACAO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, /__/

Assinatura:

Acknowledgments

I would like to express my gratitude to all the persons that helped and supported me

along my PhD. I dedicate this work to all of them.

In particular, I would like to thank:

e my supervisors, Prof. Carlos Baquero and Prof. Paulo Sérgio Almeida for their
valuable guidance, and all the advices, comments and suggestions provided

throughout this study;
e Telma for her love, constant support and motivation;
e my colleagues from the lab, for their companionship, team spirit and joy;

Finally, I would like to acknowledge the committee of the MAP-i1 Doctoral Pro-
gram and FCT (Fundagdo para a Ciéncia e Tecnologia) for the provided PhD grant
(SFRH/BD/33232/2007), which allowed me to dedicate these last few years to this

research work.

il

v

Robust Distributed Data Aggregation

Distributed aggregation algorithms are an important building block of modern large
scale systems, as it allows the determination of meaningful system-wide properties
(e.g., network size, total storage capacity, average load, or majorities) which are re-
quired to direct the execution of distributed applications. In the last decade, several
algorithms have been proposed to address the distributed computation of aggregation
functions (e.g., COUNT, SUM, AVERAGE, and MAX/MIN), exhibiting different prop-
erties in terms of accuracy, speed and communication tradeoffs. However, existing
approaches exhibit many issues when challenged in faulty and dynamic environments,
lacking in terms of fault-tolerance and support to churn.

This study details a novel distributed aggregation approach, named Flow Updat-
ing, which is fault-tolerant and able to operate on dynamics networks. The algorithm
is based on manipulating flows (inspired by the concept from graph theory), that are
updated using idempotent messages, providing it with unique robustness capabilities.
Experimental results showed that Flow Updating outperforms previous averaging al-
gorithms in terms of time and message complexity, and unlike them it self adapts to
churn and changes of the initial input values without requiring any periodic restart,
supporting node crashes and high levels of message loss.

In addition to this main contribution, others can also be found in this research
work, namely: a definition of the aggregation problem is proposed; existing distributed
aggregation algorithm are surveyed and classified into a comprehensive taxonomy; a
novel algorithm is introduced, based on Flow Updating, to estimate the Cumulative
Distribution Function (CDF) of a global system attribute.

It is expected that this work will constitute a relevant contribution to the area of dis-
tributed computing, in particular to the robust distributed computation of aggregation

functions in dynamic networks.

vi

Agregacao Distribuida e Robusta

Os algoritmos de agregacdo distribuidos t€m um papel importante no desenho dos
sistemas de larga escala modernos, uma vez que permitem determinar o valor de pro-
priedades globais do sistema (e.g., tamanho da rede, capacidade total de armazena-
mento, carga média, ou maiorias) que sao fundamentais para a execucdo de outras
aplicagdes distribuidas. Ao longo da ultima década, diversos algoritmos tém sido
propostos para calcular fungdes de agregacgdo (e.g., CONTAGEM, SOMA, MEDIA, ou
MIN/MAX), possuindo diferentes caracteristicas em termos de precisdo, velocidade e
comunicacdo. No entanto, as técnicas existentes exibem vdarios problemas quando
executadas em ambientes com faltas e dindmicos, deixando a desejar em termos de

tolerancia a faltas e ndo suportando a entrada/saida de nds.

Este estudo descreve detalhadamente uma nova abordagem para calcular funcdes
de agregacdo de forma distribuida, denominada Flow Updating, que € tolerante a fal-
tas e capaz de operar em redes dindmicas. O algoritmo € baseada na manipulacao de
fluxos (inspirado no conceito da teoria de grafos), que s@o atualizados por mensagens
idempotentes, conferindo-lhe capacidades tnicas em termos de robustez. Os resul-
tados experimentais demonstram que o Flow Updating supera os anteriores algorit-
mos baseados em técnicas de averaging em termos de complexidade de tempo e men-
sagens, €, ao contrario destes, auto adapta-se a mudangas da rede (i.e., entrada/saida de
nos e alteracdo dos valores iniciais) sem necessitar de reiniciar periodicamente a sua

execucdo, suportando falhas de nds e elevados niveis de perdas de mensagens.

Para além desta contribuicdo principal, outras sdo também encontradas neste tra-
balho, nomeadamente: € proposta uma defini¢do do problema da agregacao; € descrito
o estado da arte em termos dos algoritmos de agregacao distribuidos, e estes sdo clas-
sificados numa taxonomia abrangente; € apresentado um novo algoritmo baseado no
Flow Updating para estimar a Fung¢@o de Distribui¢do Cumulativa (CDF) de um atrib-

uto global do sistema.

vii

viii

Espera-se que este trabalho constitua um contributo relevante para a area da computagao
distribuida, em especial para a computacgao distribuida e robusta de fun¢des de agregacao

em redes dinamicas.

Contents

I Exordium

[The Purpose of this Work| 1
I Introduction| 3
[LI_Motivationl. 4
(.2 Contributions| o oo 6
(1.3 Organization|. i 7

9
[2.1 Properties of Aggregation Functions| 10
2.1.1 Decomposability|, 10

[2.1.2 Duplicate sensitiveness and idempotence| 13

[2.2 Taxonomy of common aggregation functions| 14
UL State of the Art 15
3 Related Workl 17
18

[3.1.1 Hierarchy-based 20
............................... 27

[3.1.3 Flooding/Broadcast|. 28

3.1.4 Random Walkl. 29

[3.1.5 Gossip-based oo 30

[3.1.6 Hybrid 33

[3.2 Computation| 36
3.2.1 Hierarchicall. 37

[3.2.2 Averaging|. 38

ix

Contents

[(3.2.4 Digests| L
(3.2.5 Countingl

4 Dependability Issues of Existing Algorithms|

4.1 Robustness of Averaging Algorithms|.
.1 Push-Sum Protocolf

4.1.2 Push-Pull Gossiping|

“4.1.3 Distributed Random Grouping|

III Robust Distributed Aggregation Approach|

5 Flow Updating|

5.1 Algorithm|

[5.2.1 Model and Assumptions|
[5.2.2 (Simplest) Non Concurrent Model|
[5.2.2.1 Messageloss

[5.2.3 Concurrent Model (with non overlapping groups)|

[5.2.3.1 Messageloss

[5.3 Varnations and Improvements|

[5.3.1 Flow Updating with Preferential Grouping|

[3.3.1.1 Formation of Averaging Groups|.

[5.3.2 Termination/Quiescencel

[5.3.3 Asynchrony|.

[6 Estimating Complex Aggregates|

[/__Evaluation|

(/.1 ~Simulation Settings|

(7.2 Comparison Against Other Algorithms|.

(/.3 Fault-Tolerancel
(7.4 Flow Updating with Preferential Grouping|

Contents xi

(/.5 Dynamism|. 134
DET _ChUml - ¢ v oot e e 134

[Z5.1.1 Fault Detectionl 138

[7.5.2 Input Values Change| 142

/.6 Termination/Quiescence| 143
(7.7 Asynchrony| 151

lV_ Peroratio |
\Achievements and Future Workl 155
8 __Conclusion| 157
8.1 Future Workl 159
VI Appendices| 161
[A~ Modeling Flow Updating as a Difference Equation| 163
(ALl State Modell 164
[A2 Message Model| 166
(A3 Example|. 168
[A.3.1 Scenario I (treenetwork)|. 169

[A.3.2 Scenario 2 (multi-path network), 171

A4 Probleml o 173
(A4.1 Additional informationlo 173

[A.4.1.1 Exploration| 173

[A.4.1.2 Similarity between models: State vs Message|. . . . 176

[A.4.1.3 Propertiesof matrix Al 177

Bibliography 179

xii

Contents

List of Figures

[2.1 Examples of computation of a self-decomposable aggregation function |
| (associative and commutative).|o 12
.1 Violation of the mass conservation invariant in the Push-Pull Gossip- |
| ing protocol (estimates at the end of eachround).| 61
[5.1 Example (non concurrent model) depicting the effect of message loss.| 86
[5.2 Example (non concurrent model) where the same node 1s chosen to |
| execute the algorithm after message loss.|. 89
[5.3 Example (non concurrent model) where a node that fails to receive a |
| message from the previous round 1s chosen to execute the algorithm.| . 90
[5.4 Example (non concurrent model) where a node that successfully re- |
| celved a message from the previous round 1s chosen to execute the |
| algorithm.| o 91
[5.5 Example (non concurrent model) where a node that did not participate |
| 1n the previous round 1s chosen to execute the algorithm., 92
[5.6 Example (non concurrent model) where the node chosen to execute the |
| algorithm belongs to a link where a message was previously lost| . . . 93
[/.1 ~Comparison of Flow Updating against other averaging algorithms, on |
| random networks with d ~ 3 and different sizes n (1.e., 100, 1000, |
| 10000)) . . o o o 122
(7.2 Comparison of Flow Updating against other averaging algorithms, on |
| random networks with d ~ 10 and different sizes n (1.e., 100, 1000, |
| 10000)) . . o o o 123
(7.3 Comparison of Flow Updating against other averaging algorithms, on |

attach networks with d = 3 and different sizes n (1.e., 100, 1000, 10000).[]124

Xiii

Xiv List of Figures

[7.4 Comparison of Flow Updating against other averaging algorithms, on |
| attach networks with d ~ 10 and different sizes n (1.e., 100, 1000, |
| 10000).f . . . o 125

[7.5 Comparison of Flow Updating against other averaging algorithms, on |
| 2D/mesh networks with d ~ 3 and different sizes n (1.e., 100, 1000, |
| 10000)) . . o o 126

[7.6 Comparison of Flow Updating against other averaging algorithms, on |
| 2D/mesh networks with d ~ 10 and different sizes n (1.e., 100, 1000, |
| 10000)) . . o v o 127

(7.7 Flow Updating with message loss on random networks (n = 1000, |
| AR 3] o e 129

(7.8 Flow Updating with message loss on random networks (n = 1000, |
| d~=10) . . o 129

[7.9 Flow Updating with message loss on 2D/mesh networks (n = 1000, |
| AR 3] o e 130

[7.10 Flow Updating with message loss on 2D/mesh networks (n = 1000, |
| d~=10) . . o 130

[/.11 Comparison of Flow Updating against 1ts variations, on random net- |

| works with size n = 1000 and different average connection degrees |

| (e,3and 10).]o 132
[7.12 Varations of Flow Updating with loss — random networks (n = 1000; |
| A= 3)). . e 132
[7.13 Varnations of Flow Updating with loss — random networks (n = 1000; |
| d~10)) . . e 132

[7.14 Comparison of Flow Updating against 1ts variations, on 2D/mesh net- |

| works with size n = 1000 and different average connection degrees |
| (e, 3and 10))o 133

[7.15 Varnations of Flow Updating with loss — 2D/mesh networks (n = |
| 1000; d = 3) -« v v o 133

[/.16 Varations of Flow Updating with loss — 2D/mesh networks (n = |
| 1000; d = T10) . o o oo oo 133

[7.17 Comparison of FU 1n dynamic settings, with no message loss —random |
| networks (n = 1000, d ~ logn).| 135

List of Figures XV

[7.18 FU 1n dynamic settings, with message loss — random networks (n = |

| 1000, d=logm)| oo 136
[7.19 FU in dynamic settings, with message loss — 2D/mesh networks (n = |
| 1000, d ~logn).| 137
[7.20 Estimates distribution of FU in dynamic settings, with 20% of message |
I 1 138
[7.21 Effect of FD on the execution of FU 1n dynamic settings with message |
| loss — random networks (n = 1000, d ~ logn).| 140
[7.22 Mistakes of FD 1n dynamic settings with message loss — random net- |
| works (n = 1000, d ~ logmn).. 141
[7.23 FU with input value changes, and message loss — random networks |
| (n=1000,d~3) 143

[7.24 Quiescence with no message loss — random networks (n = 1000, d ~ 3).145

[7.25 Quiescence with 10% of message loss — random networks (n = 1000, |

| AR 3. o e 146
[7.26 Quiescence with 20% of message loss — random networks (n = 1000, |
| AR 3)]. o e 147
[7.27 Quiescence with no message loss — 2D/mesh networks (n = 1000, |
| dx~10) . . . 148
[7.28 Quiescence with 10% of message loss — 2D/mesh networks (n = 1000, |
| d~10) . . o 149
[7.29 Use of different threshold values to leave quiescence — random net- |
| works (n = 1000, d ~ 3), with no message loss.|. 151
[7.30 Execution of FU 1n asynchronous setting, using an average message |
| transmission of 89.88 ms — random networks (n = 1000, d =~ 3).| . . . 153
[A.1 Tree network topology| L. 169

[A.2 Multi-path network topology| 171

XVi List of Figures

List of Algorithms

(1 Flow Updating algorithm.| 69
[2 Simplest Flow Updating algorithm, abstracting message exchange.|. . . 75
[3 Flow Updating algorithm, considering concurrent executions at distinct |
| nodes, and abstracting message exchanges.| 96
{4 Flow Updating with Preferential Grouping algorithm.[. 103

[5 Functions used to decide the leader and compute the reduction potential, |

| relying on the expected variance reduction by including all neighbors.| . 106

[6 Functions used to decide the leader and compute the reduction poten- |

| tial, relying on the leader average expectation and variance reduction |

| including all neighbors.| 106
[/ Algorithm to estimate CDF with Flow Updating (FUCDF).|. 113
(8 Auxiliary functions used in the FUCDF algorithm.| 114

Xvii

XVviii List of Algorithms

List of Tables

2.1 Taxonomy of aggregation functions| 14
[3.1 Taxonomy from a communication perspective.|. 19
[3.2 Taxonomy from a computation perspective.| 38

Xix

XX

List of Tables

Part I

Exordium
The Purpose of this Work

Chapter 1
Introduction

In the current times, globalization is one of the main keywords that characterizes our
world, from economics to scientific innovation, being attached to a new way of think-
ing and seeing things, and revealing itself as a fundamental instrument for the success
of single individuals and collectivities (enterprises, institutions, etc.). Even in the area
of computer science and engineering, global computing has assumed itself as a topic of
great importance in diverse application fields, from entertainment (e.g., internet social
networks) to business and R&D (e.g., cloud computing services). In a sense, global
computing needs allied with mobile and ubiquitous computing, promote an increased
use of large scale distributed systems, which are essential to provide the required sup-

port to these computational paradigms.

Considering the need to operate in a distributed fashion, where each peer can have
the same opportunity to participate in the system, it becomes difficult to determine any
global property, since there is no central element with a global view of the system.
Moreover, the knowledge of some global property (e.g., network size; total storage
capacity; average load; or majorities) is often required to direct the execution of dis-
tributed applications. In such circumstances, data aggregation assumes a core role in
the design of distributed systems. In other particular scenarios, like Wireless Sensor
Networks (WSN), data collection is often only practicable if aggregation is performed,

due to energy constraints found on such environments.

Robbert Van Renesse defined aggregation as “the ability to summarize informa-
tion”, stating that “it is the basis for scalability for many, if not all, large networking
services” [124]. In a nutshell, data aggregation is considered a subset of information

fusion, aiming at reducing (summarizing) the handled data volume [107]. More pre-

4 1 — Introduction

cisely, in this work, we refer to data aggregation as the distributed computation of
aggregation functions such as COUNT, AVERAGE or SUM. A more rigorous definition
is established in Chapter 2]

Although apparently simple, aggregation has reveled itself as a hard and interesting
problem, especially when seeking solutions in distributed settings, where no single el-
ement holds a global view of the whole system. In the last decade, several approaches
have been proposed to address this problem, revealing different characteristics in terms
of accuracy, time and communication tradeoffs. In particular, most of the existing tech-
niques lack fault tolerance, which is often a major concern in distributed and reliable
systems. This research is intended to close the existing gap, focusing on the con-
struction of robust aggregation algorithms. The result was the development of a new
approach, named Flow Updating, with distinctive properties: accurate, fault-tolerant,

and able to operate on dynamic settings.

1.1 Motivation

This chapter describe the main motivations of this work, intending to clarify the reader
about the importance of aggregation [124] in the design of distributed systems. To
this end, several application examples are succinctly described, testifying the need for
aggregation. Finally, a brief argumentation will be given to justify the realization of
this work, exposing the lack of robust distributed aggregation algorithms.

Aggregation is an essential building block of modern distributed systems, enabling
the decentralized computation of meaningful global properties, which can further be
used to direct the execution of other distributed applications and algorithms. Aggre-
gation mechanisms also allow the obtention of several networks statics and system
information that can be used for administration and monitoring purposes over dif-
ferent decentralized networks, from Peer-to-Peer (P2P) to Wireless Sensor Networks
(WSN). For instance, in P2P networks it can be used to obtain useful metrics, such
as: the amount of resources available on the network, the average session time of each
peer, or the average (maximum or minimum) network load.

In the particular case of WSN, aggregation techniques are essential to monitor and
control the covered area, allowing the computation of diverse statistics, such as: the
minimum/maximum temperature, the average humidity, measure the concentration of

a toxic substance (e.g., carbon monoxide), the noise level, etc. Moreover, due to the

1.1 — Motivation 5

specific constraint found in WSN, data collection is often only practicable if aggrega-
tion is performed (especially to optimize and restrain energy consumption).

Often, the data needed by applications correspond to summaries (aggregates) of
the collected data, rather than raw data readings. In many applications and algorithms,
some system wide metrics are used as input parameters for the execution of basilar
operations from which they depend on. An important case is the network size which
can be derived from an aggregation algorithm, as many other metrics already referred
previously. This metric has revealed itself as fundamental for the correct execution of
some algorithms, especially when the actual system size is a priori unknown and can

change over time, for example:

e In [96] the estimate of the current network size is used as an essential parameter
for the (deterministic or probabilistic) construction of Distributed Hash Tables
(DHT) routing topologies, and to adapt the routing structure according to the net-
work dynamism. Other algorithms that construct and maintain a specific routing
structure, like DHTSs, use the network size estimation to optimize and adjust their
performance, namely: Chord [121], Pastry [115]], Tapestry [129], Viceroy [93],
Symphony [97] and CAN [114].

e Some gossip-based protocols [S7; 46] use an estimation of the network size to
set the number of targets considered by each node in the information spreading

process.

e A probabilistic group communication service for ad-hoc networks based on ran-
dom walks [42; 41]], uses the group size estimation (see proposed method in
Section [3.1.4) to accelerate self-stabilization. According to the authors, the use
of a more accurate estimation of the actual size n, instead of an upper bound N
(used to calculate some required parameters), ensures a faster system reaction to

network changes (nodes leaving/arriving).

e RaWMS [11], a membership service for wireless ad hoc networks based on ran-
dom walks, requires the knowledge of the network size to compute the mixing

time for a reverse random walk in order to sample peers;

e For the autonomous generation of UIDs (Unique IDentifiers) in mobile environ-

ments [70], based on a simple random number generation. The knowledge of

6 1 — Introduction

the system size is fundamental to define the minimum length of the generated

identifiers, in order to ensure their uniqueness (with high probability).

e The estimation of the network size is required in [2] to set up a probabilistic

quorum system in dynamic settings;

Several aggregation algorithms can be found in the actual literature, tailored for
different settings, and showing different resulting accuracies, time and communication
trade-offs. Some few contributions have compared and evaluated some of the existing
algorithms, for instance in [100; 165 21]]. Existing aggregation approaches have proven
to be hard to simultaneously obtain accurate results (almost exact), efficiently handle
the system dynamism and tolerate faults. In fact, most of the existing techniques do
not address fault tolerance, only few have recently exhibited some practical concerns
about aggregation robustness, like in [[128]] that supports discontinuous failures of ad-
jacent nodes within a sort time period. To the best of our knowledge, an efficient and
accurate aggregation algorithm with effective robustness capabilities was still missing.
According to this observation, and without forgetting some important requirements
like: accuracy, scalability, response time, communication efficiency, fault tolerance
and adaptability; The need to define a better (more robust) solution to the aggregation

problem represented the main motivation for the development of this research study.

1.2 Contributions

The main contribution of this research stands in the development of a novel and ro-
bust aggregation approach, tolerant to message loss and that can operate in dynamic
environments, supporting churn (i.e., nodes leaving/arriving) and changes of the initial
input values. The designed aggregation technique, Flow Updating, possesses impor-
tant attributes: it is accurate, tolerates faults (message loss and node crashes), and it is
able to self-adapt to network and value changes. Due to these unique characteristics
which distinguish it from other existing aggregation algorithms, enabling it’s practical
application in realistic settings, Flow Updating constitutes a valuable contribution to
the area of distributed computing. Beside this, other contributions can be found in this
research work, namely: a survey and taxonomy of the state of the art on distributed
data aggregation algorithms; study of the dependability issues of the existing aggre-

gation algorithms; a novel scheme to estimate the statistic distribution of an attribute,

1.3 — Organization 7

more precisely its Cumulative Distributed Function (CDF), based on Flow Updating.
Up to now, the contributions from this research work were materialized in the fol-

lowing publications:

e “Fault-Tolerant Aggregation by Flow Updating”, the 9th IFIP International Con-
ference on Distributed Applications and interoperable Systems (DAIS), 2009 [[72];

e “Dependability in Aggregation by Averaging”, Simpésio de Informética (INFo-
rum), 2009 [Z1];

e “Fault-Tolerant Aggregation for Dynamic Networks”, 29th IEEE Symposium on
Reliable Distributed Systems (SRDS), 2010 [74];

e “Estimativa Continua e Tolerante a Faltas de Fun¢des Distribuicdo Cumulativa

em Redes de Larga Escala”, Simpdsio de Informatica (INForum), 2011 [17];

Moreover, the designed technique also contributed to the development of other

ideas, and provided a relevant collaboration in other papers:

e “Extrema Propagation: Fast Distributed Estimation of Sums and Network Sizes”,
IEEE Transactions on Parallel and Distributed Systems (In Preprint) [9];

e “Fault-Tolerant Aggregation: Flow Update Meets Mass Distribution”, 15th In-
ternational Conference On Principles Of Distributed Systems — OPODIS 2011
(Accepted) [3];

Nonetheless, more publications are excepted to come from this work. For instance,

a few more are already under submission (waiting for review):

e “A Survey on Distributed Data Aggregation Algorithms” (submitted to ACM

Computing Surveys);

e “Flow Updating: Fault-Tolerant Aggregation for Dynamic Networks” (submit-
ted to IEEE Transactions on Parallel and Distributed Systems);

1.3 Organization

This section describes the organization of the contents of this research work. The con-

cept of aggregation function is defined in Chapter [2] clarifying the reader about the

8 1 — Introduction

properties of the function that are intended to be computed in a distributed way. The
previous distributed aggregation algorithms are surveyed and categorized in Chapter 3]
and their dependability issues are revealed in Chapter [d The main contribution of this
work, a novel approach designated Flow Updating, is detailed in Chapter 5] providing
a correctness analysis and some additional practical considerations to allow its appli-
cation on real settings. Additionally, a novel approach based on Flow Updating is
introduced in Chapter [6] allowing the estimation of the Cumulative Distribution Func-
tion (CDF) of global attributes. Flow Updating is empirical evaluated in Chapter [/}
describing the simulation settings and discussing the results obtained on several sce-
narios. Finally, Chapter (8| provides some concluding remark, summarizing the main

results and contributions, and pointing out some future research directions.

Chapter 2
Problem Definition

This chapter defines the concept of aggregation and the problem addressed by this re-
search work. Additionally, the main properties of an aggregation function are defined,
and a taxonomy of the most common aggregations functions is provided.

In a nutshell, aggregation can be simply defined as “the ability to summarize infor-
mation”, quoting Robbert Van Renesse [[124]. Data aggregation is considered a subset
of information fusion, aiming at reducing (summarize) the handled data volume [107].
Here, we provide a more precise definition, and consider that the process consists in

the computation of an aggregation function defined by:

Definition 2.1 (Aggregation Function). An aggregation function f takes a multiset of

elements from a domain I and produces an output of a domain O.
f:N' =0

The input being a multiset emphasizes that: first, the order in which the elements
are aggregated is irrelevant; second, a given value may occur several times. Frequently,
for common aggregation functions such as min, max, and sum, both I and O are of the
same domain. For others, such as count (which gives the cardinality of the multiset),
the result is a nonnegative integer (N), regardless of the input domain.

An aggregation function aims to summarize information. Therefore, the result
of an aggregation (in the output domain O) typically takes much less space than the
multiset to be aggregated (less than the elements from N’). We will leave unspecified
what is acceptable for some function to be considered as summarizing information, and

therefore an aggregation function. Nonetheless, it can be said that the output domain O

9

10 2 — Problem Definition

is not usually a multiset (in general, O # NY), and that the identity function is clearly

not an aggregation function as it definitely does not summarize information.

2.1 Properties of Aggregation Functions

When trying to design a distributed algorithm to compute an aggregation function
(e.g., COUNT, SUM, AVERAGE, MIN, MAX, or RANGE), it is easy to observe than some
functions might be more difficult to compute than others, raising additional concerns
in order to obtain the correct result. For instance, the MIN and MAX can be trivially
computed in a distributed way, simply applying the MIN/MAX to any received inputs
at any (intermediary) node, and further propagating the result, independently from the
order of inputs and repetition. On the contrary, to compute the COUNT or the SUM one
must be careful not to account the same value twice (at intermediary nodes). Also, in
the case of RANGE one must wait for the determination of the MIN and the MAX before
calculating the result (difference between them).

Analyzing more carefully this examples, one can suspect the existence of some
relation between the difficulty by distributedly computing an aggregation function,
and its characteristics in terms of decomposability and duplicate sensitivity. For this
reason, and in order to refine the concept of aggregation function, some properties are

formally defined.

2.1.1 Decomposability

For some aggregation functions, we may need to perform a single computation in-
volving all elements in the multiset to calculate the result. However, for many cases,
one needs to avoid such centralized computation. In order to perform distributed in-
network aggregatiorﬂ, it is relevant whether or not the aggregation function can be
decomposed into several computations, involving sub-multisets of the multiset to be
aggregated. Therefore, for distributed aggregation it is useful to define the notion of de-
composable aggregation function, and a subset of it which we call self-decomposable

aggregation functions.

A definition of in-network aggregation is proposed in [51]. Here, we consider the term in-network
in a more general way, referring solely to the need to process information at intermediate nodes in a
common network.

2.1 — Properties of Aggregation Functions 11

Definition 2.2 (Self-decomposable Aggregation Function). An aggregation function
f : NI — O is said to be self-decomposable, if for some (merge) operator < and all
non-empty multisets X and Y :

JXWY) = f(X)o f(Y),
where W denotes the standard multiset sum (see, e.g.,[122]).

According to the above definition, the operator ¢ is commutative and associative,
given that the aggregation result is the same for all possible partitions of a multiset into
sub-multisets. This can be very handy in terms of distributed computation, allowing
self-decomposable aggregation functions to be easily separated into several aggrega-
tion processes, as illustrated by Figure 2.1] As example, many traditional functions
such as MIN, MAX, SUM and COUNT are self-decomposable:

sum ({}) = =,

sum(X WY) = sum(X)+ sum(Y).

count({z}) = 1,
count(X WY) = count(X)+ count(Y).

min({z}) = =,

min(X WY) = min(X) M min(Y).

where I is the meet operator which for natural numbers coincides with the minimum
(i.e., x My = min({z,y})) [32].

Definition 2.3 (Decomposable Aggregation Function). An aggregation function f :
N/ — O is said to be decomposable, if for some function g and a self-decomposable

aggregation function h:
f=goh

i.e, for any non-empty multiset X, it can be expressed as:

12

2 — Problem Definition

(a)

(VOwox) 0O (yo2)

(b)

wo(vox)0(yo2z)

Figure 2.1: Examples of computation of a self-decomposable aggregation function (associative
and commutative).

In other words, this means that a decomposable aggregation function f results

from the composition of a function g with a self-decomposable aggregation function

h. From this definition, self-decomposable aggregation functions are a subset of de-
composable functions, where g = id, the identity function. This means, that while
for self-decomposable functions the intermediate results (e.g., for in-network aggrega-
tion) are computed in the output domain O, for a general decomposable function, we

may need a different auxiliary domain to hold the intermediate results.

A classic example of a decomposable (but not self-decomposable) aggregation

function is AVERAGE, which can be expressed in the following way:

9(h(X)),

(x
h

s/

with

1)
X)+h(Y),

&)

where h is a self-decomposable aggregation function that outputs values of an auxiliary

domain (pairs of values) and + is the standard pointwise sum of pairs (i.e., (z1,41) +

(x2,Y2) = (z1 + T2, Y1 + y2)). Another example is the RANGE function in statistics,
which gives the difference between the maximum and the minimum value:

2.1 — Properties of Aggregation Functions 13

range(X) = g¢g(h(X)), with
h({z}) = (z,2)

MXWY) = h(X)oh(Y),
g((d,u)) = u—d, given that
(z1,72) © (y1,92) = (min({zy,y1}), max({x2,12})).

2.1.2 Duplicate sensitiveness and idempotence

Depending on the aggregation function, it may be relevant whether a given value oc-
curs several times in the multiset. For some aggregation functions, such as MIN and
MAX, the presence of duplicate values in the multiset does not influence the result,
which only depends on its support set (i.e., the set obtained by removing all duplicates

from the original multiset). For example:

min({1,3,1,2,4,5,4,5}) = min({1,3,2,4,5}) = 1

For others aggregation functions, like SUM and COUNT, the number of times each

element occurs (i.e., multiplicity) is relevant. For example:

8 = count({1,3,1,2,4,5,4,5}) # count({1,3,2,4,5}) =5

Therefore, duplicate sensitiveness is important and must be taken into account for
distributed aggregation, in order to compute the correct result.

Definition 2.4 (Duplicate Insensitive Aggregation Function). An aggregation function
f : NI — O is said to be duplicate insensitive, if for any non empty multiset M and its

corresponding support set S:

Moreover, some duplicate insensitive functions (like MIN and MAX) can be im-
plemented using an idempotent binary operator, that can be successively applied (by
intermediate nodes) on the elements of the multiset (any number of times without af-

fecting the result). This helps in obtaining fault tolerance and decentralized processing,

14 2 — Problem Definition

Decomposable Non-decomposable

Self-decomposable

Duplicate insensitive MIN, MAX RANGE DISTINCT COUNT
Duplicate sensitive SUM, COUNT AVERAGE | MEDIAN, MODE, CDF

Table 2.1: Taxonomy of aggregation functions

allowing retransmissions or sending values across multiple paths. Unfortunately, the
distributed application of an idempotent operator is not always possible, even for some
duplicate insensitive aggregation functions, such as DISTINCT COUNT (i.e., cardinality
of the support set). In fact, the application of an idempotent operator in a distributed
way to compute an aggregation function is only possible, if the function is duplicate

insensitive and self-decomposable.

2.2 Taxonomy of common aggregation functions

Building on the concepts of decomposability and duplicate sensitiveness, we can ob-
tain a taxonomy of aggregation functions (Table [2.1)). This table helps to clarify how
suited an aggregation function is to a distributed computation. Non-decomposable
aggregation functions are harder to compute than decomposable ones, being vulgarly
labeled in the literature as “complex”. Commonly, duplicate insensitive aggregation
functions are easier to compute than duplicate sensitive. As we will see in the next
chapter, one way to obtain fault-tolerance (at the cost of some accuracy) is to use du-
plicate insensitive approaches to estimate some aggregation function (e.g., sketches),
replacing the use of non-idempotent operations (like sum) by idempotent ones (like

max).

Part 11

State of the Art

15

Chapter 3

Related Work

The body of knowledge on data aggregation in composed by a considerable amount of
distinct approaches, that allow the distributed computation of aggregation functions.
This chapter surveys a wide range of existing algorithms, identifying and classifying
the most important techniques, and discussing their advantages/disadvantage in terms
of communication and computational complexity.

Some surveys about aggregation can already found in the literature, but they focus
specifically on techniques for WSN [51511351117;16;107]]. Namely, several in-network
aggregation techniques for WSN are depicted in [S1]], typically operating at the net-
work level and needing to deal with the resource constraints of sensor nodes (limited
computational power, storage and energy resources). A review more focused on energy
efficiency is presented in [113], and on security in [[117;16]. Finally, a state-of-the-art
on information fusion techniques for WSN is available in [[107], covering a broad view
of the sensor fusion process, considering data aggregation as a subset of information
fusion. Here, data aggregation algorithms are addressed at a higher abstraction level,
providing a comprehensive and more generic view of the problem independently from

the type of network used.

The most relevant distributed data aggregation algorithms are succinctly detailed
in this section, and simple taxonomies are proposed, classifying them according to
two main perspectives: communication and computation (see Table and[3.2). The
first viewpoint refers to the routing protocols and intrinsic network topologies used
to support the existing aggregation techniques. The second perspective points out the
aggregation functions computed by the algorithms and the main principles from which

they are based on. Other perspectives (e.g., algorithm requirements, or covered types

17

18 3 — Related Work

of aggregation functions) could have been considered, since the mapping between the
algorithms attributes is multidimensional. However, we believe that the two chosen
perspectives will provide a clear presentation and understanding of the current state of
the art.

3.1 Communication

Three major classes of aggregation algorithms are identified from the communication
perspective, according to the characteristics of their communication pattern (routing
protocol) and network topology: structured (usually, hierarchy-based), unstructured
(usually, gossip-based), and hybrid (mixing the previous categories).

The structured communication class refers to aggregation algorithms that are de-
pendent on a specific network topology and routing scheme to operate correctly. If
the required routing topology is not available, then an additional preprocessing phase
is needed in order to create it, before starting the execution of the algorithm. This
dependency limits the use of these techniques in dynamic environments. For instance,
in mobile networks these algorithms need to be able to continuously adapt their rout-
ing structure to follow network changes. Typically, algorithms are directly affected by
problems from the used routing structure. For example, in tree-based communication
structures a single point of failure (node/link) can compromise the delivery of data
from all its subtrees, and consequently impair the applications supported by that struc-
ture. In practice, hierarchical communication structures (e.g., tree routing topology)
are the most often used to perform data aggregation, especially in WSN. Alternative
routing topologies have also been considered, like the ring topology, although very few
approaches rely on it.

The unstructured communication category covers aggregation algorithms that can
operate independently from the network organization and structure, without establish-
ing any predefined topology. In terms of communication, this kind of algorithms is
essentially characterized by the used communication pattern: flooding/broadcast, ran-
dom walk and gossip. The flooding/broadcast communication patterns is associated to
the dissemination of data from one node to all the network or group of nodes — “one
to all”. A random walk consists in sequential message transmissions, from one node
to another — “one to one”. The gossip communication pattern refers to a well known

communication protocol, based on the spreading of a rumor [[111] (or an epidemic dis-

3.1 — Communication

19

Routing

Algorithms

Structured

Hierarchy

(tree, cluster, multipath)

TAG [92]], DAG [106],
I-LEAG [16], Sketches [29]],
RIA-LC/DC [49][50],
Tributary-Delta [93]],
Q-Digest[120]

Ring

(Horowitz and Malkhi, 2003) [65]]

Flooding/Broadcast

Randomized Reports [[13]]

Random walk

Random Tour [98]],
Sample & Collide [56; 98],
Capture-Recapture [94]

Unstructured

Gossip

Push-Sum Protocol [80],
Push-Pull Gossiping [67; 1035 168]],
DRG [21]],

Extrema Propagation [8]]
Equi-Depth[61]], Adam?2 [116]
Hop-Sampling [83; 84]],

Interval Density [83} 184]

Hybrid

Hierarchy 4+ Gossip

(Chitnis et al., 2008) [23]

Table 3.1: Taxonomy from a communication perspective.

ease), in which messages are sent successively from one node to a selected number

of peers — “one to many”. In the recent years, several aggregation algorithms based

on gossip communication have been proposed, in an attempt to take advantages of its

simplicity, scalability and robustness.

The hybrid class groups algorithms that mix the use of different routing strategies

from the previous categories, with the objective to combine their virtues and reduce

their weakness, in order to obtain an improved aggregation approach.

The different communication structures and patterns are summarized in the tax-

onomy proposed by Table associating each routing class to some pertinent algo-

rithms. More details about the identified classes are given hereafter.

20 3 — Related Work

3.1.1 Hierarchy-based

Traditionally, existing aggregation algorithms operate on a hierarchy-based communi-
cation scheme. Hierarchy-based approaches are often used to perform data aggrega-
tions, especially in WSN. This routing strategy consists on the definition of a hierarchi-
cal communication structure (e.g., spanning tree), rooted at a single node, commonly
designated as sink. In general, in a hierarchy-based approach the data is simply dis-
seminated from level to level, up the hierarchy, in response to a query request made
by the sink, which computes the final result. Besides the sink, other special nodes
can be defined to compute intermediate aggregates, working as aggregation points that
forward their results to upper level nodes until the sink is reached. Aggregation algo-
rithms based on hierarchic communication usually work in two phases, involving the
participation of all nodes in each one: request phase and response phase. The request
phase corresponds to the spreading of an aggregation request throughout all the net-
work. Several considerations must be taken into account before starting this phase,
depending on which node wants to performs the request and on the existing routing
topology. For instance: if the routing structure has not been established yet, it must
be created and ought to be rooted at the requesting node; if the required topology is
already established, first the node must forward its request to the root, in order to be
spread (from the sink) across all the network. During the response phase, all the nodes
answer the aggregation query by sending the requested data toward the sink. In this
phase, nodes can be asked to simply forward the received data or to compute partial
intermediate aggregates to be sent.

The aggregation structure of hierarchy-based approaches provides a simple strat-
egy, that enables the exact computation of most aggregation functions (without fail-
ures), in an efficient manner in terms of energy consumption. However, in adverse
environments this type of approach exhibits some fragility in terms of robustness,
since a single point of failure can jeopardize the obtained result (losing the subtree
data). Furthermore, to correctly operate in dynamic environments, where the network
continuously changes (nodes joining/leaving), extra resources are required to maintain
an updated routing structure. Next, some important approaches from this class are
described.

TAG The Tiny AGgregation service for ad-hoc sensor networks described by Mad-

den et al. [92] represents a classical tree-based in-network aggregation approach. As

3.1 — Communication 21

referred by the authors, in a sense TAG is agnostic to the implementation of the tree-
based routing protocol, as far as it satisfies two important requirements. First, it must
be able to deliver query requests to all the network nodes. Second, it must provide
at least one route from every node (that participates in the aggregation process) to the
sink, guaranteeing that no duplicates are generated (at most one copy of every mes-
sage must arrive). This algorithm requires the previous creation of a tree-based rout-
ing topology, and also the continuous maintenance of such routing structure in order

to operate over mobile networks.

TAG supplies an aggregation service inspired in the selection and aggregation fea-
tures of database query languages, providing a declarative SQL-like (Structured Query
Language) query language to the users. This algorithm offers grouping capabilities
and implements basic database aggregation functions, among others, such as: COUNT,
MAXIMUM, MINIMUM, SUM and AVERAGE. The aggregation process consists of two
phases: a distribution phase (in which, the aggregation query is propagated along the
tree routing topology, from the root to the leaves) and a collection phase (where the
values are aggregated from the children to the parents, until the root is reached). The
obtention of the aggregation result at the root incurs a minimum time overhead that is
proportional to the tree depth. This waiting time is needed to ensure the conclusion of

the two execution phases and the participation of all nodes in the aggregation process.

A pipelined aggregate technique (detailed in [91]) has been proposed to minimize
the effect of the waiting time overhead. According to this technique, smaller time in-
tervals (relatively to the overall needed time) are used to repetitively produce periodic
(partial) aggregation results. In each time interval, all nodes that have received the ag-
gregation request will transmit a partial result, which is calculated from the application
of the aggregation function to their local reading and to the results received from their
children in the previous interval. Along time, after each successive time interval, the
aggregated value will result from the participation of a growing number of nodes, in-
creasing the reliability and accuracy of the result, becoming close to the correct value
at each step. The correct aggregation result should be reached after a minimum number

of iterations (in an ideal fail-safe environment).

Following the authors concerns about power consumption, additional optimization
techniques were proposed to the TAG basic approach, in order to reduce the number
of messages sent, taking advantages of the shared communication medium in wireless

networks (which enables message snooping and broadcast) and giving decision power

22 3 — Related Work

to nodes. They proposed a technique called hypothesis testing, where each node can
decide to transmit the value resulting from its subtree, only if it will contribute to the

final result.

DAG An aggregation scheme for WSN based on the creation of a DAG (Directed
Acyclic Graph) is proposed in [106]. The objective was to reduce the effect of mes-
sage loss of common tree-based approaches by allowing nodes to possess alternative
parents. The DAG is created by setting multiple parents (within radio range) to each
node, as its next hop toward the sink. In more detail, request messages are extended
with a list of parent nodes (IDs), enabling children to learn the parent’s parent (grand-
parents) which are two hops away. In order to avoid duplicated aggregates, only a
parent is chosen to aggregate intermediate values, preferably a common parent of its
parents. The most common parent’s parent between the list received from parents
is chosen as the destination aggregator, otherwise one of the parents is chosen (e.g.,
when a node has only one parent node). Response messages are handled according to
specific rules to avoid duplicate processing: they can be aggregated, forwarded or dis-
carded. Messages are aggregated if the receiving node corresponds to the destination,
forwarded if the destination is a node’s parent, and discarded otherwise (destination
is not the node or one of its parents). Note that, although the same message can be
duplicated and multiple “copies” can reach the same node (a grandparent), they will
have the same destination node and only one of them (from the same source) will be
considered for aggregation (after receiving all messages from children/grandchildren).

This method takes advantage of the path redundancy introduced by the use of multi-
ple parents to improve the robustness of the aggregation scheme (tolerance to message
loss), when compared to traditional tree-based techniques. Though a better accuracy
can be achieved, it comes at the cost of an higher energy consumption, as more mes-
sages with an increased size are transmitted. Note that this approach does not fully
overcome the message loss problem of tree routing topologies, as some nodes may

have a single parent, being dependent from the quality of the created DAG.

Sketches An alternative multi-path based approach is proposed in [29] to perform in-
network aggregation for sensor databases, using small sketches. The defined scheme
is able to deal with duplicated data upon multi-path routing and compute duplicate-
sensitive aggregates, like COUNT, SUM and AVERAGE. This algorithm is based on the
probabilistic counting sketches technique introduced by Flajolet and Martin [52]] (FM),

3.1 — Communication 23

used to estimate the number of distinct elements in a data collection. A generalization
of this technique is proposed to be applied to duplicate-sensitive aggregation func-
tions (non-idempotent), namely the SUM. The authors consider the use of multi-path
routing to support communication failures (links and nodes), providing several possi-
ble paths to reach a destination. Like common tree-based approaches, the algorithm
consists of two phases: first, the sink propagates the aggregation request across the
whole network; second, the local values are collected and aggregated along a multi-
path structure from the children to the root. In this particular case, during the request
propagation phase, all nodes compute their distance (level) to the root and store the
level of their neighbors, establishing a hierarchical multi-path routing topology (sim-
ilar to the creation of multiple routing trees). In the second phase, partial aggregates
are computed across the routing structure, using the adapted counting sketch scheme,
and sent to the upper levels in successive rounds. Each round corresponds to a hierar-
chy level, in which the received sketches from children nodes are combined with the
local one, until the sink is reached. In the last round, the sink merges the sketches of
its neighbors and produces the final result, applying an estimation function over the
sketch. Notice that the use of an auxiliary structure to summarize all data values (FM
sketches), and correspondent estimator, will introduce an approximation error that will
be reflected in the final result. However, according to this aggregation scheme, it is
expected that data losses (mitigated with the introduction of multiple alternative paths)
will have an higher impact in the result accuracy than the approximation error intro-

duced by the use of sketches (to handle duplicates).

I-LEAG This cluster-based aggregation approach, designated [-LEAG [16]] (Instance-
Local Efficient Aggregation on Graphs), requires the pre-construction of a different
routing structure — Local Partition Hierarchy, which can be viewed as a logical tree of
local routing partitions. The routing structure is composed by a hierarchy of clusters
(partitions), with upper level clusters comprising lower level ones. A single pivot is
assigned to each cluster, and the root of the tree corresponds to the pivot of the highest
level cluster (that includes all the network graph). This algorithm emphasizes local
computation to perform aggregation, being executed along several sequential phases.
Each phase, correspond to a level of the hierarchy, in which the algorithm is executed in
parallel by all clusters of the corresponding level (from lower levels to upper levels).

Basically, the algorithm proceeds as follow: each cluster checks for local conflicts

24 3 — Related Work

(different aggregation outputs between neighbors); detected conflicts are reported to
pivots, which compute the new aggregated value and multicast the result to the clus-
ter; additionally, every node forwards the received result to all neighbors that do not
belong to the cluster; received values are used to update the local aggregation value (if
received from a node in the current cluster) or to update neighbor aggregation output
(if received from a neighbor of the upper level cluster), enabling the local detection
of further conflicts. Conflicts are only detected between neighbors that belong to a
different clusters in the previous phase, with different aggregation outputs from those
clusters. A timer is needed to ensure that all messages sent during some phase reach
their destination by the end of the same phase. Further, two extension of the algo-
rithm were proposed to continuously compute aggregates over a fixed network where
node inputs may change along time: Multl-LEAG and DynI-LEAG [15]]. Multl-LEAG
mainly corresponds to consecutive executions of I-LEAG, improved to avoid sending
messages when no input changes are detected. Inputs are sampled at regular time in-
tervals and the result of the current sampling interval is produced before the next one
starts. DynI-LEAG concurrently execute several instances of Multl-LEAG, pipelining
its phases (ensuring that every partition level only executes a single Multl-LEAG phase
at a time), and more frequently sampling inputs to faster track changes but at the cost
of a higher message complexity. Despite the authors effort to efficiently perform ag-
gregation, these algorithms are restricted to static networks (with fixed size), without

considering the occurrence of faults.

Tributary-Delta This approach mixes the use of tree and multi-path routing schemes
to perform data aggregation, combining the advantages of both to provide a better ac-
curacy in the presence of communication failures [95]. Two different routing regions
are defined: fributary (tree routing, in analogy to the shape formed by rivers flowing
into a main stem) and delta (multi-path routing, in analogy to the landform of a river
flowing into the sea). The idea is to use tributaries in regions with low message loss
rates to take advantage of the energy-efficiency and accuracy of a traditional tree-based
aggregation scheme, and use deltas in zones where message losses have a higher rate
and impact (e.g., close to the sink where messages carry values corresponding to sev-
eral node readings) to benefit from the multi-path redundancy of sketch based schemes.
Two adaptation strategies (TD-Coarse and TD) are proposed to shrink or expand the

delta region, according to the network conditions and a minimum percentage of con-

3.1 — Communication 25

tributing nodes predefined by the user. The prior knowledge of the network size is
required, and the number of contributing nodes needs to be counted (or count the non
contributing nodes in a tributary subtree), in order to estimate the current participation
percentage. Conversion functions are also required to convert partial results from the
tributary (tree-based aggregation) into valid inputs to be used in the delta region (by the
multi-path algorithm). Experimental results applying TAG [92] in tributaries and Syn-
opses Diffusion [108]] (see Section in deltas, showed that this hybrid approach
performs better when compared to both aggregation algorithms used separately.

Other approaches Several other hierarchy-based aggregation approaches can be
found in the literature, most of them differing somehow on the supporting routing
structure, or on the way it is built. Beside alternative variations of the hierarchic rout-
ing topology, some optimization techniques to the aggregation process can also be

found, especially to reduce the energy-consumption in WSN.

In [86] an aggregation scheme over DHTs (Distributed Hash Tables) is proposed.
This approach is characterized by its tree construction protocol, that use a parental
function to map a unique parent to each node, building an aggregation tree in a bottom-
up fashion (unlike traditional approaches). The authors consider the coexistence of
multiple trees to increase the robustness of the algorithm against faults, as well as the
continuous execution of a tree maintenance protocol to handle the dynamic arrival and
departure of nodes. Two operation modes are proposed to perform data aggregation
(and data broadcast): default and on-demand. In the default mode, the algorithm is
executed in background, taking advantage of messages exchanged by the tree mainte-
nance protocol (appending some additional information to these messages). The on-
demand mode corresponds to the traditional aggregation scheme found on tree-based
algorithms.

Zhao et al. [[130] proposed an approach to continuously compute aggregates in
WSN, for monitoring purposes. They assume that the network continuously computes
several aggregates, from which at least one corresponds to the minimum/maximum
— computed using a simple diffusion scheme. A tree is implicitly constructed during
the diffusion process (node with the min/max value is set as the root of the created
tree) and is used for the computation of other aggregates (e.g., average and count).
In practice, two different schemes are used: a digest diffusion algorithm to compute

idempotent aggregates which is used to construct an aggregation tree, and a tree di-

26 3 — Related Work

gest scheme similar to common hierarchy-based approaches that operates over the tree

routing structure created by the previous technique.

Alternative hierarchic routing structures are found in the literature to support aggre-
gation, namely: a BFS (Breadth First Search) tree is used in the GAP (Generic Aggre-
gation Protocol) [30] protocol to continuously compute aggregates for network man-
agement purposes; the creation of a GIST (Group-Independent Spanning Tree) based
on the geographic distribution of sensors is described in [[75], taking into consideration
the variation of the group of sensors that may answer an aggregation query. A pre-
vious group-aware optimization technique has been proposed: GaNC (Group-Aware
Network Configuration) [119]. GaNC influences the routing tree construction by en-
abling nodes to preferably set parents from the same group (analyzing the GROUP
BY clause of the received aggregation queries) and according to a maximum commu-
nication range, in order to decrease message size and consequently reduce energy con-
sumption. Some algorithms [101; I87; [126] based on swarm intelligence techniques,
more precisely ant colony optimization, can also be found in the literature to construct
optimal aggregation trees, once more to improve the energy efficiency of WSN. Ant
colony optimization algorithms are inspired in the foraging behavior of ants, leaving
pheromone trails that enable others to find the shortest path to food. In this kind of
approach, the aggregation structure is iteratively constructed by artificial ant agents,
consisting in the paths (from different sources to the sink) with the higher pheromone

values, and where nodes that belong to more than one path act as aggregation points.

Some studies [89; 62] have shown that deciding which node should act as a data
aggregator or forwarder has an important impact on the energy-consumption and life-
time of WSN. A routing algorithm, designated AFST (Adaptive Fusion Steiner Tree),
that adaptively decides which nodes should fuse (aggregate) data or simply forward
it is described in [|89]. AFST evaluates the cost of data fusion and transmission, dur-
ing the construction of the routing structure in order to minimize energy consumption
of data gathering. A further extension to this scheme was proposed to handle node
arrival/departure, Online AFST [88]], with the objective of minimizing the cost and
impact of dynamism in the routing structure. In LEACH (Low-Energy Adaptive Clus-
tering Hierarchy) [62;163], a cluster-based routing protocol for data gathering in WSN,
the random rotation of cluster-heads along time is proposed in order to distribute the

energy consumption burden of collecting and fusing (compressing) cluster’s data.

Filtering strategies can also be applied to reduce energy consumption in hierarchy-

3.1 — Communication 27

based aggregation approach. For instance, A-GAP [112] is an extension of GAP (pre-
viously referred) which uses filters to provide a controllable accuracy of the protocol.
Local filters are added at each node in order to control whether or not an update is
sent. Updates are discarded according to a predefined accuracy objective, resulting in
a reduction in terms of communication overhead (number of messages). Filters can
dynamically adjust along the execution of the protocol, allowing the control of the
trade-off between accuracy and overhead. Another similar approach to reduce mes-
sage transmissions according to a tolerated error value is proposed in [33], adaptively
adjusting filters according to a Potential Gains Adjustment (PGA) strategy. A frame-
work called TiNA (Temporal coherency-aware in-Network Aggregation) that filters
reported sensor readings according to their temporal coherency was proposed in [[119].
This framework operates on the top of existing hierarchic-based aggregation schemes
like TAG. In particular, TiNA defines an additional TOLERANCE clause to allow
users to specify the desired temporal coherency tolerance of each aggregation query,
and filter the reported sensor data (i.e., readings within the range of the specified value

are suppressed).

3.1.2 Ring

Very few aggregation approaches are supported by a ring communication structure.
This particular type of routing topology is typically surpassed by hierarchic ones,
which are used instead. For instance, the effect of failures in a ring can be worst
than on hierarchic topologies, as a single point of failure can break the all communica-
tion chain. Furthermore, the time complexity of rings to propagate data across all the
network is typically higher, providing a slower data dissemination. However, this kind
of topology can be explored in alternative ways, that can in some sense circumvent the
aforementioned limitations.

It is worth referring to an alternative approach described by Horowitz and Malkhi [65],
based on the creation of a virtual ring to obtain an estimation of the network size
(COUNT) at each node. This technique relies solely on the departure and arrival of
nodes to estimate the network size, without requiring any additional communication.
Each node of the network holds a single successor link, forming a virtual ring. It is
assumed that each node possess an accurate estimator. Upon the arrival of a new node,
a random successor among the existing nodes, named contact point, is assigned to it.

During the joining process, the new node gets the contact point estimator and incre-

28 3 — Related Work

ments it (by one). At the end of the joining process, the two nodes (joining node and
contact point) will yield the new count estimate. Upon the detection of a departure,
the inverse process is executed. This method provides a disperse estimative over the
whole network, with an excepted accuracy that ranges from n/2 to n?, where n rep-
resent the correct network size ﬂ Despite the achieved low accuracy and considerable
result dispersion, this algorithm has a substantially low communication cost (i.e., com-
municates only upon arrival/departure, without any further information dissemination;

each joining node communicates only with two nodes).

3.1.3 Flooding/Broadcast

Flooding/Broadcast based approaches promote the participation of all network nodes
in the data aggregation process. The information is propagated from a single node
(usually a special one) to the whole network, sending messages to all neighbors — “one
to all”. This communication pattern normally induces a high network load, during the
aggregation process, implying in some cases a certain degree of centralization of data
exchanges. Tree-based approaches are a traditional example of use of this communi-
cation pattern, but in this case supported by a hierarchic routing topology. Additional
examples which are not sustained by any specific structured routing topology are de-

scribed below.

Randomized Reports A naive algorithm to perform aggregation, will consist of
broadcasting a request to the whole network (independently from the existing rout-
ing topology), collect the value at all nodes and compute the result at the starting node.
This will likely lead to network congestion and an expected overload of the source
node, due to feedback implosion. However, a predefined response probability could be
used to mitigate this drawback, such that network nodes will only decide to respond
according to the defined probability. Such probabilistic polling method was proposed
in [[13] to estimate the network size. The source node broadcast a query request with a
sampling probability p, that will be used by all remaining nodes to decide whether to
reply or not. All the received responses will be counted by the querying node (during
a predefined time interval), knowing that it will receive a total number of replies r
according to the given probability. At the end, the network size 7 can be estimated at

the source by n = r/p.

! Along this work, we will always denote n as the network size, unless explicitly indicated otherwise.

3.1 — Communication 29

Other Approaches A similar approach based on the same principle (sampling prob-
ability) is proposed in [76], to approximate the size of a single-hop radio network,
considering the occurrence of collisions (i.e., a transmission succeeds if exactly a sin-
gle node chooses to send a message). The algorithm proceeds along several phases,
counting the number of successful transmissions until it approximates an expected
value (based on a probabilistic observation), in order to estimate the network size. In
each consecutive phase, different values are set at each node for the probability to
decide to send a message (decrementing), and the number of performed trials (incre-
menting). Further improvements to this approach have been proposed in [78]], aiming

at making it immune against adversary attacks.

3.1.4 Random Walk

Random walk based approaches are usually associated to a data sampling process to
further estimate an aggregation value, involving only a partial amount of network
nodes. Basically, this communication process consists on the random circulation of
a token. A message is sequentially sent from one node to another randomly selected
neighbor — “one to one”, until a predefined stopping criteria is met (e.g., maximum
number of hops, reach a selected node or return to the initial one). Usually, a small
amount of messages are exchanged in this kind of approach, since only a portion of the
network is involved in the aggregation process. Due to the partial participation of the
network, algorithms using this communication pattern normally rely on probabilistic
methods to produce an approximation of the computed aggregation function. Proba-
bilistic methods provide estimations of the result with a known bounded error. If the
execution conditions and the considered parameters of the algorithm are maintained,
the estimation error is expected to be maintained (with constant bounds) along time.
This kind of aggregation algorithms will not converge to the correct aggregation value,

and the result will always contain an estimation error.

Random Tour The random tour approach [98] is based on the execution of a random
walk to estimate a sum of functions of the network nodes, ® = . ., ¢(i), for a
generic function ¢(i) where i denotes a node and N the set of nodes (e.g., to estimate
the network size, count: ¢(i) = 1, for all i € N'). The estimate is computed from
the accumulation of local statistics into a initial message, all of which are gathered

during a random walk, from the originator node until the message returns to it. The

30 3 — Related Work

initiator node ¢ initializes a variable X with the value ¢(i)/d; (where d; denotes the
degree of node i, i.e., number of adjacent nodes). Upon receive, each node j adds to
X by ¢(j)/d; (i.e., X < X + ¢(j)/d;). In each iteration, the message tagged with X
is updated and forwarded to a neighbor, chosen uniformly at random, until it returns
to the initial node. When the originator receives back the message originally sent, it
computes the estimate o (of the sum ®) by o= d; X.

Other approaches Other approaches based on random walks can be found in the
literature, but they are commonly tailored for specific settings and to the computation
of specific aggregation functions, like COUNT (to estimate the network or group size).

For instance, to accelerate self-stabilization in a group communication system for
ad-hoc networks, a scheme to estimate the group size based on random walks is pro-
posed in [42] (first published in [41]). In this specific case, a mobile agent (called
scouter) performs a random walk and collects information about alive nodes to further
estimate the system size. The agent carries the set of all visited nodes and a counter
associated to each one of them. Whenever the agent moves to a node, all the coun-
ters are incremented by one except the one of the current node, which is set to zero.
Large counter values are associated to nodes that have been less recently visited by the
scouter, becoming more likely to be suspected of nonexistence. Counters are bounded
by the scouter’s maximum number of moves, which is set according to the expected
cover time and a safety function, before considering a corresponding node as not con-
nected. The main idea is to remove from the scouter information of nodes — sorted
by increasing order of their counter value, where the gap between successive nodes
(k™ and k — 1*") is greater than the number of moves required to explore k connected
elements in a random walk fashion. After having the scouter perform a large enough
number of moves, the number of nodes in the system can be estimated by simply
counting the number of elements kept in the set of visited nodes.

Other relevant approaches based on the execution of random walks to collect sam-
ples, like Sample & Collide (56} 98] and Capture-Recapture [94], are described in
Section[3.2.3]

3.1.5 Gossip-based

Commonly, gossip and epidemic communication are indistinctly referred. However, in

a relatively recent review of gossiping in distributed systems [82]] a slight distinction

3.1 — Communication 31

between the two is made. In a nutshell, the difference simply relies on the interac-
tion directionality of both protocols. The authors state that gossiping is referred to
“the probabilistic exchange of information between two members”, and epidemic is
referred to “information dissemination where a node randomly chooses another mem-

’

ber”. Even so, the effect of both protocols in terms of information spread is much
alike, and strongly related to epidemics. Notice that, the information spread in a group
in real life (gossip) is similar to the spread of an infectious disease (epidemics). For
this reason, in this work no distinction will be made between gossip and epidemic

protocols.

Gossip communication protocols are strongly related to epidemics, where an ini-
tial node (“infected”) sends a message to a (random) subset of its neighbors (“‘con-
taminated”), which repeat this propagation process — “one to many”. With the right
parameters, almost the whole network will end up participating in this propagation
scheme. This communication pattern exhibits interesting characteristics despite its
simplicity, allowing a robust (fault tolerant) and scalable information dissemination
over all the network, in a completely decentralized fashion. Nevertheless, it is impor-
tant to point out that the robustness of gossip protocols may not be directly attained
by any algorithm based on a simple application of this communication pattern. For
instance, an algorithm correctness may rely on principles and invariants that may not
be guaranteed by a straightforward and incautious use of a gossip communication pro-
tocol, as revealed in [71]. In general, gossip communication tends to be as efficient as
flooding, in terms of speed and coverage, but it imposes a lower network traffic load

(to disseminate data).

Push-Sum Protocol The push-sum protocol [80] is a simple gossip-based protocol
to compute aggregation functions, such as SUM or AVERAGE, consisting of an itera-
tive pairwise distribution of values throughout all the network. In more detail, along
discrete times ¢, each node 7 maintains and propagates information of a pair of values
(84, wy): Sy represents the sum of the exchanged values, and wy; denotes the weight
associated to this sum at the given time ¢ and node 7. In order to compute distinct ag-
gregation functions, it is enough to assign appropriate initial values to these variables.
E.g., considering v; as the initial input value at node ¢, AVERAGE: sy; = v; and wy; = 1
for all nodes; SUM: sy; = v; for all nodes, only one node starts with wy; = 1 and the

remaining assume wy; = 0; COUNT: sp; = 1 for all nodes, only one with wy; = 1 and

32 3 — Related Work

the others with wy; = 0.

Independently from the computed aggregation function, the algorithm proceeds in
the following way. In each iteration, a neighbor is chosen uniformly at random, and
half of the actual values are sent to the target node and the other half to the node itself.
Upon receive, the local values are updated, adding each value from a received pair
to its local component (i.e., pointwise sum of pairs). The estimate of the aggregation
function can be computed by all nodes, at each time ¢ by s;; /w;;. The accuracy of the
produced result will tend to increase progressively along each iteration, converging to
the correct value. As referred by the authors, the correctness of this algorithm relies on
a fundamental property defined as the mass conservation, stating that: the global sum
of all network values (local value of each node plus the value in messages in transit)
must remain constant along time. Considering the crucial importance of this property,
the authors assume the existence of a fault detection mechanism, that allow nodes
to detect when a message did not reach its destination. In this situation, the “mass”
is restored by sending the undelivered message to the node itself. This algorithm is
further generalized by the authors in their work — push-synopses protocol, in order to
combine it with random sampling to compute more “complex” aggregation functions

(e.g., quantiles) in a distributed way.

Other approaches In the last years, several gossip-based approaches have been pro-
posed, due to the attractive characteristics of gossip communication: simplicity, scala-
bility and robustness. Several alternative algorithms inspired by the push-sum protocol
have been proposed, like: Push-Pull Gossiping [67;/68] which provides an anti-entropy
aggregation technique (see Section[3.2.2)), or G-GAP [[128] (Gossip-based Generic Ag-
gregation Protocol) that extends the push-synopses protocol to tolerate non contiguous
faults (i.e., neighbors can not fail within the same short time period).

Another aggregation algorithm supported by an information dissemination and
group membership management protocol, called newscast protocol, is proposed in [66]].
This approach consists of the dissemination of a cache of items (with a predefined size)
maintained by each network node. Periodically, each node randomly selects a peer,
considering the network addresses of nodes available on the local cache entries. The
cache entries are exchanged between the two nodes and the received information is
merged into their local cache. The merge operation discards the oldest items, keeping

a predefined number of the freshest ones, also ensuring that there is at most one item

3.1 — Communication 33

from each node in the cache. An estimate of the desired aggregate can be produced by

each network node, by applying the aggregation function to the local cache of items.

3.1.6 Hybrid

Hybrid approaches combine the use of different communication techniques to obtain
improved results from their synergy. Commonly, the use of a hierarchic topology is
mixed with gossip communication. Hierarchic based schemes are efficient and ac-
curate, but highly affected by the occurrence of faults. On the other hand, gossip
based algorithms are more resilient to faults, but less efficient in terms of message
load (requiring more message exchanges). In general, this combination enables hybrid
approaches to achieve a fair trade-off between performance (in terms of message load
and accuracy) and robustness, when performing aggregation in more realistic environ-

ments.

(Chitnis et al., 2008) Chitnis et al. [23] studied the problem of computing aggregates
in large-scale sensor networks in the presence of faults, and analyzed the behavior of
hierarchy-based (i.e., TAG) and gossip-based (i.e., Push-Sum Protocol) aggregation
protocols. In particular, they observe that tree-based aggregation is very efficient for
very small failures probabilities, but its performance drops rapidly with increasing fail-
ures. On the other hand, a gossip protocol is slightly slowed down (almost unaffected),
and is better to use with failures (compared to tree-based). Considering these results,
the authors proposed an hybrid protocol with the intent of leveraging the strengths of
both analyzed mechanisms and minimize their weakness, in order to achieve a better
performance in faulty large-scale sensor networks.

This hybrid approach divides the network nodes in groups, and a gossip-based ag-
gregation is performed within each one. A leader is elected for each group, and an
aggregation tree is constructed with the leader nodes (multi-hop routing may be re-
quired between leaders) to further perform a tree-based aggregation with the results
from each gossip group. The authors also defined and solved an optimization problem
to get the best combination between the two aggregation mechanisms, yielding the
optimal size of the groups, according to the network size and failure probability. How-
ever, in practice this requires the pre-computation of the gossip group size (by solving
the referred optimization problem) before starting to use of the protocol with optimal

settings. Results from simulations show that the hybrid aggregation approach usually

34 3 — Related Work

outperforms the other two (tree-based and gossip-based)

An extension of the previous approach for heterogeneous sensor networks is later
discussed in [24]. In this case, it is considered that a few distinguished nodes, des-
ignated as microservers, which are more reliable and less prone to failure than the
remaining ones, are available in the network. The aggregation technique works mostly
like the one previously described for the homogeneous case, but with two differences
that take advantage of the reliability of microservers. First, microservers are prefer-
ably chosen as group leaders. Second, microservers are put on the top of the created
aggregation tree which may also be composed by other less reliable nodes. The use of
microservers in the aggregation tree will increase its robustness, and by putting them
at the top it will reduce the need to reconstruct the whole tree when a fault occurs. The
evaluation results show that the aggregation process can be enhanced in heterogenous

networks, when taking advantage of more reliable (although more expensive) nodes.

Other Approaches A more elaborated structure was previously defined by Astro-
labe [125]. Astrolabe is a DNS-like distributed management system that supports
attributes aggregation. It defines a hierarchy of zones (similar to the DNS domain
hierarchy), each one holding a list of attributes called MIB (Management Information
Base). This structure can be viewed as a tree, each level composed of non-overlapping
zones, where leaf zones are single hosts, each one running an Astrolabe agent, and the
root zone includes all the network. Each zone is uniquely identified by a name hierar-
chy (similarly to DNS), assigning to each zone a unique string name within the parent
zone; the global unique name of each zone is obtained by concatenating the name of
all its parent zones from the root with a predefined separator. The zone hierarchy is
implicitly defined by the name administratively set to each agent. A gossip protocol
is executed between a set of elected agents to maintain the existing zones. The MIB
held by each zone is computed by a set of aggregation functions, that produce a sum-
mary of the attributes from the child zones. An aggregation function is defined by a
SQL-like program that is code embedded in the MIB, being set as a special attribute.
Agents keep a local copy of a subset of all MIBs, in particular of zones in the path to
the root and siblings, providing replication of the aggregated information with weak
consistency (eventual consistency). A gossip protocol is used for agents to exchange

data about MIBs from other (sibling) zones and within its zone, and update its state

Notice that only static network settings (no node arriving/leaving) were considered by the authors.

3.1 — Communication 35

with the most recent data.

Another hierarchical gossiping algorithm was introduced by Gupta et. al [60],
being one of the first to use gossip for the distributed computation of aggregation
functions. According to the authors, the philosophy of this approach is similar to
Astrolabe, but uses a more generic technique to construct the hierarchy, called Grid
Box Hierarchy. The hierarchy is created by assigning (random or topology aware)
unique addresses to all members, generated from a known hash function. The most
significant digits of the address are used to divide nodes into different groups (grid
boxes) and define the hierarchy. Each level of the hierarchy corresponds to a set of
grid boxes, matching a different number of significant digits. The aggregation process
is carried out from the bottom to the top of the hierarchy in consecutive gossip phases
(for each level of the hierarchy). In each phase: members of the same grid box gossip
their data, compute the resulting aggregate after a predefined number of rounds, and
then move to the next phase. The algorithm terminates when nodes find themselves at
the grid box at the top of the hierarchy (last phase). Note that, this approach does not
rely on any leader election scheme to set group aggregators, in fact the authors argue
the inadequacy of such mechanism in unreliable networks prone to message loss and

node crashes.

Recently, an approach that combines a hierarchy based technique with random
sampling was proposed in [22]] to approximate aggregation functions in large WSN.
In this approach, the amount of collect data is regulated by a sampling probability
produced from the input accuracy (expressed by two parameters ¢ and d, i.e., relative
error less than € with probability greater than 1 — §) and the aggregation function (i.e.,
COUNT, SUM or AVERAGE), aiming at reducing the energy consumption to compute
the aggregate. This algorithm considers that the sensing nodes are organized in clus-
ters (according to their geographic location), and that cluster heads form a spanning
tree rooted at the sink. Basically, the aggregation proceeds as following: first, the sink
computes the sampling probability p (according to € and ¢§) and transmits it along with
the aggregation function to all cluster heads across the spanning tree; then, cluster
heads broadcast p to their cluster and each node within independently decides to re-
spond according to the received probability; samples are collected at each cluster head
which computes a partial result; finally, the partial results are aggregated upward the
tree (convergecast) until the sink is reached, and where the final (approximated) re-

sult is computed. This algorithm, referred by the authors as BSC (Bernoulli Sampling

36 3 — Related Work

on Clusters), mixes the application of a common hierarchy based aggregation tech-
nique such as 7AG (see Section [3.1.1)) between cluster heads, with a flooding/broad-
cast method like Randomized Reports (see Section [3.1.3)) to sample the values at each

cluster.

3.2 Computation

In terms of computational principles on which the existing aggregation algorithms are
based, the following main categories (see Table were identified: Hierarchical,
Averaging, Sketches (hash or min-k based), Digests, and Sampling. These categories
intrinsically support the computation of different kinds of aggregation functions. For
instance, Hierarchical approaches allow the computation of any decomposable func-
tion. Averaging techniques allow the computation of all duplicate sensitive decompos-
able functions that can be derived from the AVERAGE, by using specific initial input
values and combining the results form different instances of the algorithms. Sketches
techniques also allow the computation of duplicate sensitive decomposable functions,
but that can be derived from the SUM [l Moreover, schemes based on hash sketches
are natively able to compute distinct counts (non decomposable duplicate insensitive),
and those based on min-k can be easily adapted to compute it (e.g., in extrema prop-
agation, see using the input value as seed of the random generation function,
so that duplicated values will generate the same number). Digests support the com-
putation of any kind of aggregation function, as this type of approach usually allows
the estimation of the whole data distribution (i.e., values and frequencies) from which
any function can be obtained. On the other hand, some techniques are restricted to the
computation a single type of aggregation function, such as COUNT, which is the case
of Sampling approaches.

Besides determining the supported aggregation function, the computational tech-
nique on which an aggregation algorithm is based constitutes a key element to define its
behavior and performance, especially in terms of accuracy and reliability. Hierarchi-
cal approaches are accurate and efficient (in terms of message and computational com-
plexity), but not fault tolerant. Averaging schemes are more reliable and also relatively
accurate (converge along time to the correct result), although less efficient (requiring

more message exchanges). Approaches based on the use of skefches are more reliable

3Note that, COUNT is the sum of all elements considering their input value as equal to 1.

3.2 — Computation 37

than hierarchical schemes, adding some redundancy and providing fast multi-path data
propagation, however they introduce an approximation error (depending on the num-
ber of inputs and size of the used sketch). Digests essentially consists on the reduction
(compression) of all inputs into a fixed size data structure, using probabilistic methods
and losing some information. Consequently, digests provide an approximation of the
computed aggregation function, not the exact result. Sampling schemes are also based
on probabilistic methods to compute the COUNT, being inaccurate and lightweight in
terms of message complexity, as only a portion of the network is asked to participate.

In the following sections, the main principles and characteristics of these distinct
classes are explained in a comprehensive way, and some important examples are de-
scribed. A taxonomy of the identified computational principles is displayed in Table

[3.2] associating them to the most relevant distributed aggregation algorithms.

3.2.1 Hierarchical

Hierarchical approaches take direct advantage of the self-decomposable property of
some aggregation functions. Inputs are divided into separated groups and the compu-
tation is performed in a distributed way along a hierarchy (see Figure[2.1)). Algorithms
from this class depend on the previous creation of a hierarchic communication struc-
ture (e.g., tree, clusters hierarchy), where nodes can act as forwarders or aggregators.
Forwarders simply transmit the received inputs to an upper level node. Aggregators
apply the target aggregation function directly to all received input (and its own), and
forward the result to an upper level node. The correct result is yield at the top of the
hierarchy, being the aggregation process carried out from the bottom to the top of the
hierarchy.

Algorithms from this class allow the computation of any decomposable function,
providing the exact result (at a single node) if no faults occur. The global process-
ing and memory resources required are equivalent to the ones used in a direct and
centralized application of the aggregation function, but distributed across the network.
However, these algorithms are not fault tolerant, e.g. a single point of failure may lead
to the lost of all data beneath it.

Most of the algorithms from this category correspond to the ones belonging to
the hierarchic communication class, like TAG [92], DAG [[106], and I-LEAG [16].
Other algorithms can be found combining a hierarchical computation with another

computation principle, namely: Tributary-Delta [95] mixes a hierarchical computation

38

3 — Related Work

Aggregation

Basis/Principles

Algorithms

Decomposable
Functions

Hierarchic

TAG [92], DAG [106], I-LEAG [16],
Tributary-Delta 93],
(Chitnis et al., 2008) [23]

Averaging

Push-Sum Protocol [80],
Push-Pull Gossiping [67 103 68]]

DRG [21]],

(Chitnis et al., 2008) [23]]

Sketches

Sketches [29], RIA-LC/DC [49; 50]
Extrema Propagation (8} [10]
Tributary-Delta [95]

Complex

Functions

Digests

Q-Digest[120]], Equi-Depth[61]],

Adam? [116]

Counting

Sampling

Random Tour [98]],

Randomized Reports [13]],

Sample & Collide [56; 98],
Capture-Recapture [94],
Hop-Sampling [I83;84]],

Interval Density [83} [84],
(Kutylowski et al., 2002) [[76]
(Horowitz and Malkhi, 2003) [65],

Table 3.2: Taxonomy from a computation perspective.

with the use sketches in regions close to the sink; (Chitnis et al., 2008) [23] performs a

hierarchic aggregation on the top of groups, and averaging is applied inside each one.

3.2.2 Averaging

See Sections [3.1.1] and [3.1.6 for more details about the aforementioned algorithms.

The Averaging class essentially consists on the iterative computation of partial aggre-

gates (averages), continuously averaging and exchanging data among all active nodes

that will contribute to the obtention of the final result. This kind of approach tends to

be able to reach a high accuracy, with all nodes converging to the correct result along

the execution of the algorithm. A typical application of this method can be found in

most gossip-based approaches (Section [3.1.5), where all nodes continuously distribute

3.2 — Computation 39

a share of their value (averaged from received values) with some random neighbor,
converging along time to the global network average (correct aggregation result). Al-
gorithms from this category are more reliable than hierarchic approaches, working
independently from the supporting network topology and producing the result at all
nodes. However, they must respect an important principle, commonly designated as
“mass conservation” in order to converge to the correct result. This invariant states
that the sum of the aggregated values of all network nodes must remain constant along
time [80]].

Algorithms based on this technique are able to compute decomposable and duplicate-
sensitive functions, which can be derived from the average operation; using differ-
ent inputs initializations (e.g., COUNT), or combining functions executed concurrently
(e.g., SUM, obtained by multiplying the results from an average and a count). In terms
of computational complexity, this method usually involves the computation of simple
arithmetic operations (i.e., addition and division), using few computational resources
(processor and memory) and being fast to execute (at each node). This kind of al-
gorithms are able to produce (almost) exact results, depending on their execution time
(without failures). The minimum execution time required by these algorithms (number
of iterations), to achieve a high accuracy, is influenced by the network characteristics
(i.e., size, connection degree, and topology) and the communication pattern used to
spread the partial averages. The robustness of this type of aggregation algorithm is
strongly related with their ability to conserve the global “mass” of the system (see
Chapter 4] for more details). Essentially, the loss of a partial aggregate (“mass”) due
to a node failure or a message loss introduces an error, resulting in the subtraction of
the lost value from the initial global “mass” (leading to the non-contribution of the
lost amount to the calculation of the final result, and therefore to the convergence to
an incorrect value). In this kind of methodology, it is important to enforce the “mass”
conservation principle, assuming itself as a main invariant to ensure the algorithms

correctness.

Push-Pull Gossiping The push-pull gossiping [67] algorithm performs an averaging
process, and it is gossip-based like the push-sum protocol [80] (previously described
in Section [3.1.5). The main difference of this scheme relies on the execution of an
anti-entropy aggregation process. The concept of anti-entropy in epidemic algorithms

consists in the regular random selection of another site, to resolve all the differences

40 3 — Related Work

between the two, exchanging complete databases [34]]. In particular, this algorithm
executes an epidemic protocol to perform a pairwise exchange of aggregated values
between neighbor nodes. Periodically, each node randomly chooses a neighbor to send
its current value, and waits for the response with the value of the neighbor. Then, it
averages the sent and received value, and calculates the new estimated value. Each time
a node receives a value from a neighbor, it sends back its current one and computes the
new estimate (average), using the received and sent values as parameters. In order to
be adaptive and handle network changes (nodes joining/leaving), the authors consider
the extension of the algorithm with a restarting mechanism (executing the protocol
during a predefined number of cycles, depending on the desired accuracy). However,
they do not address the “mass” conservation problem — impact of message losses or

node failures.

A further study of this aggregation algorithm is discussed in [68], proposing a more
mature solution that covers some practical issues: split the algorithm execution in two
distinct threads; use of timeouts to detect possible faults, ignoring data exchanges in
those situations; suggest different versions of the algorithm according to the aggrega-
tion function to compute; suggest the execution of several instances of the algorithm

in parallel to increase its robustness.

DRG (Distributed Random Grouping) This approach [21] essentially consists on
the continuous random creation of groups across the network, in which aggregates are
successively computed (averaged). DRG was designed to take advantage of the broad-
cast nature of wireless transmission, where all nodes within radio range will be prone
to ear a transmission, directing its application to WSN. The algorithm defines three dif-
ferent working modes for each node: leader, member, and idle mode. According to the
defined modes and the performed state transitions, the execution of the algorithm can
be separated in three main steps. First, each node in idle mode independently decides
to become a group leader (according to a predefined probability), and consequently
broadcast a GCM (Group Call Message) to all its neighbors, subsequently waiting for
members. Second, all nodes in idle mode which received a GCM from a leader respond
to the first one with a JACK (Joining Acknowledgment) tagged with their aggregated
value, becoming members of that group (updating their state mode accordingly). In the
third step, after gathering the group members values from received JACKSs, the leader

computes (averages) the group aggregate and broadcast a GAM (Group Assignment

3.2 — Computation 41

Message) with the result, returning to idle mode. Each group member waits until it
receives the resulting group aggregate from the leader to update its local value (with
the one assigned in the GAM) and returns to idle mode, not responding to any other

request until then.

The repeated execution of this scheme — creation of distributed random groups to
perform in-group aggregation — allows the convergence of the estimate produced at
all nodes to the correct aggregation result, as long as the groups overlap along time.
The performance of DRG is influenced by the predefined probability of a node be-
coming leader, which determines its capacity to create groups (quantity and size of
groups). Note that, in order to account for the occurrence of faults and avoid conse-
quent deadlock situations that could arise in this algorithm, it is necessary to consider
the definition of some timeouts (for the leaders to wait for JACKSs, and the members to
wait for a GAM). Intuitively, one will notice that the values set for these timeouts will
highly influence the performance of the algorithm, although this detail is not addressed
by the authors. An analysis of DRG on WSN with randomly changing graphs (mod-
eling network dynamism) is provided in [20], assuming that the graph only changes
at the beginning of each iteration of the algorithm (unrealistic assumption in practice,

otherwise this leads to mass loss).

Other Approaches A well-known averaging approach, the Push-Sum (push-synopses)
Protocol [80] has already been described in Section 3.1.5] In the last years, other ap-
proaches inspired by the Push-Sum Protocol have been proposed, intending to be more
efficient in term of performance and robustness. Kashyap et al. [79] reduces the num-
ber of messages needed (communication overhead) to compute an aggregation func-
tion at the cost of an increase in the number of rounds. G-GAP (Gossip-based Generic
Aggregation Protocol) [[128] extends the push-synopses protocol [80]] to support dis-
continuous failures (no adjacent node can fail within a period of 2 rounds) by restoring
the mass loss resulting from failures (temporarily storing at each node previous data
contributions).

Dimakis et al.[37; 36] propose an algorithm to improve the convergence time in
random geometric networks. This scheme is similar to push-pull gossiping [67]], dif-
fering on the peer selection methods. Instead of selecting a one-hop node as target
of the averaging step, peers are selected according to their geographical location. In

particular, a location is randomly chosen and the node closer to that local is selected.

42 3 — Related Work

A greedy geographic routing process is used to reach the node at the target location,
assuming that nodes known their own geographic location.

Two averaging algorithms for asynchronous and dynamic networks are proposed
in [99]. The core of the proposed schemes is based on a pairwise update, similarly
to the push-pull gossiping (although not referred to the authors), addressing practical
concerns that arise in asynchronous settings. In the first proposed algorithm nodes
implement a blocking scheme to avoid the interference of other nodes in the update
step and guarantee mass conservation. Additionally, a deadlock avoidance mechanism
is considered, by imposing a sender-receiver relation on each link based on node UIDs.
An extension to the first algorithm is proposed to cope with churn. The blocking
mechanism (maintaining the directed relationship between nodes) is removed, and an
additional variable is used to account for changes of each neighbor. When a node

leaves the network, all its neighbors subtract the value associated to it from their state.

3.2.3 Sketches

The main principle of this kind of aggregation algorithm is based on the use of an
auxiliary data structure with a fixed size, holding a sketch of all network values. The
input values are used to create sketches that are aggregated across the network, using
specific operations to update and merge them. Operations on sketches are order and
duplicate insensitive, enabling them to be aggregated through multiple paths, being
independent from the routing topology. This kind of technique is based on the appli-
cation of a probabilistic method, generally allowing the estimation of the sum of the
values held in the sketch.

Sketching techniques can be based on different methods, with different accuracy
bounds and computational complexities. Algorithms from this class are mostly based
on the application (with some improvements) of two main ideas: hash sketches [S2;
127;143; 53] and k-mins sketches [|26]].

Hash sketches allow the probabilistic counting of the number of distinct elements
in a multiset (cardinality of the support set). This type of sketch essentially consists
in a map of bits, initially set to zero, where each item is mapped into a position in the
binary valued map (generally involving a uniform hashing function) setting that bit to
one. The distinct count is estimated by checking the position of the most significant
one bit (leftmost), or counting the number of zero bits in the sketch. The first hash

sketching technique was proposed by Flajolet and Martin [52], being commonly des-

3.2 — Computation 43

ignated as FM sketches (uniformly hash items into an integer, and maps only the less
significant one bit of its bitmap representation to the sketch). In this first study, the
authors also proposed the PCSA (Probabilistic Counting with Stochastic Averaging)
algorithm to reduce the variance of the produced estimate, using multiple sketches
and averaging their estimate (distributing the hash of an element to only one of the
sketches). Another approach, Linear Counting [[127] uses a hash function to directly
map each element into a position of the sketch (setting that bit to one), and use the
count of the number of zeros to produce an estimate. A further improvement to PCSA,
designated Loglog, was described in [43]], reducing required memory resources (an
optimized version super-LoglLog is also proposed, improving accuracy and optimizing
memory usage applying a truncation and restriction rule). HyperLoglLog [S3] recently
improved Loglog, consuming less memory to achieve a matching accuracy.

The k-mins sketches method was first introduced to determine the size of the tran-
sitive closure ['|in directed graphs [26]]. It consists on assigning & independent random
ranks to each item according to a distribution that depends on its weight, and keeping
in a vector of the minimum ranks in the set. The obtained k-vector of the minimum
ranks is used by an estimator to produce an approximated result. In other words, it can
be said that k-mins sketches reduces the estimation of the sum to the determination of
minimums of a collection of random numbers (generated using the sum operands as
input parameters of the random distribution from which they are drawn). An improved
alternative to k-mins sketches, designated bottom-k sketches, was recently proposed
in [28].

The computational cost of sketching is dependent on the complexity of the opera-
tions involved in the creation and update of the sketches (e.g., hashing functions, ran-
dom number generation, minimum/maximum determination), and the resources used
by the estimator to produce a result. Algorithms based on sketches are not accurate,
being based on probabilistic methods and introducing an error factor in the computed
aggregation function. There is a trade-off between the accuracy and the size of the
sketches. The greater the sketch size the tighter are the accuracy bounds of the ob-
tained result, although requiring additional memory resources and a larger processing
time. This kind of aggregation algorithm tends to be fast, although conditioned by the
dissemination protocol used to propagate the sketches, being able to produce an ap-

proximate result after a number of iterations close to the minimum theoretical bound

4size of the union of the reachability sets (i.e., set of nodes that can be reached by a node, even

through multiple hops) of all nodes.

44 3 — Related Work

(the network diameter).

RIA-LC/DC Fan and Chen [49] proposed a multi-path routing aggregation approach
for WSN based on the use of LC (Linear Counting) sketches [[127], which they later
named RIA-LC (Robust In-network Aggregation using LC-sketches) [S0]. The algo-
rithm proceeds in two phases, like common multipath hierarchy-based approaches (see
Section [3.1.1)). In the first phase, the aggregation request (query) is spread from the
sink throughout the whole network, creating a multipath routing hierarchy. In the sec-
ond phase, starting at the lower level of the hierarchy, nodes respond to the aggregation
request by creating a LC-sketch correspondent to its current local readings and sending
it to the nodes at the upper level. All received sketches are combined with the local
one (using the OR operation), and the result is sent to the next level until the top of
the hierarchy is reached where the sink computes the aggregation estimate from the
resulting LC-sketch.

Equation |3.1|1s used to estimate the number of distinct items represented in a LC-
sketch, where m is the size of the allocated bit vector, and z is the count of the number
of bits with value equal to zero. In order to allow the computation of the SUM, each
node creates a sketch by mapping a number of distinct items corresponding to its input
value. For example, assuming that each node has a unique ID, if the node ¢ has an input
equal to 3, it maps the items (/D;, 1), (ID;,2), and (ID;,3) into the LC-sketch. In
more detail, in this case the use of an hash function from the original LC-sketch design
(to map duplicated items to the same bit) is replaced by a uniform random generator
(since there are no duplicate items), randomly setting to 1 a number of bits equal to the

input value.

n=—mln(z/m) 3.1)

The authors show by theoretical comparison and experimental evaluation that their
approach outperforms the ones based on FM sketches [52], namely Sketches [29] (see
3.1.1), in terms of space and time requirements. They also claim a higher accuracy and
lower variance when compared with existing sketch schemes. Moreover, they tackle
some practical issues, like message size constraints, avoid the use of hash functions,
and enable the specification of an approximation error.

Recently, the authors improved RIA-LC by considering the use of sketches with

variable sizes instead of fixed size sketches, referring to the new technique as RIA-

3.2 — Computation 45

DC (Robust In-network Aggregation using Dynamic Counting sketches) [50]. The
authors observed that the large preallocated sketches used in RIA-LC were wasting
space, since at the beginning of the computation must of the bits are set to zero. In
RIA-DC the initial size of sketches is variable and depends on the local sensor read-
ing. Along the aggregation process the size of the sketches is adjusted (gradually
increasing toward the sink), in order to satisfy a given accuracy constrain. RIA-DC
decreases message overhead and energy consumption compared to RIA-LC, keeping

similar accuracy properties.

Extrema Propagation This approach reduces the computation of an aggregation
function, more precisely the sum of positive real numbers, to the determination of the
minimum (or maximum) of a collection of random numbers [8; |10]]. Initially, a vector
x; of k random number is created at each network node :. Random numbers are gen-
erated according to a known random distribution (e.g., exponential or gaussian), using
the node initial value v; as the input parameter for the random generation function
(e.g., as the rate of an exponential distribution). Then, the execution of the aggregation
algorithm simply consists of the computation of the pointwise minimum (or alterna-
tively maximum) between all exchanged vectors. This technique supports the use of
any information spreading algorithm as a subroutine to propagate the vectors, since the
calculation of minimums is order and duplicate insensitive. In particular, the authors
consider that at each round all nodes send their resulting vector to all their neighbors.

At each node, the obtained vector is used as a sample to produce an approximation
of the aggregation function, applying a maximum likelihood estimator derived from
extreme value theory (branch of statistics dealing with the extreme deviation from the
median of a probabilistic distribution). For example, considering the generation at
each node of £ random numbers with an exponential distribution of rate v;, and the use
of the minimum function to aggregate the vectors. Equation gives the estimator
for the SUM of all v; from the sample of minimums x;[1], ...z;[k] in the vector z;, with
variance SUM?/(k — 2):

— k—1
Zj:l xz[]]

This algorithm is focused on obtaining a fast estimate, rater than an accurate one.

(3.2)

Although, the accuracy of this aggregation algorithm can be improved by using vectors

of larger size, adjusting & to the desired relative accuracy (e.g., k = 387 for a maximum

46 3 — Related Work

relative error of 10%, with a confidence of 95%). A further extension to the protocol

to allow the determination of the network diameter has been proposed in [18]].

Other Approaches A representative approach based on FM sketches has already
been described in Section — Sketches [29]. In this multi-path approach, a gener-
alization of PCSA is used to distinguish the same aggregates received from multiple
paths, and subsequently manage to compute duplicate-sensitive aggregation functions.
Other similar approaches can be found in the literature based on hash sketches, like
Synopsis Diffusion [108] and Wildfire [14]. These approaches apply essentially the
same aggregation process, operating in two phases (request/response) and only differ-
ing on small aspects.

Synopsis Diffusion [108] is an aggregation approach for WSN close to the one
proposed by Sketches [29]. In a sense, this work presents a more generic framework
relying on the use of duplicate insensitive summaries (i.e., hash sketches), which they
call ODI (Order- and Duplicate-Insensitive) synopses. Namely, they generically de-
fine the synopses functions (i.e., generation, fusion and evaluation) required to com-
pute aggregation functions, and provide examples of ODI synopses to compute more
“complex” aggregates (i.e., not decomposable aggregation functions). For instance,
besides the scheme based on FM sketches, they propose other data structures (and re-
spective functions) to uniformly sample sensor readings and compute other sampling
based aggregation functions. The authors also tackled additional practical concerns.
Namely, they explored the possibility of implicitly acknowledging ODI synopses to in-
fer messages losses, and suggested simple heuristics to modify the established routing
topology (assigning nodes to another hierarchic level), in order to reduce loss rate.

Wildfire [14] is based on the use of FM sketches to estimate SUM, but it is targeted
for dynamic networks. Despite the fact of operating in two phases like previous hash
sketch approaches, unlike them it does not establish any specific routing structure (i.e.,
multipath hierarchy) to aggregate sketches. After receiving the query, nodes start com-
bining the received sketches with their current one, and then send the result if it differs
from the previous one.

A distributed implementation of some basic hash sketches schemes has been pro-
posed in [109; 110]. DHS (Distributed Hash Sketches) is supported by a DHT, taking
advantage of the load balancing properties and scalability of such structure. More
specifically, the authors describe how to build DHS based on PCSA [52] and supper-

3.2 — Computation 47

Logl.og [43].

Mosk-Aoyama and Shah [[1055 104]] proposed an algorithm, called COMP, to com-
pute the sum of values from individual functions (referred to as separable functions).
This algorithm is very similar to Extrema Propagation but less generic, as it is re-
stricted to the properties of exponential random variables distribution. Furthermore,
COMP uses a biased estimator, being less accurate than Extrema Propagation which

uses unbiased ones.

3.2.4 Digests

This category includes algorithms that allow the computation of more complex aggre-
gation functions, like quantiles (e.g., median) and frequency distributions (e.g., mode),
besides common aggregation functions (e.g., count, average and sum). Basically, al-
gorithms from this class produce a digest that summarizes the system data distribution
(e.g., histogram). The resulting digest is then used to approximate the desired aggre-
gation functions. We refer to a digest as a data structure with a bounded size, that
holds an approximation of the statistical distribution of input values in the whole net-
work. This data structure commonly corresponds to a set of values or ranges with an
associated counter.

Digests provide a fair approximation of the data distribution, not holding an exact
representation of all the system values due to efficiency and scalability reasons. The
accuracy of the result obtained from a digest depends on its quality (i.e., used data
representation) and size. Digest allow the computation of a wider range of aggregation
functions, but usually require more resources and are less accurate than the other more

specialized approaches.

Q-Digest An aggregation scheme that allow the approximation of complex aggre-
gation functions in WSN is proposed in [[120]. This approach is based on the con-
struction and dissemination of g-digests (quantile digests) along a hierarchical routing
topology (without routing loops and duplicated messages). A g-digest consists of a set
of buckets, hierarchically organized, and their corresponding count (frequency of the
values contained by the bucket). Buckets are defined by a range of values [a, b] and
can have different sizes, depending on the distribution of values they represent. Each
node maintains a g-digest of the data available to it (from its children). Q-digests are

built in a bottom-up fashion, by merging received digests from child nodes, and fur-

48 3 — Related Work

ther compressing the resulting q-digest according to a specific compression factor (less
frequent values are grouped in large buckets). Aggregation functions are computed by
manipulating (e.g., sort g-digest nodes) and traversing the q-digest structure according

to a specific criteria (depending on the function to be computed).

The authors provide an experimental evaluation, where they show that g-digests
allow the approximation of quantile queries using fixed message sizes, saving band-
width and power when compared to a naive scheme that collects all the data. The naive
scheme obtains an exact result, but with increasing message size along the routing hi-
erarchy. Obviously, there is a trade-off between the obtained accuracy and the message
size used. The authors suggest a way to compute the confidence factor associated to a
g-digest (i.e., error associated to a query), but the effect of faults is not considered in

their study.

Equi-Depth A gossip-based approach to estimate the network distribution of values
is described in [61]]. This scheme is based on the execution of a gossip protocol and the
application of specific merge functions to the exchanged data, to restrict storage and
communication costs. In more detail, each node keeps a list of k£ values (digest), ini-
tially set to its input value. At each round, nodes get the list of values from a randomly
chosen neighbor and merge it with their own, applying a specific procedure. The re-
sult from the execution of several rounds produces an approximation of the network
distribution of values (i.e., histogram). Four merging techniques were considered and
analyzed by the authors: swap, concise counting, equi-width histograms, and equi-
depth histograms.

Swap simply consists in randomly picking k values from the two lists (half from
each of them) and discarding the rest. Although simpler, by discarding half of the
available data in each merge, important information is likely to be lost.

Concise counting associates a tuple, value and count, to each list entry. The merge
process consists in sorting the tuples (by value), and individually merging the tuples
with the closest values, in order to keep a fixed list size. Tuples are merged by ran-
domly choosing one of the values and adding their count.

The equi-width technique breaks the range of possible values into bins of equal
size, associating a counter to each one. Initially, nodes consider the range from 0 to
the current input value, as the extremes are not known. Bins are dynamically resized

when new extremes are found: all bins are mapped into larger ones, based on their

3.2 — Computation 49

middle value and the range of the new bin, adding their counter to the new mapped
bin. This technique requires only the storage of the extreme values and counts, since
all bins have an equal width, reducing the volume of data that needs to be stored and
exchanged when compared to other techniques (e.g., concise counting). However,

equi-width can provide very inaccurate results for severely skewed distributions.

In equi-depth, bins are divided not to be of the same width but to contain approx-
imately the same count. Initially, fixed size bins are set, each represented by a pair
<value, counter>, dividing the range from O to the input value. Whenever data is
exchanged, all pairs (received and own) are ordered, and consecutive bins that yield
the smallest combined bins (in terms of count) are merged, repeating the process until
the desired number of bins is obtained. Bin merge consists in adding the counters and
using the arithmetic weighted mean as value. This method intends to minimize the

counting disparity across bins.

In order to deal with changes in input values along time, the authors consider the
execution of the protocol in phases, restarting it. The authors experimentally evalu-
ated their protocol comparing the previous merging techniques. The results obtained
show that equi-depth outperformed the other approaches, providing a consistent trade-
off between accuracy and storage requirements for all tested distributions. The author
also evaluated the effect of duplicates, from the execution of the gossip protocol. They
argue from the results obtained that although duplicates bias the estimated result, it
is more advantageous (simpler and efficient) to assume their presence than to try to
remove them. The occurrence of faults and change in the input values were not evalu-
ated.

Adam2 Adam?2 is a gossip based algorithm to estimate the statistical distribution of
values across a decentralized system [[116]. More precisely, this scheme approximates
the CDF (Cumulative Distribution Functions) of an attribute, which can then be used
to derive other aggregates. In this case, a “digest” is composed by a set H; of k pairs
of values (x, fi), where x;, represents an interpolation point and f;, is the fraction of
nodes with value less or equal than ;. At a high abstraction level, it can be said that the
algorithm simply executes several instances of an averaging protocol (i.e., Push-Pull
Gossiping [68]]) to estimate the fraction of nodes in each pair of the CDF.

In more detail, each node can decide to start an instance of Adam?2 according to

a predefined probability rll,%, where 7n; is the current network size estimate at node ¢

50 3 — Related Work

and R is an input parameter that regulates the aggregation instances frequency (i.e.,
on average one every IR rounds). Each instance is uniquely identified by its starting
node. Initially, the starting node 7 initializes the interpolation set /; in the following
way: fractions fj are set to 1 if the node attribute reading v; is less or equal than
the corresponding interpolation value xj, and set to 0 otherwise. Nodes store a set
of interpolation points /; for each running algorithm instance (initiated by a node
7). Upon learning about a new instance, a node j initializes its H; setting f; = 1
if a; < x and f;, = 0 otherwise, and starts participating in the protocol. A push-
pull like aggregation is then performed, where nodes randomly choose a neighbor to
exchange their set H;, which are subsequently merged by averaging the fractions at
each interpolation point. Along time, the fractions will converge at each node to the
correct result associated to each pair. After a predefined number of rounds (time-
to-live) the CDF is approximated by interpolating the points of the resulting set ;.
Note that, Adam?2 concurrently estimates (by averaging) other aggregation functions
besides CDF, namely COUNT to determine the network size, and MIN/MAX to find the
extreme attribute values. The result from these aggregation functions are later used as
input values to the next instances of the algorithm to tune and optimize its execution
(i.e., calculate the instance starting probability, and set new interpolation points).

Like in Push-Pull Gossiping [67; |68], Adam2 handles dynamism (i.e., attribute
changes and churn) by continuously starting new instances of the algorithm — restart
mechanism. The authors evaluated the algorithm by simulation, comparing it with
previous techniques to compute complex aggregates (e.g., Equi-Depth). The results
obtained show that Adam?2 outperforms the compared approaches, exhibiting better

accuracy.

Other Approaches One of the first algorithms to compute complex aggregation
functions in WSN was introduced by Greenwald and Khanna [59]]. Their approach
is similar to the one previously described for g-digest (3.2.4): nodes compute quantile
summaries (digest) that are merged in a bottom-up fashion along a tree topology, until
the root is reached.

Another gossip based scheme to estimate the distribution of input readings, able to
detect outliers, was introduced in [47;48]]. In a nutshell, this approach operates like the
push-sum protocol [80] (described in Section [3.1.5)), but manipulates a set of clusters

(digests) instead of a single value, applying a specific clustering procedure.

3.2 — Computation 51

In general, existing aggregation approaches can be extended to compute more com-
plex aggregation functions, for instance combining them with an additional sampling
technique. However, this additional functionality is not part of the essence of their core
algorithm, bearing different characteristics (e.g., accuracy) and concerns. Some exam-
ples can be found in [80] where push-sum is extended with a push-random protocol
to obtain random samples, and in [27]] which introduces algorithms to estimate several

spatially-decaying aggregation functions.

3.2.5 Counting

This category refers to a restricted set of distributed algorithms, designed to compute a
specific aggregation function: COUNT. COUNT allows the determination of important
properties in the design of some distributed applications. For instance, in this context it
finds a common practical application in the determination of the size of the system (or
group), or to count the number of votes in an election process. The algorithms from
this class rely on the use of some randomized process, most of them usually based
on the execution of some sampling technique to provide a probabilistic approximation
of the size of the sample population. Nonetheless, a few algorithms are found that
do not explicitly collect samples for size estimation, instead applying a probabilistic
estimator over some observed events.

Algorithms based on sampling are strongly influenced by the probabilistic method
used to obtain the result, inheriting its properties. For instance, the accuracy of the
algorithm corresponds to the one provided by the probabilistic method used, being
bounded by the error factor associated with it. Several probabilistic methods have
been applied to samples to yield a counting estimation, namely: birthday problem [31]]
— concerns the probability of two elements sampled out of a population not being re-
peated, inspired from the probability of two people out of a group not having a match-
ing birthday; capture-recapture [118] — probabilistic method based on the repeated
capture of samples from a closed population (population that maintains a fixed size dur-
ing the sampling process), where the number of common elements between samples
are accounted to provide an estimate of the population size; fundamental probabilistic
methods — application of Bernoulli based sampling methods [22]], and other basic prob-
abilistic concepts on some sampled statistical information, like the distances between
nodes (number of hops) or the number of messages successfully sent/received, in order

to estimate de size of the network. In all cases, typically sampling is performed at a

52 3 — Related Work

single node, and it can take several rounds to collect a single sample. Moreover, an
estimation error is always present, even if no faults occur. For example, in Sample
& Collide [56}, 98] the estimation error can reach 20%, and a sampling step takes d7’
(where d is the average connection degree and 7T is a predefined timer that must be suf-
ficiently large to provide a good sample quality), needing to be repeated until [sample

collisions are observed.

As previously referred, in some cases a size estimation can be obtained by directly
applying an estimator on some available system knowledge (observed events or other
known properties), without any previous explicit sampling. Although, in general the
estimator inputs result from other sampling sources. For instance, in the approach
proposed by Horowitz and Malkhi [65] (see Section [3.1.2) an estimator function is
used at each node to estimate the network size, based on the observation of two events
(nodes joining or leaving the network), incrementing/decrementing the estimator. In
this case the nodes joining/leaving at each node can be seen as the input sample used
to provide the estimate. Other approaches, like the one proposed in [39; 40], provide
a size estimation based on knowledge of the routing structure, in this particular case
counting the number of high degree nodes (which can be considered the input sample).
This kind of techniques does not provide accurate results, in most cases yielding a

rough approximation to the correct value.

Sample & Collide This approach [56; 98] addresses the problem of counting the
number of peers in a P2P overlay network, inspired by a birthday problem technique
(first proposed by Bawa et al. on a technical report [13]). The application of this
probabilistic method requires the collection of uniform random samples. To this end,
the authors proposed a peer sampling algorithm based on the execution of a continuous
time random walk, in order to obtain unbiased samples (asymptotically uniform). The
sampling routine proceeds in the following way: an initiator node ¢ sets a timer with
a predefined value 7', which is sent in a sampling message to a randomly selected
neighbor; upon receiving a sampling message, the target node (or the initiator after
setting the timer) picks a random number U uniformly distributed within the interval
0, 1], and decrements the timer by log (1/U)/d; (i.e., T < T —log (1/U)/d;, where
d; is the degree of node 7); if the resulting value is less or equal than zero (7' < 0)
then the node is sampled, its identification is returned to the initiator and the process

stops; otherwise the sampling message is sent to one of its neighbors, chosen uniformly

3.2 — Computation 53

at random. The quality of the samples obtained (approximation to a uniform random
sampling) depends on the value 7T initially set to the timer. The described sampling step
(to sample one peer) must be repeated until one of the nodes is repeatedly sampled a
predefined number of times [(i.e., [sample collisions are observed). After concluding
this sampling process, the network size n is estimated using a Maximum Likelihood
(ML) method. The ML estimate can be computed by solving Equation where
C; corresponds to the total number of samples until one is repeated [times, using a
standard bisection search. Alternatively, the result can be approximated within /n
of the ML-estimator by Equation [3.4] (asymptotically unbiased estimator), which is

computationally more efficient.

i
Z n_l—l:o (3.3)

A= C2/2 (3.4)

The accuracy of the produced result is determined by the parameter [, and its fi-
delity depends on the capacity of the sampling method to provide uniformly distributed
random samples (7" must be sufficiently large).

Capture-Recapture Mane et al. [94] proposed an approach based on the capture-
recapture statistical method to estimate the size of closed P2P networks (i.e., networks
of fixed size, with no peers joining or leaving during the process). This method re-
quires two or more independent random samples from the analyzed population, and
further counting the number of individuals that appear repeated in each sample. The
authors use random walks to obtain independent random samples. Considering a two-
sample strategy, two random walks are performed from a source node, one in each
sampling phase (capture and recapture). In more detail, each random walk proceeds in
the following way: the source node sends a message to a randomly selected neighbor,
which at its turn forwards the message to another randomly chosen neighbor; the pro-
cess is repeated until a predefined maximum number of hops is reached (parameter:
time-to-live) or the message gets back to a node that has already participated in the
current random walk. During this process, the information about the traversed path
(i.e., the UIDs of all participating nodes) is kept in the forwarded message. When one
of the random walk stopping criteria is met, the message is sent back to the source

node with the list of the “captured” nodes, following the reverse traversed path (stored

54 3 — Related Work

in the message). The information received at the source node from the sampling steps
is used to compute the estimate 1 of the network size, applying Equation (where
n; is the number of nodes caught in the first sample, ns is the number of nodes caught
in the second sample, and n;5 represent the number of recaptured nodes, i.e. caught in

both samples).

((n1 + 1) X (712 + 1))

3.5
(n12 + 1) (3-5)

n=

Hop-Sampling One of the approaches proposed by Kostoulas et al. [83;84] to esti-
mate the size of dynamic groups is based on sampling the receipt times (hop counts)
of some nodes from an initiator. Receipt times are obtained across the group from a
gossip propagation started by a single node, the initiator, that will further sample the
resulting hop counts of some nodes to produce an estimate of the group size. In more
detail, the protocol proceeds as following: the initiator starts the process by sending
an initiating message (to itself); upon receiving the initiating message nodes start par-
ticipating in the protocol, forwarding it to a number (gossipTo) of other targets, until a
predefined number of rounds (gossipFor) is exceeded, or a maximum quantity of mes-
sages (gossipUntil) have been received; gossip targets are chosen uniformly at random
from the available membership, excluding nodes in a locally maintained list (fromList)
from which a message has already been received; exchanged messages carry the dis-
tance to the initiator node, which is measure in number of hops; each node keeps the
received minimum number of hops (MyHopCount), and sends the current value incre-
mented by one. After concluding the described gossip process, waiting for a predefined
number of rounds (gossipResult), the initiator samples the number of hops (MyHop-
Count) from some nodes selected uniformly at random. The average of the sampled
hop counts is then used to estimate the logarithm of the size of the group (log(n)). Al-
ternatively to the previous sampling process, where nodes wait for the initiator sample
request, nodes can decide themselves to send their hop count value back to the initiator
node, according to a predefined probability to allow only a reduced fraction of nodes

to respond.

Interval Density A second approach to estimate the size of a dynamic group has
been proposed by Kostoulas et al. in [83; 84]. This algorithm measures the density

of the process identifiers space, determining the number of unique identifiers within

3.2 — Computation 55

a subinterval of this space. The initiator node passively collects information about
existing identifiers, snooping the information of complementary protocols running on
the network. The node identifiers are mapped to a point in the real interval [0, 1] by
applying a hash function to each one. The initiator estimates the group size by deter-
mining the number of sampled identifiers X lying in a subinterval / of [0, 1], returning
X/I. Notice that this kind of approach assumes a uniformly random distribution of the
identifiers, or uses strategies to reduce the existing correlation between them, in order

to avoid biased estimations.

Other Approaches Some counting approaches based on a centralized probabilistic
polling to collect samples were previously described in this work (in Section (3.1.3)).
Namely, randomized reports which illustrate the basic idea of probabilistic polling,
and another approach [76] that samples the number of message successfully sent in a
single-hop wireless network (further improved in [78]).

Other probabilistic polling algorithms are also available in the specific context of
multicast groups, to estimate their membership size. For example, in [54] some older
mechanisms were analyzed and extended, and in [4] an algorithm using an estimator
based on Kalman filter theory was proposed to estimate the size of dynamic multicast

groups.

56

3 — Related Work

Chapter 4

Dependability Issues of Existing
Algorithms

The previous chapter presented an overview of the existing related work, succinctly
describing the most relevant distributed aggregation algorithms. In this chapter, the
dependability issues found on existing approaches are discussed, especially when con-
fronted with message loss and churn. As we will see, most of the current distributed
aggregation techniques are not fault-tolerant. In particular, the occurrence of faults
can drastically affect the accuracy of the produced result. The few approaches that
tolerate faults are unable to produce precise results. Moreover, few are able to operate
in dynamic settings, in general relying on a restart mechanism to handle churn (peri-
odically resetting the computation), and revealing several flaws. A particular attention
will be given to averaging approaches (gossip based), due to their appealing robustness

characteristics.

Single tree based approaches can be drastically and unpredictably affected by a
single failure in the aggregation topology, since the failure of a single node lead to
the (temporary) disconnection of all its subtree. Experimental results [92] have shown
that in realistic WSN scenarios, without using any technique to counteract failures,
depending on the network diameter, the percentage of nodes involved in the data ag-
gregation process is reduced, and can range from less than 10% to about 40%. Even
using some techniques to reduce the effect of message loss, such as caching schemes,
the quantity of nodes not involved in the process can come up to 30%, unpredictably
affecting the result accuracy depending on the relevance of the lost data. Interpolation

strategies based on past values can be used to replace unavailable values due to mes-

57

58 4 — Dependability Issues of Existing Algorithms

sage loss, such as caching the previous data of children, as suggested in [92]. However,
despite providing an overall improvement on the obtained accuracy in the presence of
losses, the use of caching schemes bring on some drawbacks, like: temporal smear-
ing of individual sensor readings; use of additional memory (that could be needed for
other purposes); the cache validity duration sets the minimum bound to detect node
departure. Furthermore, tree based approaches are completely dependent on the topol-
ogy maintenance and recovery scheme to work in dynamic and mobile environments.
The efficiency of the topology maintenance protocol will directly influence the perfor-
mance of the aggregation algorithm in dynamic settings. Moreover, beside consuming
additional resources to monitor the network, in order to detect changes, the topology
adaptation process (parent switching) can still cause temporary disconnection that can
affect the aggregation process. For all these reasons, no guarantees on the quality of
the computed result can be made using this kind of aggregation technique, as a single

loss can jeopardize the final result (loosing input data).

Multi-path based approaches usually aim at preventing the problem of single point
of failure from the common tree/cluster based approaches, establishing alternative
paths from each node to the sink. However, this strategy gives rise to the duplication
of data, since the same value can be transmitted through different paths. Algorithms
supported by this kind of routing topology must be able to handle duplicated data,
to correctly compute duplicate-sensitive aggregation functions. Commonly, these ap-
proaches use an auxiliary duplicate insensitive structure to summarize all values, and
apply an estimation function to that structure to produce the result (e.g., sketches [29]).
This kind of technique introduces an approximation error in the final result, even if no
fault occurs. More importantly, the use of sketches is not tailored to operate in dy-
namic settings, as in the case of departures (even when announced) it is not trivial (if

not impossible) to remove items from such structures [81]].

The use of sketches removes the dependency from a specific routing topology to
perform data aggregation, enabling algorithms to benefit from the existing path redun-
dancy to increase their resilience. However, this comes at the price of losing accuracy,
even if no fault occurs, due to the application of probabilistic estimators to compute
the final result. This issue is observed in all randomized approaches, like sampling.
In the case of algorithms based on random walks, despite being able to operate on
unstructured networks, a singe failure (e.g., message loss) can interrupt the protocol,

losing the token that executes the random walk.

4.1 — Robustness of Averaging Algorithms 59

Different from other approaches, that are also independent from the routing topol-
ogy, averaging techniques are supposedly accurate (converging along time to the cor-
rect result). This type of algorithm is intended to be robust, being able to produce an
estimate of the aggregation function at every node. In particular, these algorithms are
often based on a gossip (or epidemic) communication scheme, which is commonly
thought to be robust. Nevertheless, similarly to gossip communication protocols [S],
the robustness of such aggregation algorithms can be challenged, according to the as-
sumptions made on the environment in which they operate. In practice, averaging
techniques, exhibit relevant problems that have been overlooked, not supporting mes-
sage loss nor node crashes. Due to their importance, the next section exposes relevant

dependability issues of popular algorithms from this class (see [[71] for more details).

4.1 Robustness of Averaging Algorithms

The correctness of averaging-based aggregation algorithms depends on the mainte-
nance of a fundamental invariant, commonly designated as “mass conservation”. This
property states that the sum of the aggregated values of all network nodes must re-
main constant along the algorithm’s execution, in order for it to converge to the correct
result [80]. However, considering realistic settings (e.g., message loss) this invari-
ant if often broken, making the algorithms converge to a wrong value. To illustrate
the issues of the existing averaging approaches, three representative algorithms are
discussed: Push-Sum Protocol [80]], Push-Pull Gossiping [67; 68], and Distributed
Random Grouping [21]].

4.1.1 Push-Sum Protocol

The Push-Sum Protocol (PSP) [80] is a simple gossip-based aggregation algorithm,
essentially consisting on the distribution of shares across the network. Each node
maintains and iteratively propagates information of a sum and a weight, which are sent
to randomly selected nodes (more details in Section |3.1.5)).

Aware of the impact of “mass” loss, the authors considered a variation of the algo-
rithm to cope with message loss: all nodes must possess the ability to detect when their
messages did not reach their destination, and send the undelivered data to the node it-
self, in order to recover the lost mass. But, this is an unrealistic assumption. Using an

acknowledgement-based scheme to infer message loss, as suggested, would amount to

60 4 — Dependability Issues of Existing Algorithms

solving the coordinated attack problem, which under possible message loss has been
shown to be impossible [S8]. Furthermore, even if it was possible, it would introduce
additional waiting delays in the protocol, in order to receive a delivery notification for
each sent message.

PSP does not support node crash and departure. In order to be robust against node
failures, G-GAP [128]] extended the PSP, implementing a scheme based on the com-
putation of recovery shares and the explicit acknowledgement of mass exchanges be-
tween peers. However, this approach provides only a partial support against this type
of faults, supporting discontiguous node crashes (it assumes that no two adjacent nodes
fail within a short time interval apart).

A recent extension to PSP has been proposed in [81] to address its use in dynamic
environments. An additional step is added to the original algorithm, by simply replac-
ing a portion A of the current node mass with an equivalent portion of its initial value,
at each iteration. This strategy introduces an error, according to the used A, that ad-
justs the aggregated values toward the nodes initial value, and improves the estimate
produced when node crashes or leave the network. However this technique does not

solve the mass loss problem.

4.1.2 Push-Pull Gossiping

The Push-Pull Gossiping (PPG) [675;168] is based on an anti-entropy aggregation pro-
cess, being quite similar to PSP (more details in Section [3.2.2). The main difference
of this algorithm relies on its push-pull process, which enforces a symmetric pairwise
mass exchange between peers. This action/reaction pattern between two nodes aims
to promptly nullify their differences. The iterative execution of this push-pull process
across all the network will provide the convergence of the algorithm to the correct
value (faster, when compared to PSP).

The authors implicitly assume that the core of the push-pull process is atomic,
also referred as “the variance reduction step” (v; = v; = (v; + v;)/2). However,
this atomicity constraint is not met even in a fault-free synchronous model, where
message sending takes one round (making a push-pull span two rounds), and makes it
give incorrect results. In particular, a node that started a push-pull can have its state
updated before receiving the pull value to average, violating the mass conservation
invariant and consequently the correctness of the algorithm, as depicted in Figure

In this case, node b updates its state (2 + 1)/2 = 1.5 before completing an already

4.1 — Robustness of Averaging Algorithms 61

Node a Node b Node ¢
v=2 v=1 v=0

initial
mass 3 state
mass 3 after
round 1

after

mass 2.75 round 2

Figure 4.1: Violation of the mass conservation invariant in the Push-Pull Gossiping protocol
(estimates at the end of each round).

started push-pull, leading to a state update (1.5 + 0)/2 = 0.75 after receiving the pull
message from node c that is inconsistent with the value previously sent, when both
should have updated their aggregate to (1 + 0)/2 = 0.5.

In practice, additional modifications must be considered to guarantee a behavior
equivalent to an atomic push-pull. Two such improvements to the algorithm (back
cancellation and ordered wait) were proposed in [/1]. The proposed fixes solve the
convergence problem of PPG, but it comes at the cost of a performance degradation
(especially, convergence speed), being Push Pull Ordered Wait the one with the best
performance. In particular, this fix prevents nodes that already started a push-pull from
participating in another one, buffering a received push message and only replying to
it after receiving and processing the pull message they are waiting for. This blocking
mechanism ensures a consistent state update between participating nodes, guarantee-
ing the atomicity of the push-pull process. To avoid deadlock (i.e., nodes waiting for
each other), a push is only allowed to nodes with a greater UID.

Considering faults, the loss of (pull) messages and node crashes originate a vio-
lation of the mass conservation property. The consequent occurrence of estimation
errors 1s recognized by the authors of PPG [68], but no effective strategy that solves

this issue is proposed (only statistically reducing the impact of the error).

The authors also propose a periodic restart of the PPG algorithm to cope with

62 4 — Dependability Issues of Existing Algorithms

churn, reinitializing the execution of the algorithm with clean input values (restoring
the correct mass of the system) after a predefined number of rounds — epoch. New
nodes are only able to participate in the protocol at the next epoch, for the algorithm to
converge to the average of the values at the start of each epoch. This strategy limits the
accuracy of the algorithm and its response to network changes: if the epoch length is
too small, it will react quickly to change but provide less accurate results; on the other
hand, if the epoch is too long it will react slowly to changes. In Section[7.5] it is shown
that the use of a restart mechanism, to handle churn, introduces a delay in the response

to network changes.

4.1.3 Distributed Random Grouping

Distributed Random Grouping (DRG) [21] was designed to take advantage of the
broadcast nature of wireless transmissions (where all nodes within radio range will
be prone to hear a transmission), directing its use for WSN (unlike previous averaging
algorithms). In a nutshell, the algorithm essentially consists of the continuous creation
of random groups across the network, to successively perform in-group aggregations.
Over time, ensuring that the created groups overlap, the estimated values at all nodes
will converge to the correct network-wide aggregation result (see Section for
more details).

Although not addressed by the authors, in practice since messages can be lost,
timeouts are needed in the reception steps for expected JACK and GAM messages, to
exempt nodes (leaders and members respectively) from waiting forever. The values of
those timeouts will influence the performance of the algorithm.

In particular, the authors consider the occurrence of collisions and link failures,
but they only consider its effect on GMCs, with impacts on the creation of groups,
reducing its expected size. For instance, they assume that link failures only happen
between iterations of the protocol, which is unrealistic since links can unpredictably
fail at any point of the algorithm execution, causing the loss of any type of message.
The loss of a GCM will have no impact on the correctness of the algorithm, only
preventing nodes from joining the group. However, loosing a JACK from a node but
delivering the subsequent GAM to that same node will violate mass conservation. The
same happens if GAMs are lost.

In line with the previous approaches, this algorithm does not support node crashes

and departures. Recently, an analysis of DRG considering dynamic graph changes was

4.1 — Robustness of Averaging Algorithms 63

provided in [20]. However, the authors assumed that changes only occur at the begin-
ning of an iteration of the algorithm, which once more is unrealistic, and overlooked
its effect at the middle of an iteration (namely at the JACK/GAM level, incurring from
the previously referred mass conservation problem). To cope with the change of the
sensor measurements over time, the authors consider the execution of several instances

of DRG (associated to a respective timestamp).

64

4 — Dependability Issues of Existing Algorithms

Part 111

Robust Distributed Aggregation
Approach

65

Chapter 5
Flow Updating

This chapter describes the main contribution of this research work, a robust distributed
aggregation approach named Flow Updating [[72;74]. Considering the taxonomy pro-
posed in Chapter [3] it can be classified as an averaging algorithm in terms of computa-
tional principles, working independently from the routing topology (i.e., unstructured
group) and fitting in the gossip category in term of communication. For starters, the
basis behind this novel approach and an intuition of how the algorithm works will be
given. Then, the algorithm is described in more detail in Section[5.1] A more profound
analysis and a proof of the algorithm correctness is provided in Section [5.2] Finally,
some possible variations (optimizations) to the algorithm are introduced in Section[5.3]

for instance adapting it to operate on asynchronous settings.

Flow Updating (FU) is inspired from the concept of network flows, from graph the-
ory (which serves as an abstraction for many things like water flow or electric current;
see Chapter 6 of [35]]). It is rooted in current averaging approaches, which iteratively
average the values between peers, converging at all nodes to global system wide aver-
age (see Section [3.2.2). Classic schemes start from the initial input value (to average)
and iteratively change it by exchanging “mass” along the execution of the algorithm.
Unlike them, FU keeps the initial input unchanged, exchanging and updating flows
associated to neighbors. The key idea is to explore the concept of flow, and instead of
storing the current estimate (i.e., average) at each node in a variable, compute it from

the input value and the contribution of the flows along the edges to the neighbors:

e =vi— Y [(5.1)

J€D;

67

68 5 — Flow Updating

The above expression can be read as: the current estimate ¢; in a node ¢ is the input
value v; less the flows f;; from the node to each neighbor j, where D; represents the

set of neighbors (i.e adjacent nodes) of :.

In a sense, flows represent the value that must be transferred between two adjacent
nodes for them to produce the same estimate, and are skew symmetric (i.e., the flow
value from ¢ to j is the opposite from j to ¢: f;; = —fj;). For example: considering two

directly connected nodes 7 and j with initial input values v; = 1 and v; = 3, for them

1+3

to produce the same average —=

setto f;; = —land f;; = 1.

= 2, the flows at node ¢ and j must be respectively

In a nutshell, the core of the algorithm is the following: each node ¢ stores the flow
fi; to each neighbor j; node 7 sends flow f;; and its estimate e; to j in a message; a
node j receiving f;; updates its own f;; with — f;;, and afterwards uses e; to compute
its new estimate e; (by averaging), setting new flows accordingly. Messages lead to
simple flow updates, being idempotent; the value in a subsequent message overwrites
the previous one, it does not add to the previous value. If the skew symmetry of flows
holds, the sum of the estimates for all nodes (the global mass) will remain constant,

where V represents the set of all network nodes:

Zei = Z(Uz - Z fz]) = Zvi (5.2)

eV ey JED; eV
The intuition is that if a message is lost the skew symmetry is temporarily broken,
but as long as a subsequent message arrives, it re-establishes the symmetry. The reality
is somehow more complex: due to concurrent execution, messages between two nodes
along a link may cross each other and both nodes may update their flows concurrently;
therefore, the symmetry may not hold, but what happens is that along time f;; + f;;
converges to 0, and the global mass converges to the sum of the input values of all

nodes. Message loss only delays convergence, it does not impact the correct value (see

Section [5.2.2.1).

Enforcing the skew symmetry of flows along edges through idempotent messages
is what confers Flow Updating its unique fault tolerance characteristics, that distin-
guish it from previous approaches. It tolerates message loss by design without requir-
ing additional mechanisms to detect and recover mass from lost messages. It solves
the mass conservation problem, observed in current averaging approaches (see Section

. Next, the main version of the algorithm is described in more detail.

5.1 — Algorithm 69

[5=Y

inputs:
v;, value to aggregate
D;, set of neighbors given by failure detector

w N

state variables:
L flows: initially, F; = {}

message-generation function:

7 mng(E,]) = (Z7 f’ eSt(UiaF;'));
Fi(j) if(j,-) € F;
0 otherwise

[7 I N

=)}

8 with f = {
9 state-transition function:
10 trans; (F;, M;) = F)

1 with

12 F:{j'_>_fIJED’L/\(.]?JC?*)EM'L}U

13 = f1ie€DiN{,) &M A f) € Fi}
14 E = {i—est(v, F)} U

15 {j'—)€|‘]epl/\(],,,€)€Ml}U

16 {j HeSt(th’i) ’]E Dz/\ (]7 - 7) ¢Mz}

v | a={el(-e) € E})/|E]
18 F={—=f+a—EQ()| U f) eF}

19 estimation function:

0 | est(v.F)=v—Y{f | (/) € F}

Algorithm 1: Flow Updating algorithm.

5.1 Algorithm

Flow Updating is described considering the execution of the algorithm under the syn-
chronous network model (as in Chapter 2 of [90]). More specifically, the computation
proceeds in lockstep rounds, each one composed by two steps: first nodes look at
their state and compute what messages are sent, through a message-generation func-
tion; then nodes take their state and the messages received and compute a new state,
through a state-transition function. It is assumed that each node needs only to be able
to distinguish its neighbors, not requiring the use of globally unique identifiers. Ac-
cording to this model, the computation performed at each node by FU is depicted by
Algorithm [I]

The algorithm takes two inputs that can be read at each round, but are not updated

70 5 — Flow Updating

by the algorithm itself (line 2-3). The first one, v;, is the input value of the aggregation
functions that will be computed. The second, D; represents the set of neighbors of
node ¢. Considering the execution of the algorithm in dynamic settings, these values
can change. But, as we will see later on, a simple action (or none) in response to
the observed change will be enough to allow the algorithm to cope with it, without
interrupting (e.g., restarting) its execution. We will get back to this topic at the end of
this section.

The state of each node ¢ simply consists of a mapping F; from node IDs to flows,
that stores for each current neighbor the flow along the edge toward that node (line
5). At each round, each node can estimate the computed aggregate (i.e., average) by
applying the estimation function (line 20) to the current input value v; and flows Fj,
according to Equation[5.1] i.e., e; = est(v;, F}).

A single type of message is sent, containing the self ID i of the node, the flow F;(7)
to each current neighbor 7, and the aggregate estimate (lines 7-8). When no flow value
is available for a given neighbor, initially or when a new node starts participating, the
value O is used. The estimate is computed by making use of the estimation function
(line 20). Note that it is expected that the message is multicast to all neighbors, ide-
ally in a single transmission when supported by the physical communication medium.
In practice, this can be easily achieved in wireless networks taking advantage of the
shared communication medium and the radio broadcast found in such environments,
or in other network settings by considering the creation of multicast groups composed
by a node and its neighbors.

The state-transition function (lines 10—18) takes a state F; and the set of messages
M; received by the node in the round, and returns a new state F;. Basically, it is
here that the averaging step is performed, taking the received estimates and the current
one to produce the new average. Then, a new set of flows (i.e., the new state) is
computed, in order for each neighbor to produce the new average. More specifically,
some auxiliary variables are used in Algorithm|I|to compute the new state: the flows F
updated according to the messages received, and the estimates F (last received) used

to calculate the new average a. Looking at these values in more detail:

e [is a mapping from current neighbor IDs to: the symmetric of the flow in
messages, for those successfully received from neighbors (line 12); the current

value, if any, in the case of message loss (line 13).

e [/ is a mapping from node IDs to estimates: for the self node ¢, according to the

5.1 — Algorithm 71

estimation function, using the newly updated flows in F' (line 14); for neighbors
whose messages arrived, the estimate received (line 15); otherwise, for neigh-
bors from which no message was received, the estimate according to the estima-
tion function, using the flows at the beginning of the round, i.e. the estimate sent

to all neighbors at the beginning of the round (line 16).

e a is simply the average of the estimates in the mapping £, i.e. the averaging step,
and represents the new estimate towards which the node will lead its neighbors

to converge in the next round.

Finally, the new state, i.e. the mapping FJ, is computed by adjusting each flow in F,
adding the difference between the new average a and the last (received) estimate (),
so that the estimates change toward a. In particular, the estimate of node ¢ at the end
of the round will be a, and its neighbors would also compute a at the end of the next
round if they do not receive other messages from their own neighbors (e.g., if it has
node ¢ as its only neighbor).

The iterative execution of this algorithm across the whole network allows the esti-
mate of all nodes to converge to the global average of the input values. The occurrence
of message loss will not change the value to which the algorithm will converge (only
delaying it), unlike in previous averaging approaches. FU is also able to support churn,
simply by performing straightforward operations on the map of flows F': removing
the entries corresponding to leaving (or crashing—'_-]) nodes, and adding flow entries for
newly arriving nodes. The map F' is maintained according to the set of alive neighbors
D; which is updated by a Fault Detector (FD). Notice that practical implementations
of FDs can be used. An evaluation of the use of different FD is available in Sec-
tion The dynamic change of the input value v; over time (e.g., temperature)
is seamlessly supported by Flow Updating, without requiring any additional action,
converging at each iteration to the new global average of input values (Section|/.5.2).

In short, FU is able to continuously adapt to changes (i.e., churn and input value
changes) without any kind of restart mechanism (unlike the remaining distributed ag-
gregation approaches), being fault tolerant. Like other averaging based aggregation
approaches, FU allows the computation of several aggregation functions by combin-
ing the use of different input values with the execution of distinct instances of the

algorithm. For example: AVERAGE is computed by default; COUNT is calculated using

'Nodes departure is considered equivalent to node crash, because it is assumed that nodes silently
leave the network (without any kind of notification, since it can be lost).

72 5 — Flow Updating

1 as the input value in ¢ nodes (usually one, i.e. ¢ = 1) and v; = 0 at the remaining
nodes, estimating the result at each node by ¢/e;; SUM can be computed by combining
the result from the execution of two instances of FU, one to determine the average a

and another the number of elements 7 (i.e., count), returning the sum as an.

5.2 Correctness

After previously describing how FU works, its correctness is analyzed in this section,
providing a proof of its convergence along time, according to a concurrent model close
to the one considered in the previous section, and discussing the impact of message
loss on the correctness of the algorithm. As already referred previously, in terms of
correctness, exiting averaging algorithms rely on the maintenance of a fundamental
invariant, commonly designated as “mass conservation”. This invariant states that the

global mass of the system remains constant along time.

Definition 5.1 (Global Mass). The “global mass” M of the network is the sum of the

aggregate value a; (i.e., the estimated average) held by all nodes:
M = Z a;

(considering that the system is stopped, with no messages in transit and the current

round successfully completed at every node).

FU distinguishes itself from the existing averaging algorithms by its fault-tolerant
capabilities. It solves the mass conservation problem observed on other averaging ap-
proaches when subject to message loss, that affect their correctness leading them to
converge to a wrong value. In particular, other approaches require additional mecha-
nism to detect and restore the lost mass, which is not feasible in practice. In contrast,
FU is by design able to support message loss, only delaying the convergence to the cor-
rect value, without requiring any additional mechanism. This is achieved by keeping
the input values unchanged and performing idempotent flow updates which, together
with the skew symmetric property lead to conservation of the global mass.

This claim will be substantiated along this section. For that purpose, different
models will be considered, from simpler to more sophisticated, aiming at reaching a
correctness proof for a version as close as possible to the fully concurrent algorithm

previously described.

5.2 — Correctness 73

In fact, despite the efforts made, we were unable to prove the convergence of the al-
gorithm considering a fully concurrent execution, as expressed by Algorithm|[I] where
all nodes execute the algorithm at the same time, messages cross each other, and flows
are concurrently updated on the same link. To this end, the execution of FU was
modeled as a discrete dynamical system, i.e., a difference equation, but the stability
analysis was inconclusive. Even resorting to the help of other researchers specialized
in the area (i.e., dynamic systems, matrix analysis, and linear algebra), no advances
were achieved. Even though, a characterization of FU as a discrete dynamic system
can be found in Appendix [A] which can be used as a rigorous tool to predict its be-
havior in specific network settings, and be used as a starting point to carry out further
correctness analysis in a future work.

Nevertheless, a correctness proof is still given considering a concurrent execution
of FU, although imposing a restriction to avoid concurrent flow updates over any sin-
gle link (see Section [5.2.3)). For ease of understanding, first the correctness of FU is
analyzed in a non concurrent model (see Section [5.2.2), and only then considering a

concurrent execution of the algorithm at all nodes.

5.2.1 Model and Assumptions

In this section, we describe a general model and list some assumptions common to
all analyzed versions of the algorithm. First, we consider a discrete time execution
of the algorithm (in lock-step, ¢ > 0 and ¢ € N) over a network, that is abstracted
by an undirected graph G(V, E). The set of vertices V represent the network nodes,
and the edges £ the existing links between nodes which are all bidirectional. The
graph is connected, meaning that there is a path between any two vertices of GG, and
of fixed size n, with no vertices or edge modifications along time, where n = |V|.
Unless otherwise stated, no faults occur along the execution of the algorithm (i.e., no
node fail/crash), and the communication channels are assumed to be reliable (i.e., no
duplicate, spurious or lost messages). It is assumed that each node ¢ knows a set of
neighbors D;, and only communicates with them. All nodes are identical processes,
not requiring a global UID, only a local relative identification to distinguish neighbors.
The size of the set of neighbors of a node is denoted by |D;|, which corresponds to
the node degree. No further assumptions are made on the network, and its size n is
assumed to be unknown.

Along this analysis, we consider the problem of the distributed computation of the

74 5 — Flow Updating

AVERAGE aggregation function, i.e., determination of the global average a of all input
values v; held by each node ¢ in a distributed network system.

According to the above considerations, in the following sections we gradually de-
fine some properties and analyze the correctness of our approach, considering different
models and versions of our algorithm with increased approximation to the fully con-
current original algorithm, but maintaining the core idea of flow exchange. Next, the
correctness analysis of Flow Updating is carried out considering these assumptions,

unless stated otherwise.

5.2.2 (Simplest) Non Concurrent Model

First, a restrictive (not realistic) but very simple model is considered to start the cor-
rectness analysis of FU. In this model, only one node executes the algorithm at each
round, and it is assumed that all nodes have the same opportunity to execute the algo-
rithm along time (e.g., uniformly chosen at random), maintaining all the assumptions
previously defined (Section [5.2.1]).

A simplified version of the FU algorithm is considered (see Algorithm [2), with
the same core as the one previously described in but here message exchanges are
abstracted. Comparing to Algorithm|[I] we should notice the following differences and
similarities: the inputs v; and D; are the same, but do not change along the execution
of the algorithm; the state also consists in a simple map of flows F;, but it is initialized
with the value zero for all neighbors, as the network is fixed (no nodes leaving/arriv-
ing) and no entry will be removed/added to F;; the message generation function was
removed, as message exchange is abstracted, and updates are directly performed on the
state of the target nodes; the use of the auxiliary flow F' and estimate F to hold default
values for unreceived messages was removed, since no message is lost; the estimation
function is identical, but only applied to state flows; in the averaging step, the new
estimate (i.e., average a;) also results from calculating the average of all neighbors es-
timates and the one of the executing node obtained from the flows of its neighbors (i.e.,
e;); finally, the new flows toward each neighbor are computed in the same way, adding
the difference between the new and previous estimate to the previous (current) flow,
and each corresponding flow at each neighbor is updated with the skew symmetric
value.

Starting the analysis of FU, according to this model, the first property that can

be observed is that at the end of each round of execution of the algorithm, all the

5.2 — Correctness 75

[5=Y

inputs:
v;, value to average
D;, set of known neighbors

w N

state variables:
| flows: initially, F; = {j <~ 0| j € D;}

[7 I N

¢ algorithm:
| =0t YR G)
J€D;
Z ej + €
8 a; =12
! |Di| +1

9 forall the j € D, do
w || RO =FO) (- e)
1 Fj(i) = —Fi(j)

12 estimation function:

13 €, = V; — ZFl(])

J€D;

Algorithm 2: Simplest Flow Updating algorithm, abstracting message exchange.

flows between neighbors (i.e., adjacent nodes) are skew symmetric, as stated by the

following lemma.

Lemma 5.1 (Skew Symmetry). At the end of each round, for all i € V:

Fz(]) = _Fj(i)vvjel)i

Proof. Initially all flows are set to zero, then at round ¢ = 0, Ve, F;(j)" = —Fj(i)’,

V,ep, holds trivially. As only one node executes the algorithm at each round, only the
flows of that node and those of its neighbors are updated; no concurrent state updates
are performed by any other nodes. Considering that at any round ¢ > 0 a single node
i executes the algorithm, from line 9-11 of the Algorithm [2] we directly observe that
Vjep, each neighbor flow F}() is updated with the opposite (skew symmetric) value

of its corresponding flow at node ¢, i.e. —F;(7) (line 11).]

Consequently, the global mass of the system is conserved at each iteration, as the

sum of all flows is zero.

76 5 — Flow Updating

Lemma 5.2 (Mass Conservation). At the end of each round:

M:Zei:Zvi

ey i€V

Proof. Let M = Z v;. Now, considering the sum of the estimates at all nodes, i.e.
i€V

Z e;, and substituting e; by the estimation function of Algorithm [2|(line 13), we get:

i€y

Sa=y(w-3 F0)

i€y 1% J€D;
= E v; — E E Fi(5)
3% i€V jeD;

From Lemma we infer that the sum of the flows along any edge is equal to zero,
F;(j) — F;(i) = 0, and consequently the sum of all flows in the network is also zero.
Therefore Z Z F;(7) = 0 for all rounds and then Z e = Z v; = M. O

1€V je€D; SY eV

Another important property is that, after concluding the execution of the algorithm
at a node ¢, all its neighbors and itself will yield a common estimate which corresponds
to the newly computed average. In a sense, this characterizes the averaging process
performed by FU, where at one iteration the values of the involved participants (node
¢ and its neighbors) are averaged, and all will return the resulting average as their

estimate. This property is expressed by the following lemma.

Lemma 5.3 (Flow Adjustment). If ¢ executes Algorithm |2|at round t > 0, then at the
end of that round:

Proof. First, let’s show that the estimate of the node ¢ chosen to execute the algorithm
at round ¢ is equal to the new computed average (i.e., ¢} = a!) at the end of the round.
We know that the estimate is given by the estimation function (line 13 of Algorithm[2),

ie. el =v; — Z F;(5)", and that the flow values to all neighbors of node 7 will result
J€D;

5.2 — Correctness 77

from F;(j)" = F;(j)"! + (af — /) (line 10 of Algorithm , which means that:

== 3 (RO + -)

J€D;
—vi— > FEG) = Dilai+) el
J€D; J€D;
=elt —|Dilal + Z eéfl
JED;

Then, from the average computation, line 8 of Algorithm [2| and given that ¢! = e!™!

attending to the skew symmetry of flows (Lemma [5.1), we have (|D;] + 1)a! =

Z 63_1 + el~1. Substituting the sum of estimates in the above expression, we get:
J€D;

¢; = (D] + 1)a; — |Di| a;
=al
Now, let’s show that the estimate of any neighbor j of the node 7 that executes the
algorithm is also equal to the new computed average (i.e., eﬁ- = al) at the end of the
round. Concerning each neighbor j, we observe that only their flow associated to ¢ is
updated by Algorithm 2] (line 11). Therefore, at the end of round ¢, the estimate of any
neighbor j results from subtracting to its initial value v; the flows of its neighbors £k
(that were unchanged) and the flow set by 7. More specifically, the estimate of each

neighbor j is given by (evidencing the flow associated to 7):

eh=v;— Y Fi(k)' - F@)

keD;\{i}

From lemma 5.1|—F; (i)’ = Fi(j)', and as F;(j)" = Fi(j)" " + (al — €~") (line 10 of
Algorithm 2)):

eb=v;— > Fi(k)' +FG) T al - e
keD;\{i}

78 5 — Flow Updating

Substituting 63_1 by the corresponding estimation function at round ¢ — 1, and evidenc-

ing the flow associated to ¢:

G=vi= Y, B +RO T ra-u+ D BET O
keD;\{i} keD;\{i}

Since only flows associated to node ¢ are updated, we get:

e = Fi(j)" " +af + F;(i)"!

Finally, again from lemma|5.1| F;(j)"~' = —F}(i)"', we obtain:

e =—F;(0) +ai + F(i)"

.t
=a;

Now, attending to the above properties it is possible to show that there is a variance
reduction at each round, and the estimates of all nodes will converge along time to the
global network average a (i.e., @ =) _,,, v;), by executing the algorithm. Let 6? be
the variance of the estimated values across all the network at round ¢, which is given
by:

1
o =—=) (ci—a)’ (53)
i€V

Lemma 5.4 (Variance Reduction). At the end of round t:

0f <0,

Proof. We will show that #2 — 67 | < 0:

5.2 — Correctness 79

Let P be the set of participating nodes involved in the execution of the algorithm (¢
and its neighbors D;), i.e. P = D; U {i}, and R the set of remaining nodes that do
not participate in the algorithm at round ¢, i.e. R = V\P. Rewriting the previous

expression to separate these two sets, we get:

-0t = (Sl -+ e -0 - Y -0 - T - o)

peEP reER peEP reER

Since the estimates of the set of non participating nodes are unchanged, i.e. V,cr, €. =

e!~1, the reasoning can be narrowed to the set of participating nodes P:

02 — 07 | = ﬁ (Z(e; —a)? =) (b - a)Q)

pEP peP

- (S -2 - (2
PP peP

=i (S 240 - S 270

From Lemma(5.3] the estimates of all participants at the end of the round will be equal,

i.e. Ypep, €, = aj, getting:

g = (Z((a;>2 = oata) — Y (¢ zegla))

peEP peEP
1 £\2 _ 1 =12 | o~ t—1
=7 (|73| (a;)° — |P|2aa; — Z(ep)+ QaZep
peEP peEP

Now, from the average computation (line 8 of Algorithm [2)) and as e?f/ = e!~! due to
the skew symmetry of flows (Lemma , replacing a! by the average formula, we
obtain:

L (o (St Spercs”
2 _pn2 pEP P _ = pEP P N t—1\2 —~ t—1
62— 62, n_1(’P‘< >)= 1Pl 2a(o)= D2y e)

peEP pEP

(DR IEED SCAED BCREED e

peP peEP peP peEP

80 5 — Flow Updating

“wnlm(Se) -2

peP peP
())

Considering that m (3", ai) — (3L ar)® = D <peiam (@ — ar)?, which is derived

from the Lagrange’s identity (see Section 2.6.1 of [102]f]by assuming b = 1, we get:

1
0 =07 = ———= > (e —e") (5.4)
(n =1 [P| kleP,k<l
Therefore 2 < 62 ,. O

Lemma 5.5 (Convergence). The estimate e; converges to the network wide average a:

tliglo ¢; = 8 Yiey
Proof. From Lemma the sum of all estimates will remain constant along time.
Now, attending to Lemma and assuming that all nodes will have an equal oppor-
tunity to execute the protocol (all nodes execute the algorithm infinitely many times),
let’s show that tlgglo 0? = 0. By contradiction, suppose that tlgglo 0? = c1,c; > 0. This
non zero variance can only occur if there are at least two different estimates in the net-
work. Then, there must exist at least two neighbors that also have a different estimate
and |e; — e;| > ¢a, co > 0. But, since all nodes execute the algorithm infinitely often,
after one of those neighbors executes the algorithm e; = e; (according to Lemma 5.3)),
and according to Equation there is a variance reduction of at least ﬁcg that
would lead the global variance to eventually become lower than any non zero ¢, value

that is arbitrated. Since lim 67 = 0, then lim e! = @, Vcy. O
t—o0 t—o0

This proves the convergence to the correct network wide average at all nodes by
executing FU over the considered model. Along time, the estimates produced at all
nodes will get closer to the correct result, reducing the global variance at each round. In
more detail, at each iteration the variance reduction 6? — 62 | is given by Equation
It is clear that the variance reduction depends on the differences between the estimates

of the participating nodes. It is also obvious that the variation is always negative, or

*Lagrange’s identity: (Y7, a2) (7, 02) — (0, aibi)® = X< pcponm (arbi — aibi)?, hold-
ing for real numbers.

5.2 — Correctness 81

equal to zero if there is no differences between the estimates of the participating nodes,
ie. el! = el7! V) ep. In particular, the bigger the difference between the involved
estimates, the bigger will be the variance reduction. This suggests that better results
(faster convergence) should be obtained, if we manage to choose at each round the
set of participants (node that executes the algorithm and neighbors) that exhibits the
largest differences between their estimates, in order to maximize the variance reduction
(Equation [5.4).

Before analyzing the correctness of FU in concurrent settings, the impact of mes-
sage loss will be discussed. For a matter of simplicity, a non concurrent model is still
considered. In particular, it will be argued by case analysis that although a message
loss might introduce a variance reduction error, it will be immediately nullified by
the successful reception of the next flow update message over that link, not compro-
mising the correctness of the algorithm (i.e., convergence to the correct network wide

average).

5.2.2.1 Message Loss

Here, the impact of message loss in the correctness of the FU algorithm is analyzed,
considering the previous non concurrent execution model. To this end, message ex-
change can no longer be abstracted. In the particular case of Algorithm [2] messages
are required to get the estimates for the node that executes the algorithm and further
transmit the resulting flows to its neighbors. Here, it is assumed that two types of mes-
sages are exchanged between nodes: one to get the estimates e; and flows £(i) of the
neighbors at the beginning of a round, and another to update the flow of each neigh-
bor at the end of the round. For a matter of simplicity, in order to avoid nodes from
using outdated estimates during the averaging process, it is considered that each time
a node is chosen to execute the algorithm, it is always able to get the updated estimate
and corresponding flows of all its neighbors (i.e., successful reception of the first type
of message). Although unrealistic, seeming like an unfair strategy to counteract mes-
sage loss, we will later see that this assumption can be dropped (see Section [5.2.3.1).
However, it is assumed that messages with the flow update data might be lost; in other
words, only the instruction of line 11 of Algorithm [2] may fail. This means that in
the case of a message loss, the target neighbor j will not update its flow with the value
computed by 7, breaking the flow skew symmetry (Lemma5.1)) and consequently mass

conservation (Lemma[5.2).

82 5 — Flow Updating

At first sight and after the previous shallow explanation, message loss seems to
affect the correctness of the algorithm, and indeed the variance reduction at each round

(Lemma [5.4) is no longer verified. This can be shown by a simple example.

Example 5.1. Consider two nodes a and b with initial input values v, = 1 and
v, = 3, belonging to a connected network of n nodes with a global average
a = 0. The only neighbor of a is b, but b is connected to the rest of the network
by at least another neighbor. Node a is chosen at round ¢ to execute the
algorithm. Let’s consider that at round ¢ — 1 all the flows of both nodes were
set to 0, consequently the estimates used in the averaging process are equal
to their input values. The resulting average computed by a will be a, = 2,
and the flow toward b will be f,, = —1. If node b successfully receives the
message from a with the new flow, it will set f;, = 1, then both will produce
the new estimate e, = e, = 2 and the variance will decrease (87 — 67 | < 0,
ie. (224 2%) — (32 +1%) < 0), as stated by Lemma[5.4 However, if the
message is lost, then only node a will produce the new estimate e, = 2 and b
will produce its previous one e, = 3. Consequently, in this case the variance
will actually increase (07 — 62, > 0,1i.e. (3% +22) — (32 + 1%) > 0).

An important thing here is that, although the sum of the whole estimates may
change, due to message loss, the amount of change is counterbalanced by the sum of
all network flows. As estimates are always a function of the flows (and initial value), at
each node the flow values are always consistent with its estimate (line 13 of Algorithm
[2). In particular, at each link the variation caused by a message loss is given precisely
by the difference between the flow values of the sender and receiver. In fact, taking
flows into consideration, the global mass is always conserved as shown by the rewritten
mass conservation property (Lemma[5.6). This means that “mass” is never lost, unlike

what happens with other averaging approaches [71].

Lemma 5.6 (Rewritten Mass Conservation). At the end of each round:

M=) vi=) et > F)

eV eV 1€V je€D;

Proof. Let the global mass be M = Z v;, assuming that v; does not changes along
iV
time. Now, consider the sum of all estimates at a given round, i.e. Z e;, substi-
eV

5.2 — Correctness 83

tuting each estimate e; by the estimation function used to compute it (line 13 of of

Algorithm 2)), we get:

Sa=y(v-3 E0)

2% % Jj€D;

e =3 v=2 > Q)
2% % i€V jeD;
eV i€V jeD; eV

]

As previously described by Example the loss of a flow update message may
lead to the increase of the global variance, i.e. 62 —02 | > 0. However, it will be shown
that this increase is only temporary, and it is reverted by the successful execution of the
algorithm by one of the nodes belonging to the failing link (including the successful
reception of the flow update message). In particular, the occurrence of message loss at

round ¢ might introduce what is defined as a variance reduction error §'.

Definition 5.2 (Variance Reduction Error). It is the difference between the expected
variance (0?) if no message had been lost, and the observed variance with message

loss (%) (i.e., L nodes fail to receive the flow update message), at a round t > 0:
0" = (07) — (07)c

The value of this error depends on the difference between the new estimate (i.e.,
average a}) that should be produced and the estimate effectively yield (i.e., previous
estimate ef’l), for the nodes L that fail to receive the update message. More precisely,

it depends on the distance of those estimates to the correct average a.

Lemma 5.7 (Value of Variance Reduction Error). At each roundt > 0, considering the
set L of neighbors which fail to receive the flow update message from the node 1 that
executes the algorithm and computed the new estimate (i.e., average a;), the variance

reduction error &' is given by:

84 5 — Flow Updating

Proof. Recall that, the variance 6; at round ¢ is given by —1- >~ (el — a)?, where
n denotes the number of nodes, ef) the estimate of a node v at round ¢, and a the
correct global average (i.e., Equation[5.3). Now, let’s separate the set P of nodes that
participate in the algorithm, including the executing node i (i.e., P = D; U {i}), in
two subsets: the set S that contains the nodes that successfully update their state (i.e.,
node 7 and neighbors that successfully receive the flow update message), and the set
L which is composed by neighbors that fail to receive the message update for node i.
Then, according to the previous set partitioning and Lemma(5.3] the expected variance
without faults (67) is given by 25 (3 cp(af—a)*+>= ;1 p(€f—a)?), and the variance
with message loss (67) 2 by 25 (3 cs(al —a)> + 3 (ef 7 =a) + 20 p (e —a)?).
The result follows by taking the differences between these two terms. [

5! can have a positive or negative value, depending if (62) is lesser or greater than
(62), which means that the variance can actually improve due to message loss and not
always increases (if (#?), < (6?)). In particular, from Lemma at each node that
fails to receive the update message, if the distance between the previous estimate and
the global average (i.e., (¢} " — @)?) is greater than the distance between the expected
estimate without loss and a (i.e., (a! — @)?), then the introduced error is negative and
increases the global variance, otherwise the inverse is observed.

In front of that, it is now clear that the variance may no longer decrease monotoni-
cally in each round, when message loss is taken into account. However, this does not
mean that the algorithm will no longer converge. In particular, in order to allow the
convergence of the algorithm, it seems that the variance reduction errors introduced
by message loss must be nullified along time, and its “correction” can not setback
the progress (convergence) of the nodes estimate towards the global average. Beside
this, some additional fairness properties must also be met, namely to allow all nodes
to eventually participate in the protocol and successfully receive some flow update
messages.

Now let’s examine in more detail what are the circumstances in which the variance
reduction error is nullified, and what scenarios will still allow the convergence of the
algorithm towards the global average. In particular, consider that a node ¢ executes
the algorithm at time ¢, and the set P of participants includes all its neighbors (i.e.,
P = D; U {i}). At the end of the round, only a subset S of the participants, excluding
1, correctly updates its state with the resulting flow, and a subset L fails to receive the
flow update message (i.e.,i ¢ SUL, D; = SUL, and L = D;\S). Moreover, it

5.2 — Correctness 85

is assumed that up to round ¢ no message was lost. For illustrating purposes and to
aid understanding the effect of message loss, the performed analysis is materialized by

Example |5.2| which concretely defines the studied message loss scenario.

Example 5.2. Consider five nodes a, b, ¢, d and e with respective initial input
values v, = 1, v, = 3, v. = 1, vy4 = 3 and v, = 4. These nodes are part
of a connected network of size n and with a global average a = 0. Node a,
c and d have three neighbors, respectively D, = {b,c,d}, D. = {a,d, e},
D4 = {a,c,e}. Node e has two neighbors D, = {¢, d}, and b is the node that
connects to the rest of the network, having also a in its neighborhood (i.e.,
a € Dy). Atround t = 1, node a is chosen to execute the algorithm, and at
that time the flows of all considered nodes are equal to 0, consequently their
estimates are equal to their input values. In this case, the average computed
by a is a, = 2, which will be set as the new estimate at all neighbors that
successfully receive the respective flow update message, and those that fail to
receive the message will keep their state unchanged. This scenario is depicted
by Figure where it is visible the effect of message loss (from node a to
nodes b and d, at the bottom-right) when compared with a situation without
loss (at the bottom-left). In order to facilitate the visualization, the estimates
are represented by a bar graph with the area of the bars proportional to the
estimate value of each node, and flows are depicted by another plot with di-
rected arrows of length equivalent to each flow value (to help visualize the
amount added/removed to the initial value, yielding the current node esti-
mates). Figure clearly illustrates the introduction of a variance reduction
error due to the loss of the flow update message from a to b and d, breaking

the skew symmetry between node a and its neighbors b and d.

Now, let’s consider that in the next round ¢ + 1 node ¢ or one of its neighbors (i.e.,

s € SV I € L) are chosen to execute the algorithm, and analyze what happens:

e [i is chosen] = the new average a!'' is computed using the following estimate
values: for all nodes belonging to S the estimate will be equal to the average re-
sulting from the previous round (i.e., Vs € S, e’ = al, according to Lemma ;
for all nodes in £ their previous estimate ¢!~ is used (i.e., VI € L, ef = el ™),
since they did not receive the previous flow update message; node ¢ will use the

flows associated to each received estimate to yield its estimate (i.e., €, from line

86 5 — Flow Updating
Round 0 Initially 8°= (36 + k)/(n-1)
Estimates
(@ (b) (c) (d) (e)
4
3
2 H
1
scoLl 1 [1 -
b a

No Message Loss b

a
'ti;?:;id
~ 0%= (32 + K)/(n+1) 0

e
Estimates

r (@ (b)) (o)

il

Flows
f ct a

4 a

Ib¥d V.. ade ¥ce cd

Qi
. 1]
N2 0 —=N O-=DNw-hH
] 1 1
}

Round 1 /

i b a Message Loss
|)

| [}

i 1N

! e 70°=(42 +K)/(n-1)
i : Estimates

! + (@ (b (c) (d) (e

I 4 1

l 31

E fntnlinlls

I iziniz

: a=0 — -
! Py Flows

| 14

: oftot 2.t 2 T
! ;lb¥d .. ade ce cd

| 2

Figure 5.1: Example (non concurrent model) depicting the effect of message loss.

7 of Algorithm [2), which will likely be different from the one resulting from

the previous round (because outdated flow values will be used from elements of

L, although unchanged values will be used for members of §). More precisely,

considering the different flow values used by each set S and L, the estimate e

for node ¢ is given by:

t+1'

i

e = v+ Y F(i) + Y Fi(i)

seS

lel

5.2 — Correctness 87

The flows of nodes in S are correctly updated, then F,(i)" = —F;(s)". On the
other hand, the flows of nodes in £ fail to be updated, and F;(i)" = Fy(i)"!
Since, it assumed that until round £ no message has been lost, then at round
t —1, Fi(i)""! = —F;(1)""'. From these observations it follows that:

t+l’ Z F _ Zﬂ(l)tfl

seS lel

As the flows of nodes in .S result from the computation performed at line 10 of

Algorithm 2] then:
t+1/ _ Z(CL _ 61;—1)) _ Z Fi(l)t_l
seS lel
=D EE)T =Y RO —(Slai+) el
seS lel s€eS

According to the estimation function, line 13 of Algorithm [2}

et—H/ |S|G+Zt1

seS

Since no message is lost before round ¢, then e/ = e!™'. Then, from the av-
erage computatlon line 8 of Algonthm l we can derlve the expression e/~ +
st =|Plal — >, e7". Substituting the sum of the estimates of i and
all s € S in the above equatlon, we get:

et =[Plai =) et S]]

lel
=+ |Llai +[S|a; = Y et~ |S]a;
lel
—al+|Llal =) el (5.5)
lel

Recapitulating, the new average a“l will be computed using a} as the estimate
for all nodes s € S, the previous estimate e} ' for all nodes [€ £, and finally

the value given by Equation as the estimate 6t+1 of ¢. Therefore, the new

88

5 — Flow Updating

average will be:

t t+1/ t
tf+1 o Zses €s + ez’ + Zleﬁ el

Qa

L Id
_ S| ai + aj + | L] a — Zleﬁ ef_l + Zleﬁ ef
1P|
_ [Pl
P

7

In this case, the new average will be equal to the one computed in the previous
t+1

round (i.e., a; " = a!), and 7 will have another opportunity to transmit the same
update messages to all its neighbors. Moreover, if all nodes that previously failed
to receive the message succeed this time, then the global state will be equal to the
one found if no message have been lost. In this last situation, it is easy to observe
that the global variance varies (i.e., may decrease, 67, < 67_,) as if no message
has been lost, despite the previous perturbation in the variance (i.e., possible
increase, 67 > 62). In this specific case, message loss has only delayed the

convergence. Example [5.3|illustrated a concrete example of this situation.

Example 5.3. This example starts from the situation of message loss consid-
ered by Example (i.e., a is chosen to execute the algorithm and the flow
update messages to b and d are lost), and «a is again chosen to execute the
algorithm in the next round. Figure[5.2]closely depicts the performed compu-
tation, separating the estimate and flow values used as input of the averaging
process (left) from the resulting values at the end of the round (right). In this
situation, a gets outdated estimates and corresponding flows from b and d,
which will be responsible for the modification of its estimate, and the values
associated to c are unchanged (values from c are equal to the ones held at a).
The flows between (a,b), and (a, d) will became skew symmetric, reducing
the estimate used by a (to compute the average) by an amount (—2) which is
equal to the sum of the estimation error resulting from the previous message
loss at node b and d (1 + 1). Therefore, the computed average will be equal
to the previous one, since the participants and sum of their estimates are the
same. The variance reduction error introduced by the previous message loss

at b and d is nullified, if now those nodes successfully receive the flow up-

5.2 — Correctness

&9

Round 2

Beginning of Round
(get estimates/flows)

1

_ Estimates
T @ (b) () (d) (e)
4 1
34
21
a=0+— L1 [|
D Flows
14
o> 1
14) ..ade ce cd
ol

(a) is chosen

End of Round

~ 0%= (32 + k)/(n-1)
Estimates

nnoill

Figure 5.2: Example (non concurrent model) where the same node is chosen to execute the
algorithm after message loss.

date message. Note that, no flow update message will be required toward c

(message can be lost), as the newly computed average is equal to its previous

estimate (successfully updated in the previous round).

e [l € Lis chosen] = as it is assumed that the node that executes the algorithm is

able to get the estimate and correspondent flow from all its neighbors, then node

[will get the lost data from the previously chosen node 7. It will be as if [has

successfully received the flow update message from ¢, and the variance reduction

error corresponding to this link (7,7) will be nullified. A concrete situation is
showed by Example Note that other members of £ (neighbors of /) may
participate, but the variance reduction error introduced by them for losing the

message from 7 will be maintained. This is verified because the execution of the

algorithm by [does not change the flow values between those nodes and ¢, as

flows are associated to links (i.e., at each node separated flow variables are used

for each neighbor).

Example 5.4. This example starts from the situation of message loss consid-

ered by Example [5.2] (i.e., a is chosen to execute the algorithm and the flow

90

5 — Flow Updating

Round 2

1@

(b

)

Beginning of Round
(get estimates/flows)

Estimates

!

el

111
a=0L L1

2 Flows

-1 4

0 Tc a 1

1__b¢ ..ade 'ce cd
ol

(d) is chosen b
!) 2 End of Round
: 1 C d
l
! O € \ 9= (29.25 + K)/(n-1)
| _ Estimates
: 1@ B © @ (@
: 4T £
! 3+ peen 13
I 241
|
inAnan
|::> a=0 —_— -=
| 2 Flows
|
BN 1S LSS PR
! ;__b d .ade l e cl

Figure 5.3: Example (non concurrent model) where a node that fails to receive a message from
the previous round is chosen to execute the algorithm.

update messages to b and d are lost), and d € L is chosen to execute the al-

gorithm in the next round. Figure [5.3]depicts the execution of the algorithm,

separating the estimate and flow values used as input of the averaging process

from the resulting values (at the end of the round). In this case, d gets the

estimate and flows that it was supposed to receive in the previous round, and

the execution will proceed as if the message from a has not been lost. Notice

that only the variance reduction error originated by the message lost in the

link between a and d can be nullified (if the flow update message is success-

fully delivered), because only the skew symmetry of this link is restored at

the beginning of the round.

e [s € S is chosen] = it is clear that, if none of the neighbors of s has previ-

ously lost the flow update message (independently from having participated in

the previous round), then they will contribute to the variance reduction accord-

ing to Lemma|[5.4] assuming that all will successfully receive the respective flow

update message. However, the amount of variance reduction error added by pre-

vious message loss will not be changed and still be part of the global variance.

The same happens if some node [belonging to £ participates in the algorithm,

5.2 — Correctness 91

Round 2 b (c) is chosen b
Beginning of Round ! | 2 End of Round
(get estimates/flows) / q ! ' . d
|
|
e ! O € \ 9= (39.25 + k)/(n-1)
_ Estimates | _ Estimates
|
T @ (b) () (d) (e) l T @ (b) (c) (d) (e)
41 : 41
34 ! 34 e
2+ ! 2+
a=0 -- a=o0 --
2T Flows : 2 Flows
|
14 | 14
oltct a 4 a oltet a ta o
1lbvd .. ade ce cd : 11b d ..ade ce ld
2l 2l

Figure 5.4: Example (non concurrent model) where a node that successfully received a message
from the previous round is chosen to execute the algorithm.

because s will only use and update the flow associated to the link between them
and not between ¢ and [. Example illustrates a specific situation. Note that,
an identical behavior is observed if another node j that did not participate in the
previous round of the algorithm (i.e., j € V\P) is now chosen, see Figure

Example 5.5. This example starts from the situation of message loss consid-
ered by Example (i.e., a is chosen to execute the algorithm and the flow
update messages to b and d are lost), choosing ¢ € S to execute the algorithm
in the next round. Figure [5.4] depicts the execution of the algorithm, sepa-
rating the estimate and flow values used at the beginning of the round (left)
from the resulting values at the end of the round (right). In this example, ¢
gets the estimate and flows from its neighbors, and the estimate c uses for the
averaging process is not changed (corresponding to the one at the end of the
previous rounds). A new average is computed and if all flow update messages
are successfully delivered, then all participants will produce the new estimate
and the global variance will decrease (compared to its previous value). How-
ever, the same variance reduction error is still present, since no action is taken

between nodes on links where a message was previously lost (i.e., flow values

92 5 — Flow Updating

Round 2 b (e) is chosen b
Beginning of Round ! [2 End of Round
(get estimates/flows) . q ! ' . d
|
|
€ : 0 e “0%=40+k
_ Estimates | _ Estimates
|
T @ (b)) (c) (d) (e) . T @ (b) (c) (d) (e)
41 : 41
31 ! 31 =
2+ ! 2+
fizinie izinit
a=0 -- a=o0 --
2T Flows : 2 Flows
|
-1+ | 14
oltet a 4 a0 oItct a_tta o
1__b¢dade ce cd : 1__b¢dade ce ‘d
2l 2l

Figure 5.5: Example (non concurrent model) where a node that did not participate in the pre-
vious round is chosen to execute the algorithm.

associated to (a,b) and (a, d) are unchanged). Note that, the same behavior
is observed if node e is chosen to execute the algorithm, which did not partic-
ipate in the previous round, see Figure[5.5] The variance reduction error will
only be reduced if a node belonging to a link where a previous message loss
has occurred is chosen to execute the algorithm, and the flow update message
is successfully delivered on this link (restoring the flow symmetry). This last
situation can be observed in Figure where node d is chosen to execute the

algorithm in a third round, after choosing node e in the previous one.

In summary, a message loss introduces a (temporary) variance reduction error that
in a sense is associated to the link where it occurred. At each faulty link, the value
of the reduction error depends only on the difference between the previous estimate
at the node that failed to receive the update message and the estimate (group average)
that it was supposed to produce (more precisely, the difference between the distance
of those estimates to the correct average, i.e. (al — a)? — (e}™' — a)?). Atatime ¢, the
sum of the reduction errors at all links will yield the variance reduction error 6 given
by Lemma From the performed analysis, we observe that the error introduced at
each faulty link is nullified by a successful delivery of a flow update message, resulting

from the round execution of the algorithm by any of the two nodes at the extremities

5.2 — Correctness 93

Round 3 b (d) is chosen b
Beginning of Round | | , 2 End of Round
(get estimates/flows) ' . q ! ‘ q
|
|
e ! O e ~ 0%=34 + k
_ Estimates | _ Estimates
|
T @ (b) (c) (d) (e) . T @ (b) (c) (d) (e)
4T e : 4T A
3+ e | 3T e
24 — ! 24
a=0 - - - - -- a=0 L 1 -
2T Flows ' D Flows
|
14 | 14
Mteta e e oJtel o tdta,, oa
1__b$,ade ce *d : 1__b¢d ...a elce *
21 21

Figure 5.6: Example (non concurrent model) where the node chosen to execute the algorithm
belongs to a link where a message was previously lost.

of the concerned link. Furthermore, it was also observed that, even without nullifying
any component of the variance reduction error, other round executions which involved
the successful delivery of new flow updates (with an estimate different from the previ-
ous one) will contribute to the progress of the algorithm (i.e., decrease the variance).
Therefore, if it is given an opportunity to all nodes to execute the algorithm and suc-
cessfully transmit flow update messages, keeping all nodes in the network reachable
(i.e., the same node is not always chosen to execute the algorithm, and the messages
in the same link are not always lost), then the estimate at all nodes will converge to the

network wide average.

In conclusion, message loss does no affect the correctness of the algorithm, only
delaying the convergence of the algorithm to the global average, as long as some fair-
ness is ensured (e.g., no communication channel fails forever, infinite number of mes-
sage are successfully transmitted after message loss, and all nodes are chosen to exe-
cute the algorithm an infinitely many times). As the estimates at all nodes converge to
the same value along time, the difference between them and the distance to the global
average decreases, and so does the variance reduction error due to message loss, which

tends to zero.

94 5 — Flow Updating

5.2.3 Concurrent Model (with non overlapping groups)

In the previous section, the correctness of Flow Updating (i.e., convergence at all nodes
to the global average) has been proven on a (simple) non concurrent model. However,
the previous model is not practical and is slow, as only one node exclusively executes
the algorithm at each round. Therefore, in this section the correctness of the algorithm
is analyzed considering the concurrent execution of FU. In particular, the convergence
at all nodes to the correct average is proved, based on the previous reasoning, as long
as a mutual exclusion condition is met (to avoid concurrent flow updates on the same
edge).

It is quite obvious that it will be advantageous to admit the concurrent execution of
the algorithm by several distinct nodes at the same time. Then, consider that each in-
dividual execution involves the participation of a set of nodes P;, generally composed
by the node i that effectively executes the algorithm and some of its neighbors (i.e.,
Vijer, J € D;), forming what will be referred as an averaging group. At this point, for
a matter of simplicity, let’s assume that each node can only be involved in one iteration
at the same time (i.e., Viep, @ ¢ Py for j # k), in other words the averaging groups
do not overlap (i.e., P; N P, = {}, for j # k). In fact, in these settings the concurrent
execution of FU by g non overlapping groups at the same round ¢, each one executing
a single instance led by different nodes, will yield the same result as the consecutive
execution of the algorithm by each one of those groups along g successive rounds.
Therefore, guaranteeing at each round that the averaging groups do not overlap is a
sufficient condition to maintain the correctness of FU (convergence). In this case, the
previous correctness analysis holds, and the variance reduction observed at a single
round in the non concurrent model (Equation can be significantly improved. Now,
corresponding to the sum of the variance reductions resulting from the execution of
the algorithm by each concurrent group, where ¢ is the number of (non overlapping)

groups, and P is the set of participants belonging to each group k:

d 1
07 — 07, = Z(—m >, (et - 63-_1)2) (5.6)

k=1 §,jEP,i<]

Equation [5.6]suggests that the variance reduction can be increased by choosing the
set of participants that have estimates with more distant values, as already pointed in
the previous section. Consequently, it appears advantageous for any averaging algo-

rithm to consider this property, when deciding which nodes should be included in each

5.2 — Correctness 95

group. A version of FU that takes advantage of this observation is proposed in Section
[5.3.1] which is called Flow Updating with Preferential Grouping (FUPG).

In order to analyze the correctness of FU on a concurrent execution model, a
slightly modified version of the previous algorithm is considered, which is detailed
by Algorithm 3] This algorithm also abstracts the communication between nodes, and
the averaging step is represented by the procedure averaging(P;) (line 12-16) which
corresponds to the core of Algorithm [2| Here, the main difference is that instead of
an implicit fixed group of participants, always composed by all the neighbors of the
node that executes the algorithm, now the set of participants is taken as a parameter,
since it can change. It is also assumed that each node can only participate in a single
instance of the algorithm at each round, so that the averaging groups do not overlap.
This means that different neighbors of a specific node can participate in distinct aver-
aging groups at the same time, although each are constrained to participate in a singe
group at each round. In practice this can be easily implemented, for instance: each
node can simply choose a leader (i.e., one of its neighbor or itself) to send its estimate
at each round, and participate in the iteration leaded by the chosen node; nodes that
receive at least one estimate execute the algorithm (i.e., averaging step), being set as

leader of the source node. This practicality is regarded by Algorithm 3] (line 6-11).

The correctness of this algorithm can be proved using basically the same reasoning
made for Algorithm [2] (see Section [5.2.2)), but considering that the group of partici-
pants in each averaging step can vary (instead of always including all neighbors in
each iteration). More specifically, it can be observed that, according to the previous
assumptions, the concurrent execution of several instances of FU at distinct averag-
ing groups in the same round ends up to be equivalent to the sequential execution of
each individual group along consecutive rounds (i.e., yields the same result). Consid-
ering this equivalence between concurrent executions and sequential non concurrent
executions, the correctness of FU holds, but some technicalities must be taken into
consideration. In particular, a mutual exclusion condition between leaders must be

met and some lemmas must be rewritten to match the considered model.

First, it easy to show that the leader assignment scheme used in Algorithm 3| guar-

anties the assumption that averaging groups do not overlap.

Lemma 5.8 (Non-Overlapping Averaging Groups). At any round t > 0, for any two
different sets of nodes, 77; and P}, with j # k, that participate in the algorithm at the

96

5 — Flow Updating

11

12

13

14
15
16

17

18

inputs:
v;, value to average
D;, set of known neighbors

state variables:
flows: initially, F; = {j < 0| j € D;}
leader: initially, [; = ¢

o

Igorithm:
if P; # {} then
| averaging(P;)
| li = decideLeader(D; U i)

veraging(P;):
>_¢i
@ — JEP;
]
forall the j € P;\{i} do
L Fi(j) = Fi(J) + (a; — ¢))
Fj(i) = —F(j)

estimation function:

€ = v; — ZE(])

J€D;

V]

Algorithm 3: Flow Updating algorithm, considering concurrent executions at dis-

tinct nodes, and abstracting message exchanges.

same round:

PinPr={}

Proof. Suppose there is an element i that belongs to both P} and 7. From the defini-

tion of averaging groups (line 8 of Algorithm , fori € 795‘: we have [; = 7, and for

i € Pl we have [; = k. But this contradicts j # k.

]

Now, let’s examine the skew symmetry property of the algorithm, which is impor-

tant to guaranty the conservation of the global mass of the system, and it is a basilar

property used in the proof of other lemmas. In this particular case, the skew symmetry

requires an additional condition to hold, namely that no two nodes choose each other

as leader.

5.2 — Correctness 97

Property 5.1 (Mutual Exclusion).
Viep, li =7 = 1; #1i

Property [5.1] can be ensured in practice by simple local decisions at each node, e.g.
setting itself as leader when a conflict is detected (i.e., an estimate is received from the

chosen leader), although restraining the participation of the nodes in the desired group

(see Section[5.3.1).

Lemma 5.9 (Rewritten Skew Symmetry). At any round, for all i € V:

Property[5.1|implies F;(j) = —F};(i),Vjep,

Proof. Each node 7 only writes its own flow variables F;(j), and those of other neigh-
bors F;(i), for j € P; (line 15-16 of Algorithm[3). The only case when F;(j) # —F;(i)
is if two neighbors 7 and j are both leaders, with j € P; and i € P;. Therefore, if Prop-
erty [5.1]holds, then F;(j) = —Fj(i). O

Unlike in the previous non concurrent model where the node that executes the
averaging process always participates in it (including its estimate), in this case the node
that leads the averaging process may not participate in it (if it chooses another leader).
Therefore, in order to prove the flow adjustment lemma, in particular considering that
a node does not participate in the group it leads, the notion of flow conservation was
introduced. Basically, if the node is not included, flow conservation establish that the
sum of the flows of all neighbors participating in an averaging process is maintained,

not affecting the estimate of the executing node.

Lemma 5.10 (Flow Conservation). At any round t > 0, considering the set of partici-

pants P! in the averaging process executed by a node i at round t, and that i ¢ P, we

Y OEG) = > EGT.

JEPI{i} JEPI{i}

have:

Proof. At any round ¢ > 0, each node i calculates the average of the set of nodes P}
which elected it, and computes the flow values for them to produce the new average
as estimate (line 12-16 of Algorithm [3). The flow values at the each leader are set
according to line 15 of Algorithm ie. Fi(j) = Fi(j)"" 4 (al —€}71), for all partic-

ipants except the leader itself (i.e., fo\{,»}, line 14). Recall that, at a given round, each

98 5 — Flow Updating

node only chooses one leader, and two neighbors can not choose each other (Property
[5.1), guarantying that no concurrent flow updates occur on the same link. Therefore,

considering the sum of all flows updated at node at round ¢, we get:

> R0 = X (RO o)

jEPI\{i} jEPA{i}
= Y EGT PN al -) et
JEPA\{i} JEPI{i}

From the average computation (line 13), and assuming that 7 does not participate (not
elected itself), i.e. i ¢ P}, we derive [P{\{i} a; = > cpn 1y e/~!. Then, substituting
in the above expression the result follows. [

Now, it is possible to show that the flow adjustment property is verified indepen-

dently from the inclusion of the leader in the averaging group.

Lemma 5.11 (Rewritten Flow Adjustment). At the end of any roundt > 0, considering
the estimate e§ of all participants P! in the averaging process executed by a node i,
independently if i € P! ori ¢ P:

t t
Viept: €j = a;
Proof. At each round ¢, only leaders can update flows, and the estimate of each node

can only change as a result those updates.

First, let’s determine the estimate of a node j that chooses a node ¢ different from
itself as leader (i.e., j € P}). Notice that, j can also be chosen as leader by a subset
of its neighbors 7?;\{ j}, except from i according to the condition set by Property
Therefore, the estimate of j is obtained from the flow update performed by its leader ¢,
the flows updated by itself for its averaging group P;\{j, i}, and the unchanged flows
of its remaining neighbors D;\P; U {i}. Consequently, separating those flows in the

estimation function (line 18 of Algorithm[3)), we get:

ef = v; — (i)' — Z F(k)" — Z Fy(1)!

keP\ {3} leD;\Piu{i}

5.2 — Correctness 99

Concerning the flow update performed by i, from Lemma|5.9|— F}; (i)' = F;(j)" and as
FE(j) = F(j)"" + (al — €57 (line 15), replacing F}(i)" we obtain:

(2

R R D DR OIS D U]
kEPH\ (i} 1€D;\PiU{i}

Given that: according to Lemma F,(j)"™' = —F;(i)""%; as j is not included
in the averaging process it executes, from Lemma the sum of the flow of its
participants is conserved, i.e. Zke’l);\{j,i} Fi(k)t = Zkep}\{j,i} F(k)t1
flows of the neighbors that have not elected or been elected by j are unchanged,

; since the

VlE'D].\’pJf,U{Z‘}Fj(l)t = F;(I)*"!. Then, replacing the flows attending to these obser-

vations, we get:

=y RO -t YRR Y RO

keP\ {3} 1eD;\PLU{i}

SEGT - Y BRT - Y RO d e

keP\{4,i} 1€D;\PiU{d}

=0

Taking into consideration the initial flow separation, the estimate of j at round £ — 1 is
t—1

e, =v;— F(i) - Zkep;.\{j,i} Fy(k)' =t = ZzeDj\P;u{i} F(1)*1, then:

Now, let’s consider the estimate of a node ¢ that chose itself as leader. In this case,
following the previous reasoning, i.e. separating the flows to the participating nodes

from those of the remaining neighbors, the estimate of the leader 7 is given by:

JEPI\{i} keD;\ P!

Since the flow of all participating neighbors 73; are computed by i from F;(j)' =
F(5) + (af - ej._l) (line 15), then:

(2

100 5 — Flow Updating

=v—) RO -Pi-1di+ Y et = Y Rk

JEPI{i} JEPH\{i} keD\P}

Attending that the flows of the neighbors that did not elected i are unchanged, i.e.
Vieonpt Fi(k)' = Fi(k), we get

el =v; — Z F(H) — Z Fl-(k:)t*l—‘Pf—Haf%— Z eéfl

JEPI\{i} keD;\P} JE€Pi}
=el™t —|P; — 1] al + Z ez-_l
JEPi}

Finally, from the average computation (line 13), including the estimate of ¢, we derive

[Pt al = Ej P\ L) ez’l + ef’l. Then, substituting the sum of estimates, we obtain:

t__ t| .t t t

t
= a,
]

Taking into consideration the previously revised properties, it is straightforward
to demonstrate that the variance reduction of the non concurrent model (Lemma
holds for each averaging group of the concurrent model. More specifically, the total
variance reduction at each round is given by Equation [5.6] Consequently, the con-
vergence of the estimates at all nodes to the global average also holds in this setting
(Lemma [5.5)), and the proof can be performed by the same reasoning used in the non
concurrent model. This proves the correctness of FU in the considered concurrent
model without faults. Next, the impact of message loss considering concurrent execu-
tions of FU is discussed.

Note that, if we consider that in each round all nodes choose themselves and all
its neighbors as leaders, the averaging groups will overlap, and we will get a fully
concurrent version of the algorithm similar to the one initially detailed at the beginning
of this chapter (i.e., Algorithm [I). However, as already explained at the start of this
section, we were unable to reach a correctness proof in a fully concurrent setting,
and leave this problem for future work. Nevertheless, all empirical evaluations have
confirmed the correctness of the main FU algorithm, exhibiting the best performance,

especially in terms of robustness (see Chapter|/).

5.2 — Correctness 101

5.2.3.1 Message Loss

Previously, in Section the effect of message loss on the execution of FU in non
concurrent settings was explained in detail. However a strong assumption was made
on the acquisition of estimates from neighbors, assuming that nodes that execute the
algorithm are always able to get the estimates of all its neighbors. In others words,
messages to get estimates were never lost, only messages to update flows. Now, this
assumption is relaxed, and this kind of message can also be lost, which is quite realistic.
In particular, it is assumed that estimates and flows are both carried in a single type of
message, sent by each node at the end of the algorithm (immediately after line 11 of
Algorithm E[) Moreover, besides estimates and flows, the information of the chosen
leader is also sent in the same message. Taking this into consideration, let’s analyze the
impact of message loss on the correctness of FU in the defined concurrent execution

model.

Notice that the information of chosen leaders is used at the beginning of the al-
gorithm (line 8) for each node to decide if it will execute the averaging step (when
elected by at least one of its neighbors), i.e. to set the participants of its averaging
group. Therefore, if some node fails to receive the information that it has been cho-
sen as leader, due to message loss, it might lose the opportunity to start an averaging
step or execute it with less participants (including only neighbors from which it has
successfully receive the message in the previous round). As estimates are sent in the
same message as the leader information, the estimates of all participants will always be
available at the leader. Consequently, at this level message loss only induces a loss of
opportunity for some neighbors to participate in the leader averaging process. Clearly,
this loss of opportunity only reduces the total number of participants (i.e size and num-
ber of averaging groups) at each round, decreasing the variance reduction (Equation
[5.6), without impacting the correctness (only delaying convergence).

While on one hand, the lost of the estimate (and chosen leader) will not introduce
any error, the same cannot be said in terms of flows. In fact, among the nodes that
participate in a given round, i.e. those that successfully delivered their messages at
the end of the previous round, the effect of message loss in terms of flow updates
(line 16) is similar to the one previously described in Section [5.2.2.1 Namely, at the
flow level, message loss might introduce a variance reduction error (see Definition[5.2]
and Lemma [5.7). However, this error is immediately nullified at each link upon the

successful reception of a further message, without compromising the convergence of

102 5 — Flow Updating

the algorithm to the correct global average. Therefore, as in the non concurrent model,
in this settings message loss does not impact the correctness of FU, as long as some

fairness is met.

5.3 Variations and Improvements

In this section, some variations and improvements to the original Flow Updating algo-
rithm are described. Namely, a version that implements the previous concurrent algo-
rithm is proposed, which is called Flow Updating with Preferential Grouping (FUPG).
Additionally, some practical extensions to the initial algorithm are also introduced, in

order to address termination and the execution of FU on asynchronous settings.

5.3.1 Flow Updating with Preferential Grouping

Attending to the observations of Section a new version of FU was designed:
Flow Updating with Preferential Grouping (FUPG). The algorithm can be simply seen
as an implementation of the previously described Algorithm[3]in a synchronous model,
where nodes decide to participate in averaging groups according to some heuristic
that tries to maximize the variance reduction of each averaging process. To this end,
the concept of reduction potential is introduced, which is a measure of the possible
variance reduction achieved by including a specific set of nodes in the averaging step.
This value is computed at each round by every node, and used to set the participants
of each averaging group in the next round.

FUPG is detailed by Algorithm 4, This algorithm creates averaging groups that
intend to maximize the resulting variance reduction, using two main functions: com-
puteRP (line 35), and decideLeader (line 34). The first function simply computes a
value representing the expected variance reduction (i.e., reduction potential, line 8) of
a node, that will be used by the second function (in the next round) to decide in which
group the node will participate, more precisely to choose a leader. More importantly,
the algorithm must guaranty mutual exclusion on the access to flows over the same
link (between chosen leaders), i.e., two neighbors cannot choose each other as leader
in the same round (Property [5.1) in order to ensure the skew symmetry of flows of the
participants of an averaging group (see Lemma/5.9).

This property is ensured at each node ¢ simply by checking if the chosen leader ;

is included in the set of participants P (i.e., nodes that have chosen ¢ as leader, line

5.3 — Variations and Improvements 103
1 inputs:
2 v;, value to average
3| D;, set of known neighbors
4 state variables:
5 flows: initially, F; = {j —0]j €D}
6 participants: 1n1t1ally, ={}
7 leader in the next round initially, [; = ¢
8 | reduction potential: initially, r; = it RP()
9 | estimates: initially, £; = {j = 0| j € D;}
10 message-generation function:
11 msgi(ﬂ7 -Pia li) Ty E’L)]) = (Z7 fv eSt<Ui7 E)a li7 Ti)
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33

34
35
36

37
38

with — Fi(j) ifjer
1 otherwise

state-transition function:
transi(FZ—,]Di, li,’l“i, Ei, M) (F/ Pl 7 E/) with

i Y

F={j— f!(j from)eMiNf#1}U

(= fl10L) eMin(, f) e FU

G F LG o) g Min G, f) € F)
E={j—e|(e--)€MAN(-)E P}V

{jHey(a - 7*7*>€M/\(7)EPiA<j7€)€Ei}U

{jelU,oo) g MiA(J,e) € BE; NG #i} Ui est(v;, F)}
P:{j|(j,,,,,l,)eMi/\l:Z}
=1
if{ £i ANl € P then /* ensure Property x/

if id(i) > id(l) then

| P-P\()

else

P=PuU{i}
|

if P+ {} then
a=>ep EG)/|P]
foreach j € P\{i} do
LF@)=F@%~a—E@»
E(j) =a

if [# i then [, = i else I, = decideLeader(M;,r;, P)
ri = compute RP(E, M;, 1)
P =FP =P,E=FE

estimation function:

| est(v, F)=v—=3A{f|(.f)eF}

Algorithm 4: Flow Updating with Preferential Grouping algorithm.

104 5 — Flow Updating

21) and removing the leader from the set P in that case (line 23-28). More precisely,
in this case upon detection of a leader conflict, the leader is removed if it has a lower
ID that the node itself (lines 24-25) or set to the node itself otherwise (lines 26-28),
allowing both of them to participate in the same averaging process, performed by one
of the leader. In alternative, both could remove the other from the set of participants
and set the leader to themselves, but then none will participate in the averaging step
of the other at that time. Note that no global UID is required, only local identifiers to
distinguish neighbors (that can be totally ordered).

Nevertheless, in this case, satisfying Property is not enough to ensure the cor-
rectness of the algorithm, in particular to ensure that the estimates used as input in the
next averaging group correspond to the ones resulting from the previous group average
(after the flow update). This is due to the fact that, unlike in the previous model where
each averaging group is created and the resulting flows updated in the same round,
in this case the group averaging process may span two rounds: one round, for the
leader to receive the estimates from participants, compute the new average and update
its flows, and another round, for the leader to send the resulting flow updates to the
participants). In this case, except the leader that locally updates its flows in the same
round it performs the group averaging, each participant will only produce the estimate
resulting from the group average upon the reception of the flow update from the leader
in the next round. Therefore, participants must wait for the flow update from their
leader, before choosing and sending their estimates to a new one. In order to ensure
this consistency between estimates, after choosing a leader different from itself, a node
always chooses itself as leader (line 34), so that it receives the flow update from the

previous leader and can start using the updated estimate.

At each node 7, the essence of this algorithm consist of the computation of the
average of the estimates of the nodes (neighbors and self) that chose 7 as leader, and
corresponding flow computation (lines 21-32). The new computed flows are sent in
the next round only to the corresponding set of participants P; (line 12), i.e., L is sent
otherwise. At the beginning of each round, the flows F’ are updated with the skew
symmetric value received from the previous leader (lines 15-17). In addition to the
flows F;, set of participants P;, leader /;, and reduction potential r;, the most recent
estimates of all neighbors F; is also keep in the state of each node. This is used for two
main purposes. First and more important, it holds the updated estimates of the partic-

ipants in the current averaging group leaded by 7. Second, it is used by the heuristics

5.3 — Variations and Improvements 105

defined to choose a new leader, more specifically to compute the reduction potential.

Next, some of the heuristics defined to create averaging groups are described.

5.3.1.1 Formation of Averaging Groups

Here, two heuristics that can be used for the creation of averaging groups at each round
are described. The proposed heuristics take advantage of the previous theoretical anal-
ysis of the variance reduction, trying to maximize its value (see Equation [5.6) at each
round in a decentralized way. More precisely, these heuristics define the way leaders
are chosen, i.e., the implementation of the functions decideLeader and computeRP of
Algorithm [4] (lines 34-35).

The first heuristic is based on the computation of the expected reduction poten-
tial at each node (derived from equation [5.4)), as if it was chosen as leader by all its
neighbors. The node with the higher value will be the one that provides the higher
variance reduction if chosen by all its neighbors. The key functions of this heuristic
are detailed by Algorithm 5] In this case, the reduction potential corresponds directly
to a proportion of the expected variance reduction, which is computed by the function
computeRP (line 7-8). The function decideLeader uses the reduction potentials (line
4) of the node and its neighbors (received from messages) to choose the one with the
higher value as leader (line 5). If the maximum value is shared by several nodes, one
of them is randomly chosen as leader (line 6).

An alternative heuristic is proposed in Algorithm [0 which is also based on the
computation of the expected variance reduction considering the possible participation
of all neighbors. The main difference is that it tries to “guess” the average resulting
from the leader and anticipate its use to compute the expected variance reduction. In
this case, at each node the reduction potential is composed by a pair of values: the
expected average (line 12) and variance reduction (line 13). In particular, at each node
the expected average of the leader (if different from self) is used as input of the com-
putation of the reduction potential, instead of using the estimate of the leader and the
node itself (line 11). The core of the leader decision function is similar to the previous
one, i.e., the node with the higher reduction potential is chosen. Nevertheless, some
changes are introduced with the intent to improve the performance of the algorithm.
Namely, if a node 7 has chosen itself as leader and has been chosen by at least one of
its neighbors 7 in the previous round, then it will not consider itself as a candidate to

become leader in the current round, i.e., its potential reduction data will be removed

106

5 — Flow Updating

N -

initRP():
| return 0
decideLeader(M, rp,)):
R={j=r|(---r)eMPU{(irp)}

C={jl(,m e RAm=max({r | (,r) € R})}
return random/(C)

computeRP(F, _):

1
retumEI > (E() - E(k))
(4,),(k,)€E
i<k

Algorithm 5: Functions used to decide the leader and compute the reduction poten-
tial, relying on the expected variance reduction by including all neighbors.

1

[

11

12

13

14

initRP():
| return (0,0)

decideLeader ()M, rp, P):

R={j—=r|(,--r)eM}uU{(irp)}
if |P| > 1 then /% 1€ P because ;=1 */
| R=R\{(,)}

C={j1G.(m,) € Ram=max({r | (,(r,)) € R})}
return random(C)

computeRP(E, M, [):
R={j—=r|{,~--r)€MU{(irp)}

/+ snd() takes the second element from a pair =/

E(j) = {Snd(R(l)) it =ivi=Onl#i

E(y) otherwise
a= (%3{6 | (e) e B}/ |E]
c= |E" Z (E(j)/_E<k)l)2
(j,f)vj(’za’;)GE’

return (c, a)

Algorithm 6: Functions used to decide the leader and compute the reduction poten-
tial, relying on the leader average expectation and variance reduction including all
neighbors.

5.3 — Variations and Improvements 107

from the list of candidates (lines 5-6). This intends to provide an opportunity for node
1 to participate at its turn in the averaging process of one of its neighbors j (that will
set itself as leader).

The performance of the algorithm using these different heuristics was evaluated,
and the results can be found in Section Other heuristics could be defined to set
the leader of each node, e.g., random assignment of a leader, but from the performed
experiments better results were always obtained when using heuristics that attempt to

maximize the variance reduction.

5.3.2 Termination/Quiescence

Termination detection is an important feature on the design of most distributed algo-
rithms, preventing them from running forever and spending unnecessary resources.
This is the case of Flow Updating, which will run forever if no stoping criteria is
defined, infinitely converging toward the correct result. Therefore, in this section a
simple strategy is proposed, in order to avoid FU from sending messages forever and
waste unnecessary resources upon reaching a defined level of accuracy.

FU can be applied in two main operation modes: on-demand mode, one-time ex-
ecution in response of an explicit aggregation query; monitoring mode, continuous
execution providing an updated estimate at all nodes (e.g., piggybacked to other pro-
tocols). In either of these modes, a stopping condition is required after reaching a
given accuracy: in the on-demand mode to terminate the execution of the algorithm
and report the result to the aggregation query; in the monitoring mode to enter in a
quiescence state, avoiding the transmission of unnecessary messages, only reacting to
dynamic changes (i.e., nodes arriving/leaving and change of the input values).

In order to implement termination/quiescence, a straightforward strategy was de-
fined, relying only on the local data available at each node. The termination detection
scheme is simply based on the computation of the difference between two consecutive
estimates, and verification if it has reach a predefined threshold. In more detail, each
node 7 at the end of each averaging process computes the relative difference e} between
the current estimate ¢! and its previous one e! ™, given by:

- e — 6571 |

€ = .

€;

If the relative difference ¢! between estimates is smaller than a predefined threshold &,

108 5 — Flow Updating

i.e. €l < ¢, then FU stops sending messages to its neighbors, entering a quiescent state,
but continues to process all received messages. However, upon the reception of further
data from neighbors, it might happen that ¢! increases above the given threshold &, i.e.
et > &, and therefore node i starts sending messages again, leaving its quiescent state.
Since all nodes do not reach a result with a common accuracy at the same time, due to
the decentralized nature of the algorithm, an additional parameter cz was considered to
account the number of consecutive iterations in which €’ is smaller than the threshold
&. Therefore, the execution of the algorithm at each node only effectively terminates
or enters a quiescent state, after verifying that €} < ¢ during a predefined number c¢i of
consecutive iterations of the algorithm.

A detailed evaluation of the application of this termination detection strategy in
FU is provided in Section From the obtained results, it is possible to verify that it
suffices to wait a few rounds (e.g., ci = 1, cz = 2) to reach a good tradeoff between
message load and accuracy for the predefined threshold £. The use of an additional
threshold (to leave the quiescent state (with ¢ > &) was also examined, but no visible

advantages were obtained from its use; therefore, it is not considered.

5.3.3 Asynchrony

Up to now, it has been assumed that Flow Updating is executed in synchronous set-
tings, but synchronism is not required for the algorithm to work. In fact, FU was
designed to operate on realistic settings, namely dynamic and asynchronous networks
with message loss. Nevertheless, some simple modifications to the original algorithm
are required in order to operate in asynchronous settings, which are described in this
section. Note that synchrony can be implemented over asynchronous fault-free net-
works (see Chapter 16 of [90]), using a synchronizer.

In asynchronous settings, each transmitted message incurs an arbitrary delay and
no guaranty can be made on the time of its reception. Moreover, considering message
loss, no guaranty can even be made about its delivery. As message do not arrive at
a constant pace (like in round based models), the main issue is to determine when to
execute the averaging step of FU. After the reception of each message from a neighbor?
or wait for the reception of the messages from all neighbors? Due to possible message
loss, and in order to avoid nodes from waiting forever for a lost message, a timeout
must be set.

In fact, in order for FU to operate in asynchronous settings, a simple timeout strat-

5.3 — Variations and Improvements 109

egy is used, waiting for the reception of a message from all neighbors during a prede-
fined time 7 to execute the algorithm. More specifically, each node stores all messages
received from different neighbors in a buffer, one per neighbor, as an older message
is always replaced by the most recent one (assuming FIFO communication channels,
otherwise sequential message identifiers can be added), until one of two conditions is
met: a message from all neighbors is received, or the timeout 7 is reached. Then, an
iteration of FU (i.e., averaging step) is executed using the buffered data, a message
is sent to all neighbors with the resulting data (i.e., flows and estimate), the message
buffer is cleaned and the timeout 7 is reset.

An evaluation of the described strategy is available in Section [7.7| The results
obtained show that the performance of FU is affected by the defined timeout value,
depending on the distribution of the network message latencies. In particular, best
results are obtained when the timeout is set to more conservative values (but not too
conservative), i.e., with a value greater than the average message transmission time and

preferably close to the percentiles 95-99% of the distribution of the message latencies.

110 5 — Flow Updating

Chapter 6
Estimating Complex Aggregates

This chapter introduces a novel distributed algorithm based on Flow Updating to com-
pute “complex” aggregation functions, more precisely to estimate the Cumulative Dis-
tribution Function (CDF) of some system wide attribute. The base FU approach pre-
viously described is restricted to the computation of scalar aggregation functions (e.g.,
AVERAGE, COUNT, SUM). However, in some situations the use of a scalar value to
represent some global properties might be insufficient or even inadequate to direct the
execution of some distributed application, e.g., hiding meaningful outlier values from
a decision taking process. In many of those situations, the knowledge of the statistical
distribution of the concerned attribute can provide more useful and relevant informa-

tion, even if less accurate.

For example, consider some load balancing application that aims to distribute eq-
uitably the global load of a system. In this case, the knowledge of the total or average
load does not provide enough information to assess the distribution of the system load,
i.e. determine if some processing nodes are overloaded or idle. Even the computation
of the maximum and minimum is insufficient, although it allows the detection of a
difference in the global load distribution, as it does not provide information about the
number of processes at each load level. In this situation, an estimation of the statisti-
cal load distribution is required to provide the desired information and reveal outlier
values. Other examples can be found in the context of monitoring applications. For
instance, in WSN estimating the distribution of the monitored attribute can be very
useful to distinguish isolated sensor anomalies from the occurrence of a relevant event

characterized by a certain amount of abnormal values.

More specifically, the proposed algorithm allows the decentralized estimation of

111

112 6 — Estimating Complex Aggregates

the Cumulative Distribution Function (CDF) of a target attribute. A CDF can be char-
acterized by a set of interpolation points associated to the frequencies of the input
values less or equal than each point. More precisely, considering an input value z; at
each node i, the CDF of x can be approximated by a set of & pairs (s, e), where s is
an element in the vector § of interpolation points and e is the fraction of values less or
equal than s (i.e., e = |[{x; | z; < s}| /n). Considering a single pair of the CDF, it is
possible to estimate e through a distributed averaging algorithm. Namely, setting 1 as
the input value v; of each node ¢ that satisfies the condition x; < s and 0 otherwise,
then the estimate at all nodes will converge to the fraction of nodes that fulfills the
previous condition, as result of the execution of a distributed averaging algorithm such
as FU. The main idea of the proposed algorithm is based on this observation, and can

be seen as a parallel execution of several instances of FU, one for each pair of the CDF.

For short, this algorithm is referred as FUCDF, as its core is based on the applica-
tion of FU to estimate a CDF. The computation performed at each node 7 is detailed
by Algorithm [/} As can be observed, in essence the algorithm is identical to FU (see
Algorithm[T)), but applied to vectors instead of scalar values. Namely, the flows F; map
for each neighbor a vector of flows (one for each interpolation point), v; is now a state
vector set according to the input value x;, and the estimation function yields a vector

of estimates.

Additionally, a vector of interpolation points s; is defined to characterize the CDF.
At each node, the interpolation vector s; is set with equidistant values between the
global minimum and maximum, with a maximum size defined by the input parameter
k. Initially, the vector s; is set with a single value (i.e., x;), and it is recomputed at
each iteration according to the known global maximum and minimum, by the function
computelP (line 19). Therefore, the MAX and MIN aggregation functions are also
computed along the execution of the algorithm: the current maz; and min; at each
node (line 9-10) are sent in all messages (line 12), and upon reception of new values
the maximum and minimum value are updated accordingly (line 17-18). This simple
scheme allows the determination of the global maximum/minimum at all nodes in d
rounds (without faults), where d is the diameter of the network graph. Thus, at the end
of d rounds the interpolation vector s; will be the same at all nodes, as all compute it

using the same function and input parameters.

All vectors involved in the execution of the algorithm are adjusted according to

the current 5;" by the function adjust, e.g., received flows (line 21-22) and estimates

113

1 inputs:
2 x;, value to aggregate
3 D;, set of neighbors given by failure detector
4 | Kk, number of interpolation points
5 state variables:
6 flows: initially, F; = {} /* flows vector for each neighbor */
7 base frequency vector: initially, v; = [1]
8 interpolation points: initially, $; = [z;]
9 maximum value: initially, max; = z;
0 | minimum value: initially, min; = x;
11 message-generation function:
12 msgi(Fi7 6;7 8_;7 max;, TTI,’Ln“j) = <Z7 *9_%7 max;, ming, f7 eSt(U;, E))’
F) if (j,-) € F;
13 with f if (j,-) €
otherwise
14 state-transition function:
15 trans; (F}, 03, §;, max;, ming, M;) = (F/, 0, 8, max}, min})
16 with
17 max}, = max({mazx | (_, -, max, _, _, _) € M;} Umax;)
18 man;, = min({min | (_, -, ., min, _,_) € M;} Umin,)
-/ / Yo !
19 s; = computel P(max}, min})
20 | v =setV(s))
21 F={j— adjust(fs NN jeDiAG,F . f.)eM}U
22 {j > adjust(f,$:,57) | j € DiA(j,————) & MiA(j, f) € F}
23 E = {i—est(v;,F)} U
24 {]Hadju‘ﬂxj _)78_;,) |j€Di/\(j7§7*7*7ﬂé})€Mi}U
25 {.7 = CLdJUSt(eSt(U“ E)’ S:ﬁ S_;,) | .] € D’L A (]a e Rt) 7) g Mz}

26 a= () 1{¢] (;,c?)EE})/|E| B
27 Fi’:{j»—>f+a_E*(j§|(j,f)€F}

28 estimation function:

» | est(@ F)=0-{f|(f)eF}

Algorithm 7: Algorithm to estimate CDF with Flow Updating (FUCDF).

(line 24-25). In particular, the vector of initial values v; is reset at each round by the
function setV (line 20), as the interpolation points might change due to an alteration
of the known maximum or minimum. These auxiliary functions are defined in more

detail in Algorithm[§] In order to keep the interface with the auxiliary functions simple

114 6 — Estimating Complex Aggregates

1 computelP(max, min):

2 if maxz = min then

3 | return [maz]

4 else

5 A = (max —min)/k
6 S(k) = mazx

7 for)=kF—1toldo
8 | 85 =S5 — A
9 | return s

10 setV(s):

11 for j =1to k do

12 if z; < §(j) then

13 ‘ ﬁ(j) =1

14 else

15 L 17(]) =0

16 | return U

17 adjust(u, 7, 5):

18 foreach s € sdo

19 c=max({rer|r <s})
20 Us) = Ue)

21 | return U

Algorithm 8: Auxiliary functions used in the FUCDF algorithm.

and compact, it is assumed that they can access the inputs of the main algorithm (i.e.,
k and x;). The function setV simply sets each element of the vector v; with values 1 or
0, according to the value x; compared to each (new) interpolation point. The function
adjust implements a simple heuristic to assign the values associated to previous inter-
polation points to new interpolation values, based on their proximity. In more detail,
the function takes a previous vector « and its corresponding interpolation vector 7, and
for each element of the (new) interpolation vector § it assigns the value in @ indexed
by the closest smaller interpolation point ¢ in 7 to the resulting vector 7.

The self-adapting nature of FU at the core of this algorithm enables it to cope
with the dynamic adjustment of all involved vectors. In particular, FUCDF supports
dynamic network changes (i.e., nodes arriving/leaving), like FU simply by adding/re-
moving the flows data associated to neighbors. Moreover, similarly to FU, it is also

able to seamlessly adapt to changes of the input value z;, in this case simply by re-

115

computing the vector v; (line 20). This is sufficient to allow FUCDF to operate in
setting where the global maximum and minimum do not change. Nonetheless, addi-
tional modifications ought to be taken into consideration if the extreme values change
due to dynamism, especially if the maximum decreases and the minimum increases.
Note that, the following simple heuristic might be adequate to handle this situation:
check if there is no difference between the frequencies of two consecutive interpola-
tion points at an extreme (meaning that there is no value between the two), and remove
the extreme interpolation point in this case (recomputing the interpolation vector to
hold k elements). However, the dynamic adjustment of the system extreme values
(i.e., maximum and minimum) is left for future work.

At each node i, the estimated CDF is obtained by pairing the values from s; with
the correspondent frequencies in the vector resulting from the estimation function (i.e.,
est(v;, F;)). Along time, the estimated frequency associated to each interpolation point
converge to the correct value, in accordance to the behavior of FU. In fact, it is ex-
pected that FUCDF inherits the main characteristics of FU, in terms of convergence,
fault-tolerance and self-adaptation to dynamic changes. Recent results [17] seem to

corroborate this expectations, but a thorough evaluation is left for future work.

116 6 — Estimating Complex Aggregates

Part 1V

Evaluation

117

Chapter 7
Evaluation

A custom high level simulator, implemented in Java, was used to evaluate Flow Updat-
ing (FU). The simulator uses an even-driven implementation to simulate the execution
of algorithms in both synchronous and asynchronous network models. Even in syn-
chronous settings, the simulation level is detailed enough to observe the effect of con-
current message exchanges between nodes (i.e., unlike PeerSim [69]] which abstracts
message exchange in cycle-based simulations). Synchronous simulations follow the
synchronous execution model defined in Chapter 2 of [90], with all processes exe-
cuting message-generation and state-transition events in lock-step. In asynchronous
simulations, the transmission time of each messages varies, according to a predefined
message latency distribution, leading each process to execute at different points in

time.

This chapter presents the results obtained from the empirical evaluation of FU.
Several simulation scenarios are taken into consideration to evaluate FU, in order to:
compare its performance against state-of-the-art algorithms; assess its fault-tolerance
capabilities; analyze its suitability to operate on dynamic settings; and examine its
behavior concerning some practical issues aimed to adjust its execution for realistic

environments.

The obtained results show that, in general, FU outperforms classic averaging ap-
proaches in terms of convergence speed and message load, especially in networks with
low average connection degrees. Moreover, FU exhibits a high resilience to message
loss and reveals self-adapting capabilities to dynamic changes, being robust. That is

shown in the following sections.

119

120 7 — Evaluation

7.1 Simulation Settings

This section details the default simulation setting used to perform the presented eval-
uation. By default simulations are carried according to the synchronous execution
model, although asynchronous operation is also considered in Section The same
aggregation function is computed by all evaluated algorithms, unless stated otherwise:
COUNT (determination of the network size). This aggregation function was chosen
as it is the one with the worst performance. Convergence speed depends on the ini-
tial data distribution across the network, and COUNT represents an extreme scenario
where only one node starts with the value 1 and all others with 0. FU will perform
better when computing an AVERAGE of uniformly distributed input values. SUM will
have the same performance as COUNT, as it is computed by combining AVERAGE and
COUNT.

Three different network topologies were considered for simulation purposes: ran-
dom, 2D/mesh, and attach. The random network consists on a connected graph in
which all nodes are randomly linked to each other (according to a predefined average
degree d), based on the Erd6s—Rényi [45] model. The 2D/mesh defines a connected
geographical network in which the communication links are established according to
a predefined radio communication range, and nodes are placed uniformly at random,
modeling an approximation to the topologies occurring in Wireless Sensor Networks
(WSN). Finally, the attach corresponds to a connected network generated using a pref-
erential attachment mechanism, based on the Barabasi—Albert [[12] model, where some
nodes end up with a higher number of links compared to the majority of the nodes (hav-
ing a small degree). This kind of network is representative of some realistic scenarios,
such as the Internet (where routers concentrate the majority of the communication
links). By default the networks are assumed to be static, i.e., with no link changes and
no nodes arriving or leaving, and without faults (e.g., no message loss or node crash).
In some specific simulation scenarios dynamism and communication failures are also

taken into account.
The main metric used in most simulation scenarios is the CV(RMSE) (Coefficient
of Variation of the Root Mean Square Errorﬂ which express the global accuracy

reached by an algorithm. This metric allows the analysis of the speed and message

'Root of the mean squared differences between the estimate ¢; at each node 7 and the correct result

a, divided by the correct result: 2,/1 3" (e; — a@)?

a

7.2 — Comparison Against Other Algorithms 121

load of the tested algorithms, when combined with the proper criteria, respectively:
time (number of rounds) and number of messages sent (by each node). Note that, the
message load can be interpreted as an approximation to energy expenditure in WSN, as
message transmission is often the dominating factor in terms of energy consumptio

The results obtained by evaluating FU in different simulation settings are discussed
in the next sections. All results for each evaluated scenario are drawn form 30 trials of
the execution of the algorithms under identical settings (i.e., each result corresponds to
the average from 30 simulations). Distinct randomly generated networks with the same
properties (i.e., topology, size, and average degree) are used in each trial. The detailed
simulation settings must be considered as the default for each simulation scenario,
although some specific custom settings are usually defined (which are described at the

beginning of each respective section).

7.2 Comparison Against Other Algorithms

In this section FU is compared to three significant distributed aggregation algorithms
from the same class (i.e., averaging): Push-Sum Protocol (PSP) [80], Push-Pull Gos-
siping (PPG) [68], and Distributed Random Grouping (DRG) [21]]. This evaluation is
performed under strictly identical simulation settings (same networks and initial distri-
bution of input values), aiming for a fair comparison. In addition, the specific param-
eters of each algorithm were tuned to obtain the best performance in each simulated
scenario (e.g., the probability to become leader in DRG).

The simulations were performed for the three network topologies (i.e., random,
attach, and 2D/mesh), with different sizes (i.e., n = 100, n = 1000, and n = 10000),
and distinct average connection degrees (i.e., d ~ 3 and d ~ 10). The results are
depicted by Figures [7.1] and [7.2] for random networks, Figures [7.3] and [7.4] for attach,
and Figures and for 2D/mesh. The first feature observed in all results is that
PPG does not converge over time (even without faults). This issue was already reported
in Sectiond.1.2]and more details can be found in [71]].

On random networks with low connection degree (i.e., d ~ 3) FU clearly outper-
forms the other compared algorithms, both in terms of convergence speed and mes-

sage load. However, a degradation of the performance of FU is observed in networks

2As referred in [7]], the energy consumed to transmit a single bit corresponds roughly to the one
required to execute thousands of instructions.

7 — Evaluation

122
100 ; 100 ;
10 ¢
m 1 @]
) 9] .
s =
T £
> 4 N]
S od 3
0.01 1]
0001 L L L L L L L L L L
0 50 100 150 200 250 300 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(a) Convergence speed (n = 100) (b) Message load (n = 100)
1 ; ; 1 ‘ ‘
0o PSP 00 PSP
3 PPG PPG
10 DRG oo DRG e]
FU —— FU ——
m 1 @]
(7)) 93]
= =
c c o,
3 0.1] 3 o, 1
0.01 4 T
0.001 : ‘ ‘ : ‘ 0.001 ‘
0 50 100 150 200 250 300 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(c) Convergence speed (n = 1000) (d) Message load (n = 1000)
100 ; 100 ;
PSP) PSP
PPg PPg
\) DRG o I\ =, DRG e |
10 ’ o 10 U
3 8 f
S =
c c
0.01 } 1 0.01 | 1
0.001 ‘ ‘ ‘ ‘ ‘ 0.001 : ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)

(e) Convergence speed (n = 10000)

(f) Message load (n = 10000)

Figure 7.1: Comparison of Flow Updating against other averaging algorithms, on random
networks with d = 3 and different sizes n (i.e., 100, 1000, 10000).

7.2 — Comparison Against Other Algorithms 123

100

100 ‘ PSP ‘ "PsP
PPG PPG
10 DRG «wwonv] DRG oo]
. FU — FU —
m 1l @
(2] 0]
= =
c c
3 01} -
0.01 } 4
0001 L L L L 0001 L : L L L L
100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(a) Convergence speed (n = 100) (b) Message load (n = 100)
100 ‘ ‘ ‘ "PSP - PSP
] PPG PPG
10 DRG oo] DRG oo]
FU — FU —
m 1l @
(2] 0]
s s
c c
5 o1 13
0.01 | |
0.001 = : : : : ; : : :
50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(c) Convergence speed (n = 1000) (d) Message load (n = 1000)
100 5P 100 ¢ PSP
PPg Ppg
[DRG wwronn] i DRG e |
1014 Y J— 10 Sy j—
3 0 8
= 5, =
o - c
3 0.1 13 0.1
0.01 | k | 0.01 |
0.001 S : ‘ : 0.001 : A : ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(e) Convergence speed (n = 10000) (f) Message load (n = 10000)

Figure 7.2: Comparison of Flow Updating against other averaging algorithms, on random
networks with d = 10 and different sizes n (i.e., 100, 1000, 10000).

7 — Evaluation

124
100 T 100 .
10 ¢,
w 1 i m
1%} v %])
= s 2,
T c
> ,
3 0.1 . 3
0.01 y
0.001 "
0 50 100 150 200 250 300 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(a) Convergence speed (n = 100) (b) Message load (n = 100)
1 ; ; ; 1 T
0o PSP 00 PSP
3 PPG PPG
10 DRG e] DRG e |
FU — FU —
m 1 o, o]
0 %]
= = o
c T RN
3 0.1 3 1
0.01 4 e
0.001 : ‘ : ‘ ‘ : ‘ ‘ ‘ :
50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(c) Convergence speed (n = 1000) (d) Message load (n = 1000)
100 T 100 .
PSP 3 PSP
PPg PPg
\ DRG wuuunn | I\ . DRG
10 FU — 10 FU —
= s ey
= - c
3 0.1t 103 0.1}]
0.01 ¢ 1 0.01 | 1
0.001 ‘ ‘ : ‘ : 0.001 ‘ : ‘ : ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)

(e) Convergence speed (n = 10000)

(f) Message load (n = 10000)

Figure 7.3: Comparison of Flow Updating against other averaging algorithms, on attach net-
works with d = 3 and different sizes n (i.e., 100, 1000, 10000).

7.2 — Comparison Against Other Algorithms

125

100

100 PSP "PsP
PPG PPG
10 DRG «wwwee | DRG «wweee]
FU — FU —
m 11 |l m
(2] 0]
= =
T c
> L 4
3 0.1 5
0.01 t 1
0.001 L :“c L L L 0.001 L L (e L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(a) Convergence speed (n = 100) (b) Message load (n = 100)
1 : ; ‘ ‘
0o PSP PSP
] PPG PPG
10 ¥ DRG «wwoee | DRG «wrwee |
FU — FU —
m 11 1 @
(2] 0]
= =
c T
3 o1 1 3
001 | ,]
0.001 ‘ ‘ ‘ ‘ ‘ ‘ L, ‘
50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Messages Sent (by each node)
(c) Convergence speed (n = 1000) (d) Message load (n = 1000)
100 ; 100 ‘
PSP \ PSP
PPg \ PPg
[DRG wwoeee] [\ DRG wwwwen |
10 FU 10 . FU
2 1N\ 18 1
= s
[c
B 0.1t E 3 0.1 -
0.01 t E 0.01
0.001 : : : = : 0.001 : : : :
0 50 100 150 200 250 300 50 100 150 200 250 300
Rounds Messages Sent (by each node)

(e) Convergence speed (n = 10000) (f) Message load (n = 10000)

Figure 7.4: Comparison of Flow Updating against other averaging algorithms, on attach net-
works with d =~ 10 and different sizes n (i.e., 100, 1000, 10000).

126 7 — Evaluation

100

100 PSP’ PSP’
PPG PPG
10 DRG oo] DRG oo]
3 FU — FU —
my 1 | @
(2] 0]
= =
T = z
> E 4
3 0.1 3
0.01 | 1
0.001 : : : : 0.001 : ‘ : :
0 200 400 600 800 1000 0 200 400 600 800 1000
Rounds Messages Sent (by each node)
(a) Convergence speed (n = 100) (b) Message load (n = 100)
100 ‘ ‘ ‘ ‘ 100
10 |
my 1l my
(2] 0]
= s
c c
5 o1 3
001 | PPG f 001 | psp
DRG DRG
FU —— FU ——
0.001 ‘ ‘ ‘ ‘ 0.001 ‘ ‘ ‘ ‘
200 400 600 800 1000 0 200 400 600 800 1000
Rounds Messages Sent (by each node)
(c) Convergence speed (n = 1000) (d) Message load(n = 1000)
100 100
10 } 4 10 F
3 g
= =
c S
3 0.1 13 0.1
0.01 | SFS,E 1 0.01 t FF,’FS,E
DRG DRG
FU —— FU ——
0.001 : : : : 0.001 : : : :
200 400 600 800 1000 0 200 400 600 800 1000

Messages Sent (by each node)

f) Message load (n = 10000)

Rounds

—

(e) Convergence speed (n = 10000)

Figure 7.5: Comparison of Flow Updating against other averaging algorithms, on 2D/mesh
networks with d = 3 and different sizes n (i.e., 100, 1000, 10000).

7.2 — Comparison Against Other Algorithms

127

CV(RMSE)

CV(RMSE)

CV(RMSE)

100 PSP’
Ppg
DRG «wwwen]
10 g
1F |
0.1 | |
0.01 ¢ 1
0.001 ‘ ‘ g,
0 400 600 800 1000
Rounds
(a) Convergence speed (n = 100)
1 :
00 PSP
PPG
DRG |
10 Ay
1+ |
01 ¢ 4
0.01 | |
0.001 - - .
200 400 600 800 1000
Rounds
(c) Convergence speed (n = 1000)
100 .
PSP
Ppg
A DR |
10 A
1 L
041}
0.01 ¢
0.001 - . . .
0 200 400 600 800 1000
Rounds

(e) Convergence speed (n = 10000)

CV(RMSE)

CV(RMSE)

CV(RMSE)

100

100

10 ¢

PSP’

DRG]
FU —

om

200 400 600 800
Messages Sent (by each node)

(b) Message load (n = 100)

1000

PSP

PPG

DRG]
FU ——

0 200 400 600 800 1000

Messages Sent (by each node)

(d) Message load (n = 1000)

PSP

PPG

DRG]
FU ——

200 400 600 800 1000
Messages Sent (by each node)

(f) Message load (n = 10000)

Figure 7.6: Comparison of Flow Updating against other averaging algorithms, on 2D/mesh
networks with d = 10 and different sizes n (i.e., 100, 1000, 10000).

128 7 — Evaluation

with a higher connection degree (i.e., d ~ 10), unlike the other compared algorithms
which exhibit the opposite behavior (i.e., better performance for the higher connec-
tion degree). In general, the results obtained for attach networks are similar to the
ones observed on random topologies. Nonetheless, a distinct behavior is perceived on
2D/mesh networks, and the performance degradation of FU for the higher connection
degree is no longer verified. In fact, the performance of FU increases for d ~ 10. In
this type of networks, FU considerably outperforms the other techniques, although the
overall performance of all algorithms is significantly worst when compared to random

and attach networks.

7.3 Fault-Tolerance

Here, the robustness (i.e., fault-tolerance) of Flow Updating is evaluated. Different
types of failures can occur in a distributed system, for instance at the process level (e.g.,
when the battery of a device runs out of energy in a mobile system) or the communi-
cation level (e.g., due to interferences in a radio transmission, or message collision in
WSN). More specifically, two types of faults are studied: node crash and message loss.
Byzantine faults are not considered.

Node crash refers to the permanent failure of a node at an arbitrary time — crash-
stop model. If a node crashes, it will no longer receive nor send messages, and will
be considered as permanently unavailable from that time on. In practice, this kind of
fault is equivalent to the unadvertised departure of a node. Since in dynamic setting
it is assumed that a node can silently leave the network (without any notification, as
notification messages may be lost), the impact of a node crash is equivalent to a node
departure. Therefore, node crash will be evaluated indistinctively from nodes leaving
the network in Section where churn is considered.

Message loss correspond to the loss of communication data, due to a temporary
link failure. In order to evaluate the impact of message loss, it is considered that each
message sent in each round can be lost according to a predefined probability /. In
particular, three levels of message loss were considered, 0% (no loss), 20% (I = 0.2)
and 40% (I = 0.4). These values are compared in random and 2D/mesh networks of
size n = 1000 and average degree d ~ 3 and d ~ 10. Note that classic averaging
algorithms are not able to operate in faulty scenarios (without additional extensions),

for the reasons stated in Section .1}, therefore, only FU is evaluated on these settings.

7.3 — Fault-Tolerance 129

100

100

no loss

no loss -
b 20% loss 20% loss
10 K 40% loss | 10 \ 40% loss
TR TR
= =
< L
5 0.1 ¢ 5 0.1
0.01 |] 0.01 |
0.001 : : : ‘ 0.001 s s SR
0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80
Rounds Messages Successfully Sent (by each node)
(a) Convergence speed (b) Message load
Figure 7.7: Flow Updating with message loss on random networks (n = 1000, d = 3).
100 ; : 100 T T
no loss no loss
20% loss 20% loss
10 R 40% loss | 10 B 40% loss
3 3
= =
< L
5 0.1t 3 0.1
0.01 ¢ 0.01
0.001 : : S : 0.001 e :
0 20 40 60 80 100 120 0O 10 20 30 40 50 60 70 80
Rounds Messages Successfully Sent (by each node)
(a) Convergence speed (b) Message load

Figure 7.8: Flow Updating with message loss on random networks (n = 1000, d ~ 10).

The obtained results are depicted by Figures As can be observed, in gen-
eral, message loss reduces the performance of FU (proportionally to the fault rate), but
without preventing the convergence of the algorithm. This results are in accordance
with the claims made in Sections [5.2.2.1] and [5.2.3.1] Namely, a similar quantity of
successfully delivered messages is required to reach the same accuracy, independently

from the amount of message loss, suggesting that all successful transmissions con-
tribute to the convergence of FU (and almost no extra messages are needed to recover
from the effect of a loss, besides replacing the lost message).

Curiously, in some situations the algorithm even benefits from message loss, in-
creasing its convergence speed (e.g., message loss in Figure [7.8). It was found out

that it is possible to increase the convergence speed of FU by “deactivating” some

130 7 — Evaluation

100

100

no loss

no loss -
20% loss 20% loss
10 [t 40% loss 10 3\ 40% loss -
S
o 1t o 1t TTe—
= s T —— -
c T
>] S L
3 0.1 3 0.1
0.01 ¢ 1 0.01 |
0001 L L L L L 0'001 L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250
Rounds Messages Successfully Sent (by each node)
(a) Convergence speed (b) Message load

Figure 7.9: Flow Updating with message loss on 2D/mesh networks (n = 1000, d = 3).

100 T

100

:
no loss

no loss -
20% loss 20% loss
10 B 40% loss - i 10 £ 40% loss -
3 8
= =
c S
3 0.1 i3 01 ¢
0.01 ¢ 1 0.01 |
0.001 : : : : 0.001 : : :
50 100 150 200 250 300 0 50 100 150 200 250
Rounds Messages Successfully Sent (by each node)
(a) Convergence speed (b) Message load

Figure 7.10: Flow Updating with message loss on 2D/mesh networks (n = 1000, d ~ 10).

communication links. This deactivation also provides a considerable reduction on the
number of messages required to reach a given accuracy level. In some cases, mes-
sage loss reproduces this effect, which explains this counterintuitive favorable results.
The exploration of mechanisms to control this feature and the study of this additional
source of convergence speedups was left for future work, although an initial heuristic
has already been introduced in [73]].

Moreover, it is interesting to observe that even under the occurrence of high amounts
of message loss FU can still outperform classical algorithms operating under no mes-
sage loss. For instance, comparing the results of Figures[/.1(c)H/.1(d)| against Figure
for the random network scenario, and the results of Figures 7.6(d)| versus
Figure for 2D/mesh network, even with a substantial amount of message loss

7.4 — Flow Updating with Preferential Grouping 131

(40%) during the execution of FU, it outperforms the other algorithms without faults.

7.4 Flow Updating with Preferential Grouping

In this section, the performance of FU is compared with the variation defined in Sec-
tion [5.3.1] i.e. Flow Updating with Preferential Grouping (FUPG). In particular, the
two proposed group formation heuristics are evaluated. The version using the first
heuristic (detailed by Algorithm [5]) will be identified by the acronym FUPG, and the
one applying the heuristic with average expectation (detailed by Algorithm [6]) will be
designated FUPG-AE.

First, the performances of the algorithms are compared in fault-free scenarios, ex-
ecuting over random and 2D/mesh topologies. The networks have the same number of
nodes n = 1000, and two different average degrees are considered, namely d ~ 3 and
d =~ 10. The results obtained on random networks (Figure reveal that FUPG and
FUPG-AE outperform FU on networks with a higher connection degree (i.e., d ~ 10).
In particular, unlike FU, we notice that the performance of FUPG and FUPG-AE is not
affected by the increase of the connection degree. In fact, the converge speed of FUPG
and FUPG-AE increases. On the other hand, FU outperforms FUPG and FUPG-AE
on 2D/Mesh networks (Figure[7.14).

Finally, FUPG and FUPG-AE are evaluated in faulty simulation scenarios, with
message loss. The same previous network settings are considered (i.e., random and
2D/mesh networks; n = 1000; d ~ 3 and d ~ 10), but now each sent message
can be lost according to a given probability. The execution of the algorithms with
different amounts of message loss are compared, namely with 0% (no loss), 20%, and
40%. The results are depicted by Figures [7.12} [7.13] [7.15] and[7.16] It is possible to
observe that message loss affects the performance of FUPG and FUPG-AE, delaying

the convergence, like in FU. However, comparing the results with the ones obtained for
FU in Section we can verify that message loss have a greater impact in FUPG and
FUPG-AE than in FU. Therefore, attending to the overall better performance of FU, it
seems the best choice to apply in realistic environments where messages are likely to
be lost.

7 — Evaluation

132
100 100 ; ; ;
FU ——
i FUPG
10 F\= FUPG-AE - 10]
z ol 1 g f
= =S
c L
> L 4 >]
3 0.1 3 0.1
0.01 1 0.01 k|
0.001 . . . 0.001 \ L \ .
0 20 40 60 80 100 0 20 40 60 80 100
Rounds Rounds

(a) Convergence speed (d = 3) (b) Convergence speed (d = 10)

Figure 7.11: Comparison of Flow Updating against its variations, on random networks with
size n = 1000 and different average connection degrees (i.e., 3 and 10).

100

10 .

0.1

CV(RMSE)

0.01

0.001
0

Figure 7.12: Variations of Flow Updating with loss — random networks (n

no loss
20% loss
40% loss

50

100

150 200
Rounds

(a) FUPG

250

300

300

100 . . .
no loss
20% loss
10 . 40% loss - |
TR]
=
T .-
= oL\ el T e]
3 0.1
0.01 |
0.001 : . : . :
0 50 100 150 200 250
Rounds
(a) FUPG

Figure 7.

20% loss
40% loss

no loss

0.001 :
0 50

100

150 200
Rounds

(b) FUPG-AE

250

300

1000; d ~ 3).

20% loss
40% loss

no loss

50

100

150 200
Rounds

(b) FUPG-AE

250

300

13: Variations of Flow Updating with loss — random networks (n = 1000; d ~ 10).

7.4 — Flow Updating with Preferential Grouping 133

1
00 S jp—
FUPG
FUPG-AE -
my my
(2] 2]
= =
c c
> >
O o
0.01 | |
0.001 5 5 5 5 0.001 5 5 5
0 100 200 300 400 500 0 100 200 300 400 500
Rounds Rounds
(a) Convergence speed (d = 3) (b) Convergence speed (d = 10)

Figure 7.14: Comparison of Flow Updating against its variations, on 2D/mesh networks with
size n = 1000 and different average connection degrees (i.e., 3 and 10).

100

100

no loss

"o loss’
20% loss 20% loss
10 R 40% loss - | 10 K& 40% loss -
g 1F ('-'J-') 1
= S
o L
> L | = L
3 0.1 3 0.1
0.01 1 0.01
0.001 0.001
0 100 200 300 400 500 0 100 200 300 400 500
Rounds Rounds
(a) FUPG (b) FUPG-AE

Figure 7.15: Variations of Flow Updating with loss — 2D/mesh networks (n = 1000; d = 3).

100 : ; 100 . ;
no loss no loss
20% loss] 20% loss
10 I 40% loss -] 10 40% loss -
w 14 o
n 0
= =
c L
> 5 >
3 0.1 3
0.01 1 0.01
0.001 . 0.001 - 5 5 :
0 100 200 300 400 500 0 100 200 300 400 500
Rounds Rounds
(a) FUPG (b) FUPG-AE

Figure 7.16: Variations of Flow Updating with loss — 2D/mesh networks (n = 1000; d = 10).

134 7 — Evaluation

7.5 Dynamism

This section provides experimental results of the execution of FU under demanding
dynamic settings, with message loss. FU is also compared to an existing averaged
based technique intended to be able to operate on dynamic networks, namely Push-
Pull Gossiping (PPG) [68] and Push-Pull Ordered Wait (PPOW) [71]. PPOW is a fix
of PPG that solves its atomicity problems as referred in Section 4.1.2]

Two network topologies were considered, i.e. random and 2D/mesh. All networks
considered in every scenario start with the same size (n = 1000), and the same ap-
proximated average connection degree (d ~ log nﬂ The choice of d was influenced
by [[77], where it is stated that some node must have a degree {2(log n) in order to keep
the network connected with constant probability, considering that all nodes fail with a
probability of 0.5. In general, the used value was enough to avoid network partitioning
for the simulated churn scenarios (e.g., failure of one quarter of the nodes).

Two different dynamic setting are evaluated separately in the next sections: churn

and input values change.

7.5.1 Churn

Churn refers to the departure and arrival of nodes. It is assumed that nodes silently
leave the network, without notifying any other node. Node crashes are also implicitly
covered by this silent departure situation, which is equivalent in this case.

The evaluated churn scenario considers both drastic and continuous changes of
the network membership. In particular, it successively applies the sudden departure
(catastrophic crash) and arrival of 25% of the initial nodes, followed by a continuous
arrival and departure of the same portion of nodes at a constant rate (10 nodes per
round). Note that, for a matter of clarity, a stability period is introduced between each
churn event. More specifically, for random networks a continuous churn rate of 10
nodes per round and a stability period of 50 rounds were used. However, in the case
of 2D/mesh a bigger stability period (500 rounds) and slower churn rate (1 node per
round) were considered, because the convergence speed on these kind of networks is
much slower (see Section[7.2)).

First, FU was compared to PPG and PPOW in the described dynamic scenario,

without message loss and over random networks. PPG implements a restart mecha-

3Note that, the considered logarithmic is of natural base.

7.5 — Dynamism 135

1400

1200

1000

800 | |
600 - |

COUNT

400 |

200 | |

=

®t-- S

D TR
< :
<)

Sl

&I

K ir L G

0 v
0 50 100 15 200 250 300 350

Rounds

Figure 7.17: Comparison of FU in dynamic settings, with no message loss — random networks
(n = 1000, d = logn).

nism to cope with churn, starting a new instance of the algorithm after a predefined
number of rounds (epoch), and not allowing new nodes to participate in the current
running epoch. Similarly to PPG, PPOW was extended with a restart mechanism, but
instead of delaying new nodes participation to the next epoch, joining nodes are al-
lowed to immediately participate in the protocol. This modification was applied since
it yielded more favorable results to PPOW in all performed experiments. An epoch
length of 50 rounds is used for PPG and PPOW.

The obtained results are depicted by Figure We can observe that an over-
estimate is produced by PPG due to its atomicity problems, even without network
changes (e.g., between round 0 and 50), which is solved by PPOW that converges to
the expected value. More importantly, these results expose the effect of the restart
mechanism (in PPG and PPOW), which introduces an undesirable delay to respond to
network change. Note that, this delay is also observed even if only the estimate at the
end of each epoch are considered as valid (points at the end of each PPG and PPOW
epoch, every 50 rounds). In the particular case of PPG, the delay is present in both node
departure and arrival. However, in PPOW the response time to changes is reduced in
the case of nodes arrival by allowing joining nodes to immediately participate in the

current epoch.

The utilization of a restart mechanism introduces a trade-off between the response
time to network changes and the accuracy of the push-pull algorithms, preventing them
from following the network change with high accuracy. In contrast, FU is able to
closely follow the network changes without requiring any restart mechanism. In this

settings, FU clearly outperforms the other approaches (PPG and PPOW) which are

136 7 — Evaluation

1300 ‘ ‘ ‘ ‘ ‘ 1000 : ‘
. no loss
L 100 20% loss]
1200 40% loss -~
1100 | 04
m 1}
E 1000 9
3 g 0.1}
3 900 || =
o 0.01 |
800 |
real value 0.001 ¢
L ¥ no loss]
700 : Lo T R — 0.0001 ¢
40% loss 4
600 L L L i L 1e-05 L L L L i L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds
(a) Average estimate (b) Convergence Speed

Figure 7.18: FU in dynamic settings, with message loss — random networks (n = 1000, d ~
log n).

unable to adapt to network changes. Therefore, the remaining of the evaluation will
focus exclusively on FU.

Now, the behavior of FU is evaluated on the same churn settings, but message loss
are also taken into consideration (i.e., each received message can be lost according
to a predefined probability). These simulation settings were applied to random and
2D/mesh networks. The results are respectively shown by Figures and No-
tice that, the CV(RMSE) is a metric that compares each individual estimate against the
actual network size, as perceived by an external observer that can inspect the whole
network in O rounds. Therefore, it is a very demanding metric to observe the global
accuracy variation due to dynamism, since in any actual distributed algorithm nodes
would require a delay proportional to diameter rounds before knowing the network
size.

On random networks, the average of the estimates produced by FU closely follows
the network changes, as shown by Figure Moreover, it is observed (from
Figure that message loss, even in considerable amounts 20% and 40%, only
slightly affects convergence speed and the ability of the algorithm to cope with churn.

The results from Figure confirm the fast convergence of the algorithm dur-
ing stable periods, and show expected accuracy decreases (increase of the CV(RMSE))
resulting from network changes. Brutal changes lead to momentary perturbations
which are rapidly reduced, while continuous changes will provoke an accuracy re-
duction that persists during the continuous churn time period. In the particular case

of random networks, for the considered churn rate (10 nodes per round), the arrival

7.5 — Dynamism 137

1300 ‘ ‘ ‘ ‘ ‘ 1000 : :
1200 20% :Oss
L % loss
1100 | 100 | 40% loss -~]
1000 | \ _ 10
| q ar
£ 900 g .|
3 800 = S
3 = 041t
700 3
600 e 1 0.01 |
real value
500 i no loss il 0.001 |
400 f 20% loss - J ’
40% loss
300 L L L L L 00001 L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Rounds Rounds
(a) Average estimate (b) Convergence Speed

Figure 7.19: FU in dynamic settings, with message loss — 2D/mesh networks (n = 1000,
d =~ logn).

of nodes will increase the global error from less than 0.01% to about 3.5%, and node
departures will increase it from less than 0.01% to about 50%. Node departure (or
crashes) induce higher perturbations than node arrivals; in both cases the higher the
number of nodes involved the bigger is the impact on node estimation accuracy.

On 2D/mesh networks, Figure the behavior of FU is similar to the one re-
ported for random networks, although a deeper contrast between the effect of node
arrival and departure is observed. Namely, the perturbation introduced by a sudden
(round 1000) or continuous (round 1500 to 1750) arrival of nodes is very small. On
the contrary, node departure/crash have a greater impact in this type of networks.

Node departure/crash breaks the flows established between nodes, and can result in
the removal of links that connect different network clusters, breaking the flows equilib-
rium in the whole network. This may lead to a global rearrangement of flows across the
network, in order to reach a new equilibrium state. On the other hand, new nodes will
simply provide new links (alternative paths), without breaking existing ones, which
will lead to a smaller adjustment of the existing flows in order to converge to the new
aggregation result (i.e., average).

The effect of churn on each node estimate is clearly depicted by Figure[7.20, which
plots the individual estimates of all nodes over time, considering 20% of message
los Overall experimental results show that FU can provide accurate aggregation
results in demanding dynamic and faulty networks. It allows all nodes to continuously

adjust their estimates according to network changes, due to node arrival/departure and

4The graphs in a scenario without message loss is very similar to the case of 20% faults.

138 7 — Evaluation

1400 | 2500

1200 2000
3 0
S 1000 Q
o ©
> S 1500

800
3 3
= 2
£ 600 g 1000
w400 ¢ w =

500
200
0 ‘ ‘ real value - 0 : ‘ real value -
0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 3000
Rounds Rounds
(a) Random network (b) 2D/Mesh network

Figure 7.20: Estimates distribution of FU in dynamic settings, with 20% of message loss.

crashes, quickly converging to the current network average, even with very high levels
of message loss. However, until now, perfect failure detection has been assumed. Next,
the application of practical failure detectors is evaluated, and we will see that FU will

still behave nicely using conservative fault detection.

7.5.1.1 Fault Detection

Failure Detectors (FD) are important in the design of distributed system, abstracting
the temporal uncertainties of realistic systems [[19]. FD are unreliable and provide
the information of processes that are suspected of having failed, making mistakes.
Two main types of mistakes may occur: incorrect suspicions, when the FD incorrectly
suspects a correct process; non suspicions, when a faulty process is not suspected by
the FD. In this section, the impact of the application of realistic unreliable FD in the
execution of FU on dynamic settings is evaluated.

Practical implementations of FD are commonly timeout-based [38]]. Therefore, a
simple timeout based implementation was considered, marking a node as suspected
if no message is received from it after a predefined timeout value. The evaluation
was carried out using the same succession of churn events of the previous simulations
settings (i.e., sudden departure/arrival of a large amount of nodes, and continuous ar-
rival/departure of a small number of nodes at a constant rate), and on random networks
with the same setting (i.e., n = 1000 and d ~ logn). The use of several FD with
different timeout values was compared, ranging from 1 round (aggressive FD) to 4

rounds (conservative FD), and including a perfect FD as baseline. Three scenarios of

7.5 — Dynamism 139

message loss were evaluated: no loss, 10% and 20% of message loss.

The results of Figure show how the performance of FU is affected by FD with
different timeout values, when subjected to churn and message loss, and Figure [7.22
depicts the measured number of mistakes made by each FD for each corresponding
experimental setting. As expected nodes departure/crash lead to non suspicions by the

FD, while message loss originate incorrect suspicions.

Each FD takes timeout rounds to detect the departure/crash of a node, never sus-
pecting the leaving node during that time. Therefore, only after timeout rounds FU
will be informed of the departure/crash of nodes, incurring on a delay proportional to
the FD timeout to react to departures/crashes, as shown by Figure[7.21(a)| and [7.21(b)]
Nonetheless, the impact of this delay is not very significant and FU is still able to

closely adapt to changes.

On the other hand, message loss can significantly impact the performance of FU
when using aggressive FD. Message loss might lead to the incorrect suspicion of some
nodes. In this case, FU will naively remove the flows of a correct process, and the
whole system will start converging to a new (incorrect) average. Upon the reception
of a message from an incorrectly suspected node, its flow will be immediately re-
stored, and the convergence will be back on track toward the correct result. Although,
since message loss occurs continuously over time, this situation might also occur re-
currently, especially with aggressive FD (i.e., with a small timeout), introducing a
constant perturbation on the execution of FU and impairing its convergence toward the

correct result. As shown by Figures[7.21(c)H7.21(d) and[7.21(e)H7.21(f)] the higher the

amount of message loss the higher will be the impact on FU, especially when using a

FD with a small timeout. This is because, FD with small timeout values only require a
few consecutive message loss to incorrectly mark a node as suspected (e.g., only one
message loss is enough for the FD with timeout 1), while FD with bigger timeouts
will require a proportional amount of consecutive message losses before incorrectly
suspecting a node, which is less likely to happen for moderate message loss rates (see
Figures [7.22(c)|and [7.22(e)). Therefore, it is more appropriate to use conservative FD.

The obtained results show that the selection of an appropriate FD is fundamental
to ensure a good performance and accuracy of FU. Despite the additional delay intro-
duced by conservative FD to react to network changes (i.e., nodes departure/crash),
this kind of FD should be preferred. More importantly, it is fundamental to use a

practical FD that minimizes the number of incorrect suspicions, in order to avoid an

140 7 — Evaluation
1300 1000 g T
7 11 Perfect FD
1200 // 100 FD (timeout=1) 1
/4 FD (timeout=2) -
1100 +)/ 10 | FD (timeout=3) 1
/ - i FD (timeout=4) i
L 1000 [— / m 1F |]
b4 [: :’ %) \ i
! : | = ;
é 900 | :‘ G 01} -]
800 2 Real Value 7 (@] 0.01 A"__ t‘.. . 1
‘\'ﬁ— g Perfect FD A
700 t b FD (timeout=1)] 0.001 ¢ \ | 1
FD (timeout=2) \ |
600 FD (timeout=3) -~~~ 1 0.0001 ¢ N |
FD (timeout=4) ’
500 L L L L 1e-05 L L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds
(a) Average estimate (no loss) (b) Convergence speed (no loss)
1300 ; ; ; ; ; 1000 fr
1200 | N 1 100 [}
f
1100 |] 104
,;" . 1t
L 1000 (7 o - m
z / = 0.1
S 900 | | 1 2
Q i = 0.01
(& | i >
800 r 4 Real Value ———] o 0.001
R T Perfect FD :
700 FD (timeout=1) 1 0.0001 ¢]
FD (timeout=2) Perfect FD FD (timeout=3)
600 r FD (timeout=3) -~~~ 1 1e-05 FD (timeout=1) FD (timeout=4) E
FD (timeout=4) FD (timeout=2)
500 L L L L L 1e-06 f L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds
(c) Average estimate (10% loss) (d) Convergence Speed (10% loss)
1300 1000 T
1200 | 100 H
1100 | 10
— 1t
[1000 (- "\ : /"‘ (L}J)
b4 . = 0.1
S 900 f f 1 2
3 = 0.01
800 y Real Value 1 (@] 0.001
s Perfect FD :
700 r E FD (timeout=1) . 0.0001
FD (timeout=2) Perfect FD FD (timeout=3)
600 r FD (timeout=3) -~~~ 1 1e-05 | FD (timeout=1) FD (timeout=4)]
FD (timeout=4) FD (timeout=2)
500 L L L L L 1e-06 f L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds

(e) Average estimate (20% loss)

(f) Convergence Speed (20% loss)

Figure 7.21: Effect of FD on the execution of FU in dynamic settings with message loss —

random networks (n = 1000, d ~ log n).

7.5 — Dynamism 141

600 ; ; 1200 ‘ :
FD (timeout=1) * N D (timeout=1)
® FD (timeout=2) | i D (timeout=2) x
e 500 - FD (timeout=3) | * 1 ° 1000 D (timeout=3) | *]
:8 FD (timeout=4) g D (timeoute4)
& 400 : S 800t 1
> o
« 2
® 3001 1 2 600 1
5 2
2 200t 1 g 400 ¢ 1
£ 2
2 100t : 200 + ::; 1
g
0 : : 0 ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds
(a) Incorrect Suspicions (no loss) (b) Non Suspicions (no loss)
600 ; ; 1200 ‘ :
FD (timeout=1) * ‘ D (timeout=1)
® FD (timeout=2) | D (timeout=2) x
c 500 FD (timeout=3) * 7 » 1000 2 D (timeout=3) *]
:8 FD (timeout=4) g D (timeoute4)
& 400 : S 800t 1
> Q.
* 2
® 3001 1 2 600 1
5 2
2 200t 1 g 400 ¢ 1
£ 2
Z 100} e 1 200 | []
— [tttz e o
0 oo 0 ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds
(c) Incorrect Suspicions (10% loss) (d) Non Suspicions (10% loss)
600 ; ; 1200 ‘ :
FD (timeout=1) * D (timeout=1)
» FD (timeout=2) x D (timeout=2) X
c 500 r FD (timeout=3) * 7 » 1000 D (timeout=3) * 7]
:8 FD (timeout=4) g D (timeoute4)
& 400t i 12 800]
> At O £ o
S & - 3
8 300 o st] z 600 | |
8 W’# I Z
2 200t 1 g 400 ¢ 1
£ Ly gt E
Z 100} . 1 200 | P 1
fw.
0 o ‘y . o X WL
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Rounds Rounds
(e) Incorrect Suspicions (20% loss) (f) Non Suspicions (20% loss)

Figure 7.22: Mistakes of FD in dynamic settings with message loss — random networks (n =
1000, d ~ logn).

142 7 — Evaluation

undesired performance degradation of FU. Note that, in general, this recommendation
is valid for any network topology, as it is expected that fault detection will affect FU

in the same way.

7.5.2 Input Values Change

Here, the behavior of FU is experimentally evaluated, when subjected to the dynamic
change of the initial input values of the network nodes. For that purpose, a simple
dynamic input value change scenario was defined, to compute the network average.
Initially, each node starts with an input value chosen uniformly at random between 25
and 35, then after 50 rounds 50% of the nodes (randomly chosen) increase their input
value 5% at each round, during 50 rounds, and then reduce their value by the same
amount during another 50 rounds. These simulation settings intend to represent a
possible variation of the temperature sensed by some nodes in an arbitrary monitoring
environment. The execution of FU was compared considering different message loss
amounts (i.e., 0%, 20% and 40%), over random networks (n = 1000 and d ~ 3).

The results of Figure show that the average of the estimates produced by
all nodes closely follow the change of the global average (with a small delay), inde-
pendently from the amount of message loss. A more precise view of the estimate of all
nodes over time is given by Figure for a simulation with 20% of message loss.
The results confirm that the estimates at all nodes closely follow the input changes, and
that the difference between nodes estimates is small. The estimates graphs obtained
in the scenarios with 0% and 40% of message loss (not shown) are very similar to the
one depicted by Figure Only a slightly variance on the difference between the
estimates can be observed, being even smaller in the scenario without loss and a bit
bigger with 40% of message loss.

In conclusion, FU is also able to self adapt to changes of the input values, closely
tracking this kind of dynamic change with a small delay, even for large amount of
message loss (i.e., 40%). Note that, in this case, no action is required by FU (i.e., no

need to add/remove flows) in order to converge to the new result.

7.6 — Termination/Quiescence 143

200

T T T 220 T T T T T T T T
realvalue ——— real value

180 ‘ noloss ——— 200 -
| 20% loss L
160 | [\ 40%loss —— | » 180
140 | / o 160 r
8 140t
120 t >
g B 120
100 T 100l
80 | I:IJ.I, 80 |
60 | 60 |
40 ¢ 40 |
20 | | | | | | | | | 20 L L L L I L L L .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Rounds Rounds
(a) Average estimate (b) Estimate with 20% of message loss

Figure 7.23: FU with input value changes, and message loss — random networks (n = 1000,
d =~ 3).

7.6 Termination/Quiescence

The strategy previously proposed in Section to implement termination/quies-
cence of FU is experimentally evaluated in this section. In particular, the number ci of
consecutive iterations (rounds) that should elapse before FU stops sending messages
(or reports the result) is analyzed for some specific scenarios.

In particular, FU was executed on random and 2D/mesh networks with the same
number of nodes n = 1000, but with different average connection degrees (respec-
tively, d ~ 3 and d ~ 10). Message loss is also taken into account, namely 10% and
20%. In terms of the parameters set for the termination/quiescence strategy: the same
threshold ¢ was set in all simulations, i.e. £ = 0.01; different values of consecutive
iterations ¢z (from O to 8) were compared for the same simulation settings. In addition,
a special case was considered where the termination/quiescence strategy is applied but
which never stops sending messages and only registers the entry/exit in a quiescent
state, acting like the base FU without termination/quiescence. This special version is
used as a baseline for comparison, and is identified by send msg.

Figures [7.24] [7.23] and [7.26] show the results obtained on random networks, with

and without message loss. In the scenario without message loss, we observe that if

no rounds are waited (c: = 0) before a node enters in the quiescence state (i.e., stops

sending messages), then it will take more time for all nodes to reach quiescence (Figure

'/.24(a)) and some nodes will leave quiescence during more time (Figure [7.24(b))).

However, it suffice to wait one round ¢i = 1 to observe a behavior in terms of nodes

144 7 — Evaluation

entering/exiting quiescence similar to the baseline case (send msg).

In all scenarios, independently from the network and message loss rate, it is pos-
sible to observe an instability period, where a small fraction of nodes (at most 20%)
continuously leave a previous quiescent state, until FU converges (to a value with an
accuracy proportional to the defined threshold &) and a global quiescence state (i.e.,
termination) is reached. For example, in the random network scenario with no mes-
sage loss, during at most 40 rounds for any ci > 0 (Figure [7.24(b)). The majority of
this intermediary quiescence states will only last a few rounds (independently from the
used ci), but rare occurrences of longer periods were also observed. For example, on
random networks without loss more than 95% of these “false” quiescence periods do
not last more than 5 rounds, as depicted by Figure for cz = 0, but rare occur-
rences were found reaching close to 35 rounds. This situation will still happen even if
the algorithm never stops sending messages, i.€., in the send msg version, although the

maximum length of the observed “false” quiescence periods will be smaller (Figure
versus [7.24(f).
Figures|7.24(c) and [7.24(d)|confirm that the use of ¢z = 0 is not the best choice for

the random network scenario with no message loss. Namely, a better tradeoff in terms

of message load is obtained for ¢ = 1, ¢z = 2, ¢i = 3 and ¢t = 4, when compared
to ¢ = 0. The same can be observed for the scenario with 20% of message loss, as
depicted in Figure Moreover, in this particular case, for c¢; = (0 some nodes (i.e.,
less than 5%) are unable to reach quiescence. This may happen for nodes surrounded
by quiescent neighbors that will not send messages that contribute to the computation
of a new estimate. The occurrence of larger amounts of message loss seems to lead
to this situation, if no extra round is waited before entering into a quiescent state.
Curiously, this is not true for the settings with moderated message loss (i.e., 10%),
as shown by Figures [7.25] where ¢ = 0 can also be considered a good choice. As
expected, in general, using a higher value for cz will enable FU to reach a higher
accuracy (for the same threshold &), since the algorithm executes during more time

and exchanges more messages before reaching the final quiescence state.

The results obtained on 2D/mesh networks are depicted by Figures and
In general, the results are consistent with the ones observed on random networks, con-
firming that the use of ci = 0 is not adequate in scenarios without message loss. How-
ever, some small differences can be observed on these experimental settings. Namely,

we notice a more pronounced contrast between the quantities of nodes that leave qui-

7.6 — Termination/Quiescence

145

CV(RMSE) % of Quiescent Nodes

% of Periods

5
I
S
0.8 | |
06 *E |
L x sendmsg -+ |
0.4 f ci=0
° ci=1 *
¥ ci=2 =
0.2 r . ci=3 il
h ci=4
0 ‘ ‘ ‘ _ci=8 -
0 20 40 60 80 100 120
Rounds
(a) Quiescent Nodes
100 ; T : :
sendmsg ——
ci=0
ci=1 - |
10 Y\ ci=2
\ ci=3
1+ \ Ci=4 oo]
\ ci=8
\
01t o\ ;
\
0.01 v NI 3
0.001
0 20 40 60 80 100 120
Rounds
(c) Convergence/Accuracy
0.9 ; . . . :
send msg
0.8 |
0.7 1
06 1
05 r 1
0.4 1
03 r 1
0.2 r 1
0.1 ¢ 1
0 I n i L L
0 1 2 3 4 5 6 7 8

(e) "False” Quiescence Periods (send msg)

"false" quiescence periods size (n. of rounds)

Messages Sent (by node) % of Nodes Leaving Quiescence

% of Periods

0.16 T
send msg
0.14 ; ci=0]
0 ci=1 *
0.12 * ci=2 El]
L 2 ci=3
0.1 . ci=4 ¢ J
o ci=8 -
0.08 . % 1
0.06 : 5 1
0.04 2]
002t .+ *]
ot %
0 . i -
20 40 60 80 100 120
Rounds
(b) Nodes Leaving Quiescence
50 T ; T . T
40 t 1
80 | [
20 t / 1
»‘/l‘
g send msg ci=3
10 ¢ ci=0 cizq o |
/ ci=t ci=g e
/ ci=2
0 1 1
0 20 40 60 80 100 120
Rounds
(d) Message load
0.8 T T ; T . :
ci=0 ——
0.7]
0.6 1
0.5]
0.4 1
0.3 1
0.2 1
0.1 1
0 | [L L L L L
5 10 15 20 25 30 35

"false" quiescence periods size (n. of rounds)

(f) "False” Quiescence Periods (ci = 0)

Figure 7.24: Quiescence with no message loss — random networks (n = 1000, d = 3).

146

7 — Evaluation

1 ‘ : {
§ 0.8 fj 1
o &
2]
‘g‘ 0.6 < —
= L send msg +]
le 0.4 . 6i=0
S ci=1 *
o ci=2 o
& 027 ci=3 1
ci=4
ci=8 -
O L L L L L
0 20 40 60 80 100 120
Rounds
(a) Quiescent Nodes
100 T .
send msg ——
\ ci=0
AN ci=1 - i
10 \ ci=2
\ ci=3
m R Ciz4 oo
% Ty \’* ci= 1
2 N
= S
5 0.1 % 1
0.01 r 0 @
0.001 :] : : ‘
0 20 40 60 80 100 120
Rounds
(c) Convergence/Accuracy
0.8 ; . . .
ci=1 ——
0.7 ,
0.6 i
[2]
E 05 r ,
& o4t 1
kS
* 03 1 ,
0.2 |
0.1 r ,
0 | [n L L L
0 5 10 15 20 25 30

"false" quiescence periods size (n. of rounds)

(e) "False” Quiescence Periods (ci = 1)

Messages Successfully Sent (by node) % of Nodes Leaving Quiescence

% of Periods

0.18 ‘ ‘ ‘ ‘
sendmsg +
0.16 o ci=0 1
[k ci=1 *
0.14 ik cizg o
i Ci=]
0.12 £ % o
0.1 ¥ ci=8 « |
3 W
0.08 F 5 1
0.06 Hi]]
0.04 By]
0.02 .%f A]
' B b
N
20 40 60 80 100 120
Rounds
(b) Nodes Leaving Quiescence
50
40+ e 1
30 f 1
20 t 1
// send msg ci=3
100 / ci=0 Ci=4 o |
y, ci=1 ci=8
/ ci=2
0 i L L L L L
0 20 40 60 80 100 120
Rounds
(d) Message load
0.8 : ‘ ‘ —
ci=8 ——
0.7 t 1
0.6 |
0.5t 1
0.4 | 1
03t 1
02t |
01t 1
0 | [n L L L
0 5 10 15 20 25 30

"false" quiescence periods size (n. of rounds)

(f) “False” Quiescence Periods (ci = 8)

Figure 7.25: Quiescence with 10% of message loss — random networks (n = 1000, d =~ 3).

7.6 — Termination/Quiescence

147

i
g
@ 08 r ¥ 1
° o
E !
£ 06 : 1
;
2 | ; sendmsg -+ |
ij 04 : ci=0
5 ¥ a1 -
o Cl= o
& 02r ci=3 1
ci=4
ci=8 -
O L L L L L
0 20 40 60 80 100 120
Rounds
(a) Quiescent Nodes
1000 T .
send msg ——
ci=0
100 ¢ ol 1
ci=2
ci=3]
m Ciz4 oo
) Ci=i
=]
c
>
O i
0.01 F R e
0.001 : : : : :
0 20 40 60 80 100 120
Rounds
(c) Convergence/Accuracy
0.8 ‘ ‘ ‘ —_—
ci=2 ——
0.7 1
0.6 i
[2]
E 05 r 1
& o4t 1
kS
L 03 1 1
0.2 |
0.1 r 1
ol
0 5 10 15 20 25 30
"false" quiescence periods size (n. of rounds)
(e) "False” Quiescence Periods (ci = 2)

Messages Successfully Sent (by node) % of Nodes Leaving Quiescence

% of Periods

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

"4 sendmsg +
Pﬂ& ci=0 1
v ci=1 x |
o x ci=2 o
P ci=3 1
-3 ci=4 °
y F ci=8 -
i oo |
&—"g X 7
@ i .]
¥ Py i
§ £ |
‘ G,
. iy W
20 40 60 80 100 120
Rounds

(b) Nodes Leaving Quiescence

50

40

30

10

ci=3
ci=4
ci=g

£ send msg
/ ci=0
ci=1

ci=2
I I I I I

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

40 60 80
Rounds

(d) Message load

cizd ——

n

5

10

15

20

25

30

"false" quiescence periods size (n. of rounds)

(f) "False” Quiescence Periods (ci = 4)

Figure 7.26: Quiescence with 20% of message loss — random networks (n = 1000, d =~ 3).

148 7 — Evaluation
1 0.16 ‘ w
[0} send msg
S 014 =0]
o 08| i 3 ci=1 X
S 2 o012 G2 o
2 8 ci=
= L | 0.1 ci= ‘ 1
S 06 2 cis8 *
§ 3 008 1
2 send ms * 9
3 04 ng 1 2 006 1
5 ci=1 = 3
> ci=2 o o 0.04 1
o 0.2 r ci=3) -.Z—
ci=4 S 002 1
0 ..., 8 . Y
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Rounds Rounds
(a) Quiescent Nodes (b) Nodes Leaving Quiescence
100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 100 ‘ ‘ ‘ ‘ ‘
sendmsg —
k ci=0 -
10 R ci=t E L st foo 1
\ ci=2 <]
3\ ci=! c
my ci=4 e E‘
%) T cig e Z 6oy 1
= 3
o »
= 0.1} E @ 40t 1
S s 1
,,,,,,,,,,,,,,,,,, © /
8 ,/' send msg ci=3
0.01 E 2 20/ aico i 1
/ ci=t ci=g =
0001 L L L 0 / L L CI\:Z L L L L
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Rounds Rounds
(c) Convergence/Accuracy (d) Message load
0.9 ‘ ‘ ‘ ‘ ‘ ‘ 0.8 ‘ ‘ ‘ ‘ ‘ ‘ ‘
send msg ci=0 ——
08 r 1 0.7 1
077 1 0.6 1
g oo 1 8 o5}]
s 05 ¢ E 5
o a 04§ 1
5 047 E 5
2 o3l | e 03 1
0.2t i 0.2 H l
0.1 f 1 0.1 | 1
0 | 1 1 " n n n O ||. n L L L L L L
0 1 2 3 4 5 6 7 8 9 0O 10 20 30 40 50 60 70 80

"false" quiescence periods size (n. of rounds)

(e) "False” Quiescence Periods (send msg)

"false" quiescence periods size (n. of rounds)

(f) "False” Quiescence Periods (ci = 0)

Figure 7.27: Quiescence with no message loss — 2D/mesh networks (n = 1000, d ~ 10).

7.6 — Termination/Quiescence 149

1 — 0.18 : : ; ‘ — ‘
¢ [0} send msg +
? 2 o016 . ci=0 1

» 08 | . 4 8 [y ci=1

3 . i @ 014 £ G2 o]

3 ? 3 o012} % oi=3 1

£ 06 4 . > 5 oi=4

® 4 £ o1t b .

? ¥ b %

S 04} : sendmsg -+ g 008¢ 4 1

] ci=0 2 006 | o J

5 °!=; - - 5

° I ci=2 =©= | 0.04 i 1

& 02 ci=3 z oy

ci=4 - S 002 1
0 ‘ ‘ ‘ ‘ ‘ ci;S : o 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Rounds Rounds
(a) Quiescent Nodes (b) Nodes Leaving Quiescence
100 ‘ ; @ 100
sendmsg ——— 8
ci=0 i
10 ci=1]) 80
ci=2 b=
ci=3 [}

m 1 o 1 2 6ot

@ Ci= é‘

s 3

[@

i [0} L
3 01 | s g 40
@
17 / send msg ci=3
0.01 ¢ i 87 20 ¢ ,f/ ci=0 Ci=4 o |
g / cit ci=g
0.001 g 0 / . . C|‘=2
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Rounds Rounds
(c) Convergence/Accuracy (d) Message load
0.8 ‘ ‘ — ‘ — ‘ 0.8 ; ; ‘ ‘ ‘ —
ci=1 —— ci=8 ——
07t . 07 | 1
06 f . 06 | 1

[2] [2]

3 057 . 3 05f 1

& 04t g & o4t i

k] k]

2 03} . o 03f 1
0.2t : 02t 1
0.1t . 01 1

oo v v ‘ ‘ ‘ ‘ oo v ‘ ‘ L
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
"false" quiescence periods size (n. of rounds) "false" quiescence periods size (n. of rounds)
(e) "False” Quiescence Periods (ci = 1) (f) "False” Quiescence Periods (ci = 3)

Figure 7.28: Quiescence with 10% of message loss — 2D/mesh networks (n = 1000, d ~ 10).

150 7 — Evaluation

escence (until convergence is reached) when using different waiting values ci, espe-
cially in the scenario without message loss (Figure [7.27(b)). Moreover, the “false”
quiescence periods are longer for 2D/mesh when compared to random networks (e.g.,
Figure versus Figure [7.27(f)). It is also noticeable that the accuracy reached is
smaller than for random networks, using the same parameter values (¢ = 0.01 and cz).
These dissimilarities can be explained by the worst performance of FU on 2D/mesh
topologies when compared to random networks. For instance, in 2D/mesh networks
the global quiescent state (i.e., termination) is only observed around round 100, while
it is reached in general close to 60 rounds (even less) on random topologies. Regard-
ing the number of consecutive iterations to wait before FU stops sending messages,
the results on 2D/mesh networks (with and without message loss) suggest that a good
tradeoff in terms of message load and accuracy is obtained for small ci values, but

greater than 0 (e.g., ci =1, ¢ = 2 and c1 = 3).

In addition to the previous experimental simulations (i.e., assessing the use of dif-
ferent waiting times cz), the utilization of an additional threshold (to leave the quies-
cence state is also evaluated, with ¢ > &. The results obtained on random topologies
(n = 1000, d ~ 3) with no messages loss are depicted by Figure As expected,
we observe that the use of higher ¢ values reduces the amount of nodes that leave qui-
escence, as shown by Figure A reduction of the number of message sent is
also observed for higher thresholds ¢ (see Figure [7.29(d)), however it is also associ-
ated to a decrease of the global accuracy reached by all nodes (see Figure [7.29(c)).
Therefore, no apparent advantage seems to come from the use of a distinct thresh-
old (to leave quiescence; using the same threshold ¢ to enter/exit quiescence looks

satisfactory. Similar results were obtained on scenarios with message loss.

In conclusion, considering the continuous execution of FU in monitoring mode, as
described in Section the experimental results show that the defined quiescence
strategy is efficient independently from the network topology and even from message
loss. It allows nodes to enter in a quiescent state when a certain level of accuracy is
reached (depending from a defined threshold value &), avoiding the transmission of
excessive and unnecessary amounts of messages beyond the desired precision. In gen-
eral, a good trade-off between accuracy and message load was obtained using small
ci values (e.g., ct = 1). Nevertheless, the obtained results are not enough to define
a precise criteria for termination detection, due to the observed instability of nodes

continuously leaving quiescence. One could use the maximum length of the “false”

7.7 — Asynchrony 151

1 i T A:@,»_;Wmmg o 0.16 ; ; ; ; 081 o0
e gﬁ**ﬁp’ 8 0.14 | ggu £=0.02; ci=0 1
R [' . . ©=0.04;ci=0 *
§ 0.8 r i 1 2 o012l L c00tid=t © |
3 $ E , £=0.02; ci=1
z 5 ¢] 01t e €=0.04; ci=1 i
£ 06 o) 1 <) : e t=001;ci=2 *
[0 + €=0.01; ci=0 + = LN J T .
@ = £=0.02; ci=0 z 008 P 0.02ici=2
2 . ©=0.04;¢i=0 * o} LR t=0.04; =2
S 04 % - ’ 1 - s
(@] 2 ©=0.01; ci=1 o » 0.06 - 2 o
5 o £=0.02; ci=1 3 0.04 ®
° i £=0.04; ci=1] R F X +
& 027 g t=00t;ci=2 * | ?5 0.02 LA "
- ©=002;ci=2 * R " b
0 s ‘ ‘ §004i¢=2 - * 0 bt - ‘ %w """""" =
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Rounds Rounds
(a) Quiescent Nodes (b) Nodes Leaving Quiescence
100 T T : .
£=0.01; ¢i=0 €=0.04; ciz1 oo
€=0.02; ci=0 €=0.01; ci=2 . 30+
£=0.04; Gi=0 £=0.02; ci=2 ©
10 + €=0.01; cizt oo £=0.04;ci=2 e 183
o €=0.02; ci=1 5‘ o5 |
0 =
= 1 g
3 (%]
< » 20
© S
b £=0.01; ¢i=0 e
0.1 ¢ 2 45| £=0.02; ci=0 £=0.01; ci=2
= £=0.04; ¢i=0 £=0.02; ci=2
€=0.01; ci=t oo €=0.04; Gi=2 <
e £=0.02; ci=1
0'01 L L L L L L 10 L L L L L
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70 80
Rounds Rounds
(c) Convergence/Accuracy (d) Message load

Figure 7.29: Use of different threshold values to leave quiescence — random networks (n =
1000, d ~ 3), with no message loss.

quiescence period to define a criteria for termination, although this value varies ac-
cording to the network settings and may be affect by the occurrence of message loss.
From the evaluated scenarios, staying more than 5 rounds for random networks and
more than 20 for 2D/mesh in a quiescent state appears to be a sufficient to detect the
termination of the majority of the nodes, although a few may terminate prematurely.

The definition of a more precise criteria for termination detection is left for future

work.

7.7 Asynchrony

In this section, the behavior of FU on asynchronous settings is evaluated, more specif-

ically, taking into account the message latency distribution present in wide area net-

152 7 — Evaluation

works. Rounds are no longer executed in lock-step and individual nodes can transmit
at different times. An additional timeout parameter 7 is used by FU to set the maxi-
mum time that each node will wait for messages from its neighbors, before executing
the next iteration of the algorithm (according to the strategy defined in Section [5.3.3).
In particular, different timeouts are compared, considering the execution of FU on ran-
dom topologies (n = 1000, d ~ 3) with and without message loss. In order to emulate
realistic asynchronous settings during the simulation, the transmission time of each
sent message was computed according to a predefined probability distribution func-
tion (i.e., Weibull), incurring each transmission on some arbitrary delay. The specific
parameters of the distribution function were carefully set to approximate the message
transmission latencies measured in real environments.

In particular, a rough approximation to the distribution of messages latencies ob-
served in PlanetLab[25} [1] was defined, according to the RTT (Round Trip Time)
measurements presented in [123] and [85)]. The message transmission times used in
the simulation result from the sum of two components: queuing delay, and minimum
transmission delayﬂ More precisely, in this case, a Weibull with shape s = 2 and scale
r = 45 was used to generate the queuing delays, and a minimum transmission delay of
50 ms was added. This characterization lead to a message latencies distribution with
an average of 89.88 ms, with most of the transmission times below 140 ms, as depicted
by Figures [7.30(a) and [7.30(b)]

In this settings, timeout values of 25, 50, 100, 125, 150, and 300 ms were consid-

ered to evaluate the performance of FU. The results obtained without message loss and
with 20% of loss are similar. The best performance in terms of convergence speed is
observed for small timeouts (i.e., 25 and 50 ms), and the worst performance for the
bigger timeout (i.e., 300 ms), as shown by Figures [7.30(c) and [7.30(e)l On the other

hand, the use of small timeouts is very inefficient in terms of message load (sending

much more messages), and better results are obtained for bigger timeouts, as depicted
by Figures[7.30(d)| and [7.30(f)] The best tradeoff in terms of time and message load is

obtained for a timeout of 125 ms, in both scenarios (with and without message loss).

Good results are also obtained for timeouts close to 125, namely for 100 and 150 ms.
In summary, we observe that the use of different timeouts, according to the mes-
sages latencies, influences the performance of FU in asynchronous settings. In par-

ticular, the experimental results indicate that better performances are obtained using

Following the method used in [64] to approximate transmission times with a single Weibull.

7.7 — Asynchrony

153

1 ‘
09 f / .
0.8 | |
0.7 t |
S 06F 1
el ¥
g o5¢ 1
L 04} 7 1
03t E
02t il
o1t 4]
ol
40 60 80 100 120 140 160 180 200 220 240
Message Transmission Time (ms)
(a) CDF of Message Latencies
100
10 1
i 1
b=
c
3 0.1 1
0.01 |
0.001 : : :
0 2000 4000 6000 8000 10000 12000
Time (ms)
(c) Convergence/Accuracy
100 ‘ ‘
t=25 ——
t=50
t=100 - |
10 t=125
t=150
m . =300 -
]
=
=
3 0.1 |
0.01 1
0.001

Time (ms)

(e) Convergence/Accuracy (20% loss)

0 2000 4000 6000 8000 10000 12000

Fraction

0.02
0.018 1
0.016 | 1
0.014 |
0.012 |
0.01
0.008 r 1
0.006 |
0.004 |
0.002 |

0
40 60 80 100 120 140 160 180 200 220 240
Message Transmission Time (ms)

(b) Distribution of Message Latencies

100 ; . .

10

0.001 : : ‘
0 200 400 600 800

Messages Sent (by each node)

1000

(d) Message load

100

10 ¢ t=125

200 400 600 800
Messages Successfully Sent (by each node)

(f) Message load (20% loss)

1000

Figure 7.30: Execution of FU in asynchronous setting, using an average message transmission
of 89.88 ms — random networks (n = 1000, d =~ 3).

154 7 — Evaluation

timeouts above the average transmission times, more precisely timeouts close to the
percentiles 95% — 99% of the underlying message latency distribution. This results ap-
pear to be valid independently from the amount of message loss, and were also verified

for other message latency distributions and network topologies.

Part V

Peroratio

Achievements and Future Work

155

Chapter 8
Conclusion

This research work provides an important contribution to the area of distributed com-
puting, more precisely for the distributed computation of aggregation functions (e.g.,
AVERAGE, COUNT or SUM). In particular, it provides a novel approach, Flow Updat-
ing (FU), that solves important issues revealed by existing techniques when subject to
faults (e.g., message loss) and churn, enabling the effective practical application of a
robust data aggregation scheme on realistic settings. FU allows the accurate compu-
tation of aggregation functions at all nodes, converging to the correct value over time,

independently from the network topology.

This approach distinguishes itself from the existing averaging algorithms by its
fault-tolerant capabilities. It solves the mass conservation problem observed on other
averaging approaches when subject to message loss, and that affect their correctness
leading them to converge to a wrong value. Other approaches require additional mech-
anisms to detect and restore the lost mass which are not feasible in practice. Even if
possible these mechanisms will introduce additional delays and message load, even
when no faults occur. In contrast, FU is by design able to support message loss, which
only delays it without affecting its convergence to the correct value, and without requir-
ing any additional mechanism. This is achieved by keeping the input values unchanged
(by the algorithm) and performing idempotent flow updates. Moreover, FU is resilient
to node crash and able to support churn, self-adapting to network changes and modi-
fications of the initial input values. In order to support the departure/crash of nodes, a
simple unreliable failure detector is required which is easy to implement in practice.
Unlike other algorithms, FU is able to continuously adapt to dynamic changes without

requiring any restart protocol.

157

158 8 — Conclusion

The empirical evaluation confirmed the robustness of Flow Updating, and its ability
to operate in realistic settings. In particular, the results show that FU is able to support
message loss rates of 40%, without affecting its correctness, and it is excepted to tol-
erate even higher levels of losses. Message loss only reduce the performance of FU,
in terms of time, in an amount proportional to its effective occurrence. Moreover, FU
showed to be able to seamlessly adapt to abrupt changes of the network membership
and track continuous variations of the network (i.e., churn and input value changes)
with a good accuracy, even in the presence of considerable amounts of message loss.
The experiments to evaluate the use of practical failure detectors, to detect node de-
parture/crash, show that FU performs very well with conservative failure detection
strategies that minimize the amount of incorrect suspicions (e.g., timeout based im-
plementations with a large timeout). The simulations on asynchronous networks with
message loss showed that FU performs better when executed at a pace slower than the
average message transmission time between nodes, more precisely when each node
waits a time between each iteration that allows the reception of data from the majority

of its neighbors.

FU was also compared against other averaging approaches. The results show that
FU outperforms existing approaches, especially in networks with a low average con-
nection degree, both in terms of convergence speed and message load (requiring less
messages to reach a common accuracy). The performance gap is particularly notice-
able in 2D/mesh networks, where FU is much better than other averaging techniques

(even those designed specifically for these settings, like DRG).

Although Flow Updating constitutes the main achievement, other contributions
emerged from this research work. Namely, a rigorous definition of the aggregation
problem is introduced, categorizing the different types of aggregation functions. The
state of the art on distributed data aggregation algorithms is surveyed, and a taxonomy
is proposed to classify the existing approaches according to different perspectives (i.e.,
communication and computation). A study of the dependability issues of the exiting
aggregation techniques is provided. Finally, a novel distributed scheme based on FU

is proposed to compute the Cumulative Distribution Function (CDF) of an attribute.

To the best of our knowledge, Flow Updating is the most robust distributed aggre-
gation algorithm, fault-tolerant and self-adapting to changes (of the network member-
ship and the input values), that is able to compute aggregation functions at all nodes

with an high accuracy on dynamic networks.

8.1 — Future Work 159

8.1 Future Work

Despite the good performance and the distinctive robustness revealed by Flow Updat-
ing, some improvement points were identified. For instance, it was already found that
it is possible to increase the performance of FU by “deactivating” some links between
nodes [73]. In a nutshell, the strategy simply consists on the use of the local knowledge
overheard in messages received from neighbors to identify shared neighbors between
two nodes, and apply an heuristic for one of the nodes to ignore the shared neighbor,
removing local communication cycles.

More recently, a new method has exhibited considerable speedups of the algorithm,
according to some preliminary experimental results. This improvement is based on the
attribution of different weights on the links between nodes, according to their clus-
tering coefficient so that nodes that have less neighbors in common are given more
communication capacity among them, in a sense increasing the “conductance” of the
algorithm. This strategy has revealed itself to be very promising and will be one of the
main subjects of our future research work. Furthermore, we expect this improvement
to solve the performance degradation observed by FU in random and attach networks
with high average degrees.

Another promising line of research regards the robust distributed computation of
the distribution of an attribute, more precisely estimating its CDF, over dynamic set-
tings (i.e., subject to churn and input value changes). An initial approach based on FU
was already introduced in Chapter [6] However, a thorough analysis of this technique
must be performed, and a few additional enhancements might as well be required.
Nevertheless, this new approach can provide an important support to many other dis-
tributed applications, providing each node with a rich information about global at-
tributes, which can leverage the development of new schemes (replacing previous ones
that could not take advantage of this global knowledge). The exploration of further
techniques, on practical application scenarios, that can take advantage of the support
provided by FU is also left for future work.

Finally, an additional feature that will be interesting to have is a query engine
able to work on the top of FU. Typically, existing query engines require the support
of a specific routing topology (e.g., tree) to operate, incurring in the handicaps of
such structures. Therefore, attending to the fault-tolerance capabilities of FU and its
independence from the network topology, it will also be desirable to perform an ag-

gregation query across any nodes in a robust way and independently from the routing

160 8 — Conclusion

structure, maintaining the benefits of FU. For that purpose, an improved termination

detection strategy must be developed.

Part VI

Appendices

161

Appendix A

Modeling Flow Updating as a
Difference Equation

Here, Flow Updating (FU) is characterized as a multi-dimensional, linear dynamical

system, represented by a difference equation of the form:
Ty = Az + B, t=0,1,2,3,... (A.1)

where x; is an n-dimensional vector of state variables at time ¢, z; € R, A is an
n X n matrix of constant (time-invariant) coefficients a; ;, a; ; € R, 4,5 = 1,2,...,n,
and B is an n-dimensional time-independent vector with elements b;, b; € R,7,7 =
1,2,...,n [5544].

A discrete time execution of the algorithm is considered, according to the assump-
tions defined in Section (i.e., fixed network without faults). It is assumed that
FU proceeds according to Algorithm [I] (synchronous model), where all nodes concur-
rently execute the algorithm at each round ¢. In this case, message exchanges are not
abstracted, containing a pair of values, with the flow and estimate to each neighbor,
and it is assumed that they are correctly delivered (no loss). In addition, for conve-
nience, it is considered that the state of each node 7 holds an additional variable e;
to keep the estimate computed at the end of each round. Taking these considerations
into account, in the following sections FU is represented as a difference equation that
models the system dynamics. More specifically, two types of difference equations are
defined, modeling FU in terms of the messages exchanged across the network, and the

state evolution at all nodes over time.

163

164 A — Modeling Flow Updating as a Difference Equation

A.1 State Model

In this case, it is considered that the local state of each node i is composed by three
main components: a variable v; that holds the initial input value to be averaged (at this
point, we consider that this value is constant and does not change during the iteration
process); a set F; that denote the flow values associated to all neighbors (with elements
fi; where j € Diﬂ; a variable e; that keep the estimated average value of a node at the
end of each round.

At the end of each round ¢, the estimate e} of a node i will result from the update
of its local flows, computed in a way such as the new estimate is the same as the new
average, i.e., e§ = a. Now, notice that, at a time ¢ node 7 computes a using the data
received from its neighbor, i.e.: all the received estimates eéfl, and the estimate e; re-
sulting from the estimation function using the flows — ;;1 received from its neighbors
as input. Therefore, one can rewrite the expression to calculate the new average at a

node ¢ for time ¢ 4 1, which corresponds to the value eﬁ“:

Dk D fi
t+1 Ui keD; keD;
‘ D;|+1 |Dj|+1 |D;

e (A.2)

+1

This equation characterizes the evolution of the estimated values at any nodes ¢
over time t. Now, let’s consider the expression to calculate the flow value of a specific
neighbor ; at the end of each round, which can also be rewritten as (according to the

previous considerations):

t+1 t t+1 t
Now, substituting /™ in (A.3) by the expression in (A.2)), we obtain the equation:

Z e Z flf:z

t Uj keD; keD; t

t+1 b _ ot
e N7 S R Y TV N
> e > i
(% keD; t keD; t
TSR TS R A Wans

Note that, for a matter of simplicity and consistency of the variables notation, f; ; is used instead

A.1 — State Model 165
> e >
Y N |D;| + 1et keD; _ Dl +1
€ Z flf;z
_ v | kenws D, keDinkzi |Dil
|D;| + 1 |D;| + 1 |D;|+17 |D;| +1 |D;| + 177
(A.4)

The obtained expression characterizes the evolution of the flow value of a neighbor
J at anode i. The conjugation of both equations (A.2)) and (A.4) define a coupled sys-

tem of p-dimensional (where p = n+ n?, being n the number of nodes in the network),

first order, non-homogeneous difference equations s'™! = As’ + B, that represent the

state evolution of the algorithm over time ¢, with:

0

Geg,eq

Geq,eq
0

aeruel aen’€2

0 Af1,n-e2

Afy 1.e1 0

af2,n161

Afp,1e1 fp,1.e2

Qeg,en O - 0 Qeq,fa 1 Geq,fon Qe fn,1 - 07
Geg,en, 0 - Qey f1m 0 0 T .0

0 0 o Gepn,f1, Ten.foi Gen,fon 0 - 0

0 0 . 0 0 0 0 . 0

: afl,nven 0 . 0 afl,nsf2,1 : afl,nva,n : a‘fl,nvfn,l -0
S Afpren O e Ay, 0 “ Qfy g fp e O
© fy pen 0 ... afynf1m 0 0 ©Qfy i 0
0 0 o af, 1 10 paifan - Ofpiidan 0 -0

0 0. 0 0 0 0 0

166 A — Modeling Flow Updating as a Difference Equation

p
ﬁ ifr=e;Ac=¢ejandj € D;
1

L ifr:ei/\c:fj,iandjeDi

IDi|+1
_ 1D j
RS ifr=fijAc=ejandj € D;
where a,.= \D‘1|+1 ifr=fijAc=e,ANj#kandjkeD; ; (A-3)
k2
D; . i

W ifT‘Zfl‘,]‘/\Ckayi/\j#kandj,k’e/Di

L 0 otherwise
p— Ul -— p— -
[D1]+1 €1
v2 eg
[Daf+1
U:n 691,
[Dnl+1
0
v1 f1,1
[Dyl+1
0 _ 0
B— = (A.6) and s = | /7, (A.7)
|Dqy]+1 9 . fO
Vo 2,1
1Dg|+1 .
0
Vo f2,n
[Da|+1 .
0
U:n n,1
|Dnl+1 .
fO
’U:n, | /n,n
L Dy |+1

A.2 Message Model

In this section, a linear system of first-order difference equations is defined to model
the messages exchanges of FU. In particular, considering the flow fit,j and estimate e’
to be sent from ¢ to 7 at time ¢ + 1, it is assumed that the message sent is the sum of

ij = Ii; + e (instead of m{ ; = (f;, €})).

these values instead of a pair, i.e.: m; ; = L is€i

Then, following the reasoning performed in the previous section to obtain Equa-

tion one can rewrite the expression to compute the estimate of node ¢ at time ¢ + 1

A.2 — Message Model 167

in terms of the messages sent by its neighbors:

v; + Z (fliz + 62)

€t4+1 _ keD;
' Di| + 1
v; + Z my;
keD;
e A.8
D + 1 (&.8)

Now, let’s consider Equation [A.3] which is used to calculate the flow value stored
at node ¢ for each neighbor j, according to its newly computed estimate (i.e., average).

In this case, considering that mj ; = f/; + e}, we get:

4l =)
o g dnodo g
o f—drom,
& et it =t —ml, 4 el
& et Z-tjl = 2elt — mﬁl
& mitt =2t —m!, (A.9)
t+1

Then, attending to the fact that the new estimate e;"~ computed by node 7 will

i
be sent to all its neighbors, replacing e/™ in Equation by the expression from
Equation we obtain:

t
v; + g my

t+1 _ o keD; t

Mg =2 Tt |
— 2 t
|D | +]. vi + Z mk,i mjﬂ‘

¢ keD;

2 2 ' Dl +1
= v; + my,; | — =——m’,;

eD;

2 2 1—|D]

= v + mp,; | + —=———m, A.10

This Equation corresponds to a coupled system of g-dimensional (where ¢ = n?, be-

168 A — Modeling Flow Updating as a Difference Equation

ing n the number of nodes in the network), first order, non-homogeneous difference
equations m!™t = Am! 4 B, that represent the message exchanges of the algorithm

over time ¢, with:

ro 0 0 0 0 07
0 .. 0 aAmy pymg 1 o Amy pomg gy e Omy g my 0
0 ... amg 1,m1 0 0 o Gmg g ,may, g 0
A= 15 . Amg o 0 0 o @my gy e O
0 .. Amy, 1,m1 p Gmy 1,mo 1 o Amy 1m0 0 - 0
L O 0 0 0 0 0
1—|Di| ifr=m; ;i ANc=m;;andj € D;
"D2|+1 - 1,7 - 7,] 1
where a,. = ﬁ ifr=mijAc=mpiAj#kandjkeD; (A.11)
1
0 otherwise
_ 2 -
Dy [+1 1 - 0 -
mia
2’ :
Dy +1 0
2 v ml,n
[Dal+1 2 mg
B = : (A.12) 0 :
2) . — .
T Y2 and m mi (A.13)
2 .
Dnl+1°" m
5 .
L D, [+19n [m{, .,

A.3 Example

In this section, we show the resulting system of difference equations (both for state and
messages) in two concrete and simple examples of the execution of FU. The considered
scenarios are similar, and only differ by a small variation of the communication routing
topology. More specifically, compared to the first scenario, the topology of the second

scenario has an additional link between two nodes. This extra link creates a cycle

A.3 — Example 169

and transform the acyclic communication graph of Scenario 1 (see figure [A.T) into
a unicyclic communication graph in Senario 2 (see figure [A.2). In more detail, each
considered network is composed of four nodes, with initial values v = 1, vo = 2,
vs = 3, and vy, = 6, which correspond to a global average a equal to 3 (i.e., a =
(1+2+43+6)/4). Itis assumed that all remaining state variables (flows and estimate)

start with a value equal to zero.

A.3.1 Scenario 1 (tree network)

This scenario considers the execution of FU on a network with the topology depicted
by Figure

Figure A.1: Tree network topology

The system of difference equations, that represent the state evolution over time in

this particular example, is defined by the following matrices:

0 £ o0 oo0o0002%00 000000000
1 1 1 1 1 1

$ 0 § 0300000 00 5000 3 00
02 0 0000000% 000000000
0 2 0 00000000 200000000
00 0 00000000 00O0O000O0 00
0 -2 0 00000-3200 000000000
00 0 00000000 000000000
0, 0 0 002000000 000000000
-2 0 4 $0-200000 003 000 00

4 4 4 4 4 4
A= 9 0 0 00000000 000000000/, (A.14)
%0—1;1 erogooooo 00—11000 1300
10 2 -30100000 0043%000-200
0 0 0 00000000 0O0O0O000O0 00
0 -3 0 000000O0—3 000000000
00 0 00000000 0O0O0O000O0O00
0 0 0 00000000 000000000
0 0 0 00000000 00O0O000O0O00
0 -2 0 00000000 -100000000
00 0 00000000 00O0O000O0O00
L 0 0 0 00000000 0000000 00

A — Modeling Flow Updating as a Difference Equation

170

(A.16)

I 1
[elelelelelelolelelololelelololelololel)

(A.15)

?

I 1
Lo K [Asap] [e[ESl[a RSl [Eolla ESl{a EtIESEa IR RS R R apl [a Kaal [a Fopl [a Ranl [a el [a o] [a ol [a o] [a)]
L]

The components of the system of difference equations that represent the message

exchanges of FU in this example are:

(A.17)

OOCOO O OO O OOOOOOooO
OO0 O O OO O OOOO0O0OooOo

iall]

OOoOOoO—HNO =N 7

[e]elelole]e]ol]

OO0 O O OO O OCOO0O0O00ooOo
OO O OO O OOO0OOOooO
OOOO O OO O OCOOOOOooOo

—ey

OOoOoO—HNO |

OO0 OC O OO
OO O OO
OOOCOC O OO
OO O OO
OOOCOC O OO
OO O OO
OO0 OC O OO
—eN

SoOoO |

HNOOOoOOOoOOoOOoOO

0000000

[e]elalolela]ol]
[e]elelelela]l)
[e]elelolelo]ol]
[e]elelelelall)
[e]elelolelo]ol]
[e]elelelellle)
[e]elelolela]ol]

O=HNHNOOOOOOOO

OOCOO O OO O OOO0oOOOooO
L]

I
<

(A.19)

T 1
[e]e]elolelelololelelolole]elol]

(A.18)

T 1
NN T T I I sl sl s s ol v ol n ol ol en S en B en B ew Y
1]

171

A.3 — Example

t
7

_ ft
= fi; €.

t
7‘7.]’

Recall that m!

A.3.2 Scenario 2 (multi-path network)

In this scenario, FU is executed on a multi-path network with the topology depicted by

Figure[A.2]

: «:

Figure A.2: Multi-path network topology

The system of difference equations, that represent the state evolution of FU over

time in this particular example, is defined by the following matrices:

(A.20)

S O O Ooo

O O HNn O OO

o HFT O O OO

S O O ©Ooo

S O O Ao O

S O O ©oOoo

O HF O O OO

S O O 0ooo

oS o

(el e}

[e}

ialls el

[e}
o o

O HNmO O

—ln O OO

o

o

=]
[en]

o HIY O

[l e N en]
|
o o |

S oo
o oo

o oo

S O O ©Ooo

O HIFHINn O © O

O HIF O ~HmO O

ey

coococo cooc oo oo
coococo o 01,302”300

elh
QO —HIFO =+ 7 SO OO OO

SO O OO OO0 OO OO

COO OO OO0 OO O—m

o

o

o

o

alen

1
o

o

o

o

o

OO OO OO oo oo o0

el

OO—=IHO | HFO O OO OO O O

COOC OO0 OO oo oo o0

(a1l
OO OO Ocooc oo o |

e
SO o oo OO 7 OSHINO O

SO OO OO O OO OO OO
SO OO OO O OO OO OO

SO OO OO O OO OO OO
OO OO OO0 OO OO
o<t
|
OO OO OO OO0 OO

[elh [a\][ap]
OO —HIFO I+ ” O=HINO ” o o

[e]en) O-HIFHITO © OO OO

elhd
SOoO=HIHO | O O O O O—Im

N [a\llae}

—no

000 O00OOO
0 00 O00O0OOO

N

o

=N O —HM=HINO | coo oo oo | 01,30‘, =lmO

elh

O HF O O OO OO | O-HIFHITO ©O OO OO © O

Il
<t

A — Modeling Flow Updating as a Difference Equation

172

(A.22)

) 1
[e]elelelelelolole]lelolele]ololela]olol)

(A.21)

I 1
—IOTEH 0[O0 IO OO A A A en|en enfen e en ;e ©en Ol Ol ©|m
L]

For this specific scenario, the components of the system of difference equations

that represent the message exchanges of FU are:

(A.23)

I
OO O OO © OO
OOCOO O OO O oam

il
OOOOHINO N | o o

COoOC O OO © OO
OO O OO © OO
OO O OO © OO

=i

SOoOoOoOHINO | —NO O

SO0 O OO © OO
OO O OO © OO

—|n
[ejeleles e e i en] 00_
OO O OO0 © oo
OO O OO © OO
OO O OO0 © oo
OO O OO © OO

iall]
[e]eslenlen] | OO ©

OO O OO © OO
L

SO OO OO

Lllon]

070000

cooco oo
cooco oo
0002,31_,30

SO OO OO

cooco oo
cooco oo
0001"32,30
camo o © o
cooco oo
cooco oo
cooco oo
cooco oo
cooco oo
cooco oo

]

(A.25)

T 1
[e]elelolelelololelelolole]olol]
L 1

1
— [a\] ™ <

(A.24)

Y

|
<

r 1
1 I 1] I I <Kl I I 0l 01600 0100 0len e Ten Fjen N|en
L 1

A.4 — Problem 173

: t _ ft t
Once again, recall that m; ; = f;; + ;.

A.4 Problem

We want to define and prove the stability properties (convergence) of Flow Updating,
independently from the considered network (size and topology), in order to prove the
correctness of the algorithm. In other words, we seek to demonstrate that the value
estimated by each node converges over time to the correct global average, considering
the defined model.

So far, the Empirical results obtained from several simulations suggest the cor-
rectness of the algorithm, independently from the considered network. Next, Some
additional properties and observations will be pointed out, which might help in further

studies of the stability properties of the algorithm.

A.4.1 Additional information
A.4.1.1 Exploration

In order to prove the stability properties of FU, Corollary |A.4.1.1| was found, which
generalize the analysis of globally stable systems, based one the eigenvalues of the
matrix A, as long as [/ — A] is non-singular, meaning that the system has a unique

steady-state equilibrium 7 = [— A] "' B.

Corollary A.4.1. (pag. 86 of [55]): Consider the system z,,1 = Ax;+ B, where z; €
R", and suppose that | I — A |# 0. Then, the steady-state equilibrium 7 = [[— A] "' B
is globally (asymptotically) stable if and only if the modulus of each eigenvalue of the

matrix A is smaller than 1.

Then, in order to verify the compliance of the defined systems of difference equa-
tions with Corollary [A.4.1.1] a specific analysis of the examples described in Section
[A.3] was performed:

Scenario 1 - In both models (state and message), the determinant of [/ — A] is equal
tol (] I — A |# 0), meaning that [/ — A] is non-singular, and both systems
have a unique steady-state equilibrium Z = [I — A]~! B. For the state model, the
unique steady-state equilibrium Z; is the vector {3,3,3,3,1/2,—2,1/2,1/2,2,
1/2,0,-3,3/2,0,3/2,3/2,3,3,3,3}, representing the state to which all nodes

174 A — Modeling Flow Updating as a Difference Equation

will converge. From the resulting vector Z,, we can easily observe that the result-
ing estimate is the same for all nodes, and it corresponds to the global average
(a = 3) as expected. For the message model, the unique steady-state equilibrium
T, is the vector {1,1,1,1,5,1,3,0,3,3,3,3,6,6,6,6}, indicating that at some
point in time the nodes will exchange the same messages, i.e. the system will
converge. To check the resulting estimate at each node, we have to use an aux-
iliary functions to calculate it from the exchanged message values. Therefore,
from Equation (A.9), we can derive a function to determine the estimate e, at
the steady-state equilibrium of each node 7, based on the exchanged messages
between two nodes at that point (1m; ; and mj,i é; = (m;; +m;;)/2. Using
this function, we can verify that the value estimated by all nodes is the same,
and it is equal to the global average (e.g., fornode 2: 3 = (5+1)/2= (3+3)/2
= (0+46)/2). Finally, in both models all the eigenvalues of matrix A are equal to
zero (the absolute value of each eigenvalue is smaller than 1). Therefore, from
Corollary [A.4.1.T| we can conclude that the system is globally (asymptotically)
stable (according to both models).

Scenario 2 - In this scenario, the determinant of [I — A] is equal to 0 for both models
(state and message). This result invalidates the application of Corollary
since one of its conditions | / — A |# 0 is not met. The steady-state equi-
librium cannot be calculated by 7 = [I — A]~!'B, because [I — A] is singular
and cannot be inverted. Moreover, several simulations of both systems, using
different initial values for vectors s and m°, have suggested the existence of
different equilibrium points, all estimating the correct value. For instance, ini-
tializing all the vectors elements with the value zero (i.e., all flows and esti-
mates start with the value zero), we obtain a steady-state equilibrium z, equal to
{3,3,3,3,1/2,-2,1/2,1/2,2,1/2,-1,-2,1,1,1,—1,2,2,1,2} and Z,, equal
to {1,1,1,1,5,1,2,1,2,4,2,2,4,5, 4,4}, for the state and message model re-
spectively. Then, introducing a small change in the initial vectors, simply by
considering that f; = v, (i.e., f§ 5 and mj 5 are equal to 2, and all remaining el-
ements keep their value equal to 0), we obtain different steady-state equilibriums
Zs and Z,,, with the respective values {3,3,3,3,1/2,—-2,1/2,1/2,2,1/2,—2/3,
—7/3,1,2/3,1,—-2/3,2,7/3,2/3,2}and {1,1,1,1,5,1,7/3,2/3,2,11/3,2,7/3,

2Supposing that, if the steady-state equilibrium is reached at time ¢, the resulting values at time ¢ + 1
will be kept the same (unless a perturbation is introduced in the system).

A.4 — Problem 175

4,16/3,11/3,4}. Curiously, if we consider that the initial value of fy, is also
equal to vf (i.e., f3s, f3, M3 5 and mj 5 are equal to 2), we get the same steady-
state equilibriums Z, and 7,,, that was obtained when all elements were initial-
ized with zero. Comparing the steady-state vectors resulting from the last situ-
ations, we observe that only the elements referring to flows between the nodes
2, 3, 4 (which belong to the graph cycle) exhibit different values. These sim-
ulation results suggest that the creation of an “imbalance” between the initial
flow values will make the system converge to a different steady-state equilib-
riunﬂ The correctness of all steady-state equilibriums obtained by simulation
was confirmed, simply by verifying the equality z = A.Z + B. However, con-
sidering the existence of multiple steady-state equilibriums (possibly an infinity
of them), will they all correspond to desired states (i.e., with the correct estimate
at all nodes)? On the other hand, analyzing the eigenvalues of matrix A, both
models have similar eigenvalues (see Section|A.4.1.2), all with an absolute value
less or equal to on ie: 1, 3(—1+ iV?2), 3(—1— iv?2), —+, and 0. But, what
can we conclude exactly from the fact that all eigenvalues are smaller than 1,

except one which is equal to 1? Will the system converge?

In conclusion, the analysis performed for the specific examples of Section |A.3
has revealed different behaviors of the system of equations characterizing FU, which
invalidates the use of some tools (e.g., Corollary[A.4.1.1) in some scenarios, appearing
to be dependent from the network topology (graph structure). The empirical results
obtained by simulation (i.e., iterating the systems of difference equations over time,
with different inputs) suggest that the system converge to a steady-state equilibrium
(even if it is not unique), where the estimates of all nodes correspond to the correct
value (i.e., network average). However, how can we demonstrate this for a generic
network topology (any graph structure)? Which mathematical tools (e.g., Theorems)

could we use? The answers to these questions are left for future work.

3From a practical point of view, it suggest that in a multi-path networks, there are several distinct
distributions of flows that yield a correct result. This supports the observation, that even the occurrence
of some perturbations (‘“imbalances” due to message losses and slow links) will lead to a correct result
(global network average) with a different flow distribution across the network.

“Considering the geometrical representation of a pair of complex eigenvalues, ; = o + ;i and

fi; = aj — Bji, in the cartesian space. The modulus 7; of the j'* eigenvalue is given by (aZ 4 52)
(see pag. 79 of [53]).

176 A — Modeling Flow Updating as a Difference Equation

A.4.1.2 Similarity between models: State vs Message

Similar results were found from the previous empirical analysis of the examples of
Section[A.3] for both systems of difference equations: state and message. In particular,
common eigenvalues were found for the matrix A that characterize both models, for

the same scenario:

Scenario 1 - The eigenvalues of matrix A are {0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0, 0} in the state model, and {0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0} in the mes-
sage model;

Scenario 2 - The eigenvalues of matrix A are {1, %(—1—1—@'\/5), %(—1—2'\/5), —%, 0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0} in the state model, and {1, %(—1—1—2'\/5), %(—1_
iV?2), —%, 0,0,0,0,0,0,0,0,0,0,0,0} in the message model;

A more meticulous observation of both matrices, allowed us to create a relation
between the matrix A of both models of difference equations. In a sense, we can see the
matrix A of the message model as a component of the corresponding matrix in the state
model. For instance, Let A® be the matrix A of the system of difference equations that
models the state evolution, and A™ the matrix A of the system of difference equations
that models the message exchange. One can relate the matrix A® (defined in (A.3)) to
A™ (defined in (A.TT)), in the following way:

S S S S
Aehel Ael,en Ae1,f1,1 Ael,fn,n
S S S S
As o Aen,el Aenyen enyfl,l Aenyfn,n
S S
Af1,1761 Afl,hen
A™
S S
fn,'ruel fn,nyen
m 1 : m
o Ale = g HAT #0
and A =
0 otherwise

A.4 — Problem 177

In other words, the lower right sub-matrix of A® is equal to the matrix A™ minus
IDﬁ’ for all elements different from zero.

A.4.1.3 Properties of matrix A

In this section, we simply list some properties of the matrix A that might be found

useful in a further proof of the system stability.

e In the state model, the absolute value of all elements a, . in the matrix A lies in
the interval [0, 1[. In more detail, all the elements of A that correspond to linked
nodes have a value, such that -1 < a,, < 0AN0 < @, < 1, and @, = 0
otherwise (i.e., 0 < |a, .| < 1);

o In the message model, the absolute value of all elements a, . in the matrix A
lies in the interval [0, 1]. In more detail, all the elements of A that correspond to
linked nodes have a value, such that -1 < a,. <0AN0<a,.<1,anda,. =0
otherwise (i.e., 0 < |a, .| < 1);

e In both models, the trace of the matrix A is equal to zero (i.e., tr(A) = 0), since

the value of all elements in the main diagonal is equal to zero;

e Matrix norms of A:

— In the message model, || A ||;4:< 1;

— In the state model, || A ||;mae< 1;

178 A — Modeling Flow Updating as a Difference Equation

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

Planetlab. http://www.planet-1lab.org (Last accessed: Aug. 2011).

Ittai Abraham and Dahlia Malkhi. Probabilistic quorums for dynamic systems.
Distributed Computing, 18(2):113-124, 2005.

Paulo Sérgio Almeida, Carlos Baquero, Martin Farach-Colton, Paulo Jesus, and
Miguel A Mosteiro. Fault-Tolerant Aggregation: Flow Update Meets Mass
Distribution. In 15th International Conference On Principles Of Distributed
Systems (OPODIS), Toulouse, France, December 2011 (Accepted).

S Alouf, E Altman, and P Nain. Optimal on-line estimation of the size of a dy-
namic multicast group. In 21st Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 1109-1118, 2002.

Lorenzo Alvisi, Jeroen Doumen, Rachid Guerraoui, Boris Koldehofe, Harry Li,
Robbert Renesse, and Gilles Tredan. How robust are gossip-based communica-
tion protocols? ACM SIGOPS Operating Systems Review, 41(5):14—18, 2007.

Hani Alzaid, Ernest Foo, and Juan Nieto. Secure data aggregation in wireless
sensor network: a survey. In 6th Australasian conference on Information secu-
rity (AISC), pages 93—-105, 2008.

Sidra Aslam, Farrah Farooq, and Shahzad Sarwar. Power consumption in wire-
less sensor networks. In Proceedings of the 7th International Conference on
Frontiers of Information Technology (FIT), pages 14:1-14:9, Abbottabad, Pak-
istan, 2009. Punjab University College of Information Technology (PUCIT),
University of the Punjab, Anarkali, Lahore, Pakistan.

179

180

Bibliography

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C Baquero, P Almeida, and R Menezes. Fast Estimation of Aggregates in Un-
structured Networks. In 5th International Conference on Autonomic and Au-
tonomous Systems (ICAS), pages 88—93, Valencia, Spain, 2009.

Carlos Baquero, Paulo Sérgio Almeida, Raquel Menezes, and Paulo Jesus. Ex-
trema propagation: Fast distributed estimation of sums and network sizes. I[EEE
Transactions on Parallel and Distributed Systems, 99(PrePrints), 2011.

Carlos Baquero, Paulo Sérgio Almeida, Raquel Menezes, and Paulo Jesus. Ex-
trema Propagation: Fast Distributed Estimation of Sums and Network Sizes.
IEEE Transactions on Parallel and Distributed Systems, (PrePrints), 2011.

Ziv Bar-Yossef, Roy Friedman, and Gabriel Kliot. RaWMS - Random Walk
Based Lightweight Membership Service for Wireless Ad Hoc Networks. ACM
Transactions on Computer Systems, 26(2), 2008.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509-512, 1999.

M Bawa, H Garcia-Molina, A Gionis, and R Motwani. Estimating aggregates
on a peer-to-peer network. Technical report, Stanford University, Computer

Science Department, 2003.

Mayank Bawa, Aristides Gionis, Hector Garcia-Molina, and Rajeev Motwani.
The price of validity in dynamic networks. In Proceedings of the ACM SIGMOD

international conference on management of data, pages 515-526, 2004.

Yitzhak Birk, Idit Keidar, Liran Liss, and Assaf Schuster. Efficient Dynamic
Aggregation. In 20th International Symposium on DIStributed Computing
(DISC), LNCS, pages 90—104, 2006.

Yitzhak Birk, Idit Keidar, Liran Liss, Assaf Schuster, and Ran Wolff. Veracity
Radius: Capturing the Locality of Distributed Computations. In 25th annual
ACM symposium on Principles of Distributed Computing (PODC), 2006.

Miguel Borges, Carlos Baquero, Paulo Jesus, and Paulo Sérgio Almeida. Es-
timativa Continua e Tolerante a Faltas de Funcdes Distribuicio Cumulativa em
Redes de Larga Escala. In Simpdsio de Informdtica (INForum), 2011.

Bibliography 181

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Jorge C Cardoso, Carlos Baquero, and Paulo Sérgio Almeida. Probabilistic
Estimation of Network Size and Diameter. In 4th Latin-American Symposium
on Dependable Computing (LADC), pages 3340, 2009.

Tushar Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM (JACM, 43(2):225-267, 1996.

Jen-Yeu Chen and Jianghai Hu. Analysis of Distributed Random Group-
ing for Aggregate Computation on Wireless Sensor Networks with Randomly
Changing Graphs. [EEE Transactions on Parallel and Distributed Systems,
19(8):1136-1149, 2008.

Jen-Yeu Chen, G Pandurangan, and Dongyan Xu. Robust Computation of Ag-
gregates in Wireless Sensor Networks: Distributed Randomized Algorithms and
Analysis. IEEE Transactions on Parallel and Distributed Systems, 17(9):987—
1000, 2006.

Siyao Cheng, Jianzhong Li, Qiangian Ren, and Lei Yu. Bernoulli Sampling
Based (e, §)-Approximate Aggregation in Large-Scale Sensor Networks. In
Proceedings of the 29th IEEE conference on Information communications (IN-
FOCOM), pages 1181-1189, 2010.

Laukik Chitnis, Alin Dobra, and Sanjay Ranka. Aggregation Methods for
Large-Scale Sensor Networks. ACM Transactions on Sensor Networks (TOSN),
4(2):1-36, 2008.

Laukik Chitnis, Alin Dobra, and Sanjay Ranka. Fault tolerant aggregation in
heterogeneous sensor networks. Journal of Parallel and Distributed Computing,
69(2):210-219, 20009.

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed for
Broad-Coverage Services. ACM SIGCOMM Computer Communication Review,
33(3):3-12, 2003.

E Cohen. Size-estimation framework with applications to transitive closure and
reachability. Journal of Computer and System Sciences, 55(3):441-453, 1997.

182 Bibliography

[27] Edith Cohen and Haim Kaplan. Spatially-decaying aggregation over a network:
model and algorithms. In Proceedings of the ACM SIGMOD international con-
ference on Management of data, 2004.

[28] Edith Cohen and Haim Kaplan. Summarizing data using bottom-k sketches. In
26th annual ACM symposium on principles of distributed computing (PODC),
pages 225-234, 2007.

[29] J Considine, F Li, G Kollios, and J Byers. Approximate aggregation techniques
for sensor databases. In 20th International Conference on Data Engineering
(ICDE), pages 449-460, 2004.

[30] M Dam and R Stadler. A Generic Protocol for Network State Aggregation.
Radiovetenskap och Kommunikation (RVK), 2005.

[31] A DasGupta. The matching, birthday and the strong birthday problem: a con-
temporary review. Journal of Statistical Planning and Inference, 130(1-2):377—
389, 2005.

[32] B. A. Davey and Hilary A. Priestley. Introduction to lattices and order. Cam-
bridge University Press, Cambridge, 2nd edition, 2002.

[33] A Deligiannakis, Y Kotidis, and N Roussopoulos. Hierarchical In-Network
Data Aggregation with Quality Guarantees. In International Conference on
Extending Database Technology (EDBT), pages 658—675, 2004.

[34] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the 6th annual ACM Symposium
on Principles of distributed computing (PODC), 1987.

[35] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathemat-
ics. Springer, 4th edition edition, 2010.

[36] A Dimakis, A Sarwate, and M Wainwright. Geographic gossip: efficient ag-
gregation for sensor networks. In 5th International Conference on Information
Processing in Sensor Networks (IPSN), pages 69-76, 2006.

Bibliography 183

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A Dimakis, A Sarwate, and M Wainwright. Geographic Gossip: Efficient
Averaging for Sensor Networks. [EEE Transactions on Signal Processing,
56(3):1205-1216, 2008.

Monica Dixit and Antonio Casimiro. Adaptare-FD: A Dependability-Oriented
Adaptive Failure Detector. In 29th IEEE Symposium on Reliable Distributed
Systems, pages 141-147, 2010.

D Dolev, O Mokryn, and Y Shavitt. On multicast trees: structure and size
estimation. In 22nd Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), pages 1011-1021, 2003.

D Dolev, O Mokryn, and Y Shavitt. On multicast trees: structure and size
estimation. IEEE/ACM Transactions on Networking, 14(3):557-567, 2006.

S Dolev, E Schiller, and J Welch. Random Walk for Self-Stabilizing Group
Communication in Ad-Hoc Networks. In 2/st IEEE Symposium on Reliable
Distributed Systems, pages 70-79, 2002.

S Dolev, E Schiller, and J Welch. Random Walk for Self-Stabilizing Group
Communication in Ad Hoc Networks. IEEE Transactions on Mobile Comput-
ing, 5(7):893-905, 2006.

Marianne Durand and Philippe Flajolet. Loglog Counting of Large Cardinali-
ties (Extended Abstract). In 1/th Annual European Symposium on Algorithms
(ESA), pages 605-617, Budapest, Hungary, 2003.

Saber Elaydi. An Introduction to Difference Equations. Undergraduate Texts in
Mathematics. Springer, 3rd edition, 2005.

Paul Erdds and Alfréd Rényi. On the evolution of random graphs. Publications
of the Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61,
1960.

P Eugster, R Guerraoui, S Handurukande, P Kouznetsov, and A-M Kermarrec.
Lightweight probabilistic broadcast. ACM Transactions on Computer Systems,
21(4):341-374, 2003.

184

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Ittay Eyal, Idit Keidar, and Raphael Rom. Distributed Clustering for Robust
Aggregation in Large Networks. In 5th Workshop on Hot Topics in System
Dependability (HotDep), 2009.

Ittay Eyal, Idit Keidar, and Raphael Rom. Distributed data classification in
sensor networks. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium
on Principles of distributed computing (PODC), pages 151-160, 2010.

Yao-Chung Fan and A Chen. Efficient and robust sensor data aggregation using
linear counting sketches. In IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pages 1-12, 2008.

Yao-Chung Fan and Arbee L Chen. Efficient and Robust Schemes for Sensor
Data Aggregation Based on Linear Counting. IEEE Transactions on Parallel
and Distributed Systems, 21(11):1675-1691, 2010.

E Fasolo, M Rossi, J Widmer, and M Zorzi. In-network aggregation tech-
niques for wireless sensor networks: a survey. IEEE Wireless Communications,
14(2):70-87, 2007.

P Flajolet and G Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences, 31(2):182-209, 1985.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyper-
LogLog: the analysis of a near-optimal cardinality estimation algorithm. In In-
ternational Conference on Analysis of Algorithms (AofA), pages 127-146, 2007.

T Friedman and D Towsley. Multicast session membership size estimation.
In 18th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pages 965-972, 1999.

Oded Galor. Discrete Dynamical Systems. Springer, 1st edition, 2006.

A Ganesh, A Kermarrec, E Le Merrer, and L Massoulié. Peer counting and
sampling in overlay networks based on random walks. Distributed Computing,
20(4):267-278, 2007.

A Ganesh, A Kermarrec, and L Massoulie. Peer-to-peer membership manage-
ment for gossip-based protocols. IEEE Transactions on Computers, 52(2):139—
149, 2003.

Bibliography 185

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Jim Gray. Notes on Data Base Operating Systems. In R. Bayer, R. Graham,
and G. Seegmiiller, editors, Operating Systems: An Advanced Course, pages
393-481. Operating Systems, 1978.

Michael Greenwald and Sanjeev Khanna. Power-conserving computation
of order-statistics over sensor networks. In Proceedings of the 23rd ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems
(PODS), pages 275-285, 2004.

Indranil Gupta, Robbert Van Renesse, and Kenneth P Birman. Scalable fault-
tolerant aggregation in large process groups. In International Conference on
Dependable Systems and Networks (DSN), pages 433—442, 2001.

M Haridasan and R van Renesse. Gossip-based distribution estimation in peer-
to-peer networks. In International workshop on Peer-To-Peer Systems (IPTPS),
2008.

W Heinzelman, A Chandrakasan, and H Balakrishnan. Energy-Efficient Com-
munication Protocol for Wireless Microsensor Networks. In 33rd Annual

Hawaii International Conference on System Sciences, page 10, 2000.

W Heinzelman, A Chandrakasan, and H Balakrishnan. An application-specific
protocol architecture for wireless microsensor networks. IEEE Transactions on
Wireless Communications, 1(4):660-670, 2002.

J Hernandez and I Phillips. Weibull mixture model to characterise end-to-
end Internet delay at coarse time-scales. IEE Proceedings - Communications,
153(2):295-304, 2006.

Keren Horowitz and Dahlia Malkhi. Estimating network size from local infor-
mation. Information Processing Letters, 88(5):237-243, 2003.

M Jelasity, W Kowalczyk, and M van Steen. An Approach to Massively Dis-
tributed Aggregate Computing on Peer-to-Peer Networks. In 12th Euromi-
cro Conference on Parallel, Distributed and Network-Based Processing, pages
200-207, 2004.

186

Bibliography

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

M Jelasity and A Montresor. Epidemic-style proactive aggregation in large over-
lay networks. In 24th International Conference on Distributed Computing Sys-
tems, pages 102-109, 2004.

M Jelasity, A Montresor, and O Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM Transactions on Computer Systems, 23(3):219-252,
2005.

Mark Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris. The

Peersim simulator. http://peersim.sf.net (Lastaccessed: Aug. 2011).

Paulo Jesus, Carlos Baquero, and Paulo Almeida. ID Generation in Mobile En-
vironments. In Conference on Mobile and Ubiquitous Systems (CSMU), pages
159-162. University Of Minho, 2006.

Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. Dependability in Ag-
gregation by Averaging. In Simpdsio de Informdtica (INForum), 2009.

Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. Fault-Tolerant Aggre-
gation by Flow Updating. In 9¢h IFIP International Conference on Distributed
Applications and interoperable Systems (DAIS), pages 73-86, 2009.

Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. Using Less Links
to Improve Fault-Tolerant Aggregation. In [Fast Abstract] 4th Latin-American
Symposium on Dependable Computing (LADC), 2009.

Paulo Jesus, Carlos Baquero, and Paulo Sergio Almeida. Fault-Tolerant Aggre-
gation for Dynamic Networks. In 29th IEEE Symposium on Reliable Distributed
Systems, pages 3743, 2010.

Lujun Jia, Guevara Noubir, Raymohan Rajaraman, and Ravi Sundaram. GIST:
Group-Independent Spanning Tree for Data Aggregation in Dense Sensor Net-
works. In Phillip Gibbons, Tarek Abdelzaher, James Aspnes, and Ramesh Rao,
editors, Distributed Computing in Sensor Systems, pages 282-304. Springer
Berlin / Heidelberg, 2006.

T Jurdzifiski, Miroslaw Kutylowski, and J Zatopiafiski. Energy-Efficient Size

Approximation of Radio Networks with No Collision Detection. In 8th Annual

Bibliography 187

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

International Conference on Computing and Combinatorics (COCOON), pages
279-289, 2002.

M Frans Kaashoek and David R Karger. Koorde: A Simple Degree-Optimal
Distributed Hash Table. In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), pages 98—107. MIT Laboratory for Computer Science, 2003.

J Kabarowski, M Kutytowski, and W Rutkowski. Adversary Immune Size Ap-
proximation of Single-Hop Radio Networks. In 3th International Conference
on Theory and Applications of Models of Computation (TAMC), pages 148—158,
2006.

S Kashyap, S Deb, K Naidu, R Rastogi, and A Srinivasan. Gossip-Based Aggre-
gate Computation with Low Communication Overhead. In /2th International

Telecommunications Network Strategy and Planning Symposium, pages 1-0,
2006.

D Kempe, A Dobra, and J Gehrke. Gossip-Based Computation of Aggregate
Information. In 44th Annual IEEE Symposium on Foundations of Computer
Science, pages 482491, 2003.

Oliver Kennedy, Christoph Koch, and Al Demers. Dynamic Approaches to
In-network Aggregation. In IEEE 25th International Conference on Data Engi-
neering (ICDE), pages 1331-1334, 2009.

Anne-Marie Kermarrec and Maarten Steen. Gossiping in distributed systems.
ACM SIGOPS Operating Systems Review, 41(5):2-7, 2007.

D Kostoulas, D Psaltoulis, Indranil Gupta, K Birman, and Al Demers. De-
centralized Schemes for Size Estimation in Large and Dynamic Groups. In 4th

IEEE International Symposium on Network Computing and Applications, pages
41-48, 2005.

Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta, Kenneth P Birman,
and Alan J Demers. Active and passive techniques for group size estimation in
large-scale and dynamic distributed systems. Elsevier Journal of Systems and
Software, 80(10):1639-1658, 2007.

188

Bibliography

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network Coordinates in the
Wild. In Proceedings of 4th USENIX Symposium on Networked Systems Design
& Implementation (NSDI), pages 299-311, 2007.

J Li, K Sollins, and D Lim. Implementing Aggregation and Broadcast over
Distributed Hash Tables. ACM SIGCOMM Computer Communication Review,
35(1):81-92, 2005.

WH Liao, Y Kao, and CM Fan. Data aggregation in wireless sensor networks
using ant colony algorithm. Journal of Network and Computer Applications,
31(4):387-401, 2008.

Hong Luo, Yonghe Liu, and Sajal K Das. Distributed Algorithm for En Route

Aggregation Decision in Wireless Sensor Networks. IEEE Transactions on Mo-
bile Computing, 8(1):1-13, 2009.

Hong Luo, J Luo, Y Liu, and S Das. Adaptive Data Fusion for Energy Effi-
cient Routing in Wireless Sensor Networks. IEEE Transactions on Computers,
55(10):1286-1299, 2006.

Nancy A Lynch. Distributed Algorithms. 1996.

S Madden, R Szewczyk, M Franklin, and D Culler. Supporting Aggregate
Queries Over Ad-Hoc Wireless Sensor Networks. In 4th IEEE Workshop on
Mobile Computing Systems and Applications, pages 4958, 2002.

Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. TAG: a
Tiny AGgregation service for ad-hoc sensor networks. ACM SIGOPS Operating
Systems Review, 36(SI):131-146, 2002.

Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dy-
namic emulation of the butterfly. In Proceedings of the 21st annual symposium
on Principles of distributed computing (PODC), pages 183—-192, 2002.

Sandeep Mane, Sandeep Mopuru, Kriti Mehra, and Jaideep Srivastava. Network
Size Estimation In A Peer-to-Peer Network. Technical report, Department of

Computer Science, University of Minnesota, 2005.

Bibliography 189

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Amit Manjhi, Suman Nath, and Phillip Gibbons. Tributaries and Deltas: Effi-
cient and Robust Aggregation in Sensor Network Streams. In ACM SIGMOD
International Conference on Management Of Data, pages 287-298, 2005.

Gurmeet Manku. Routing networks for distributed hash tables. In Proceedings
of the 22nd annual symposium on Principles of Distributed Computing (PODC),
2003.

Gurmeet Singh Manku, Mayank Bawa, Prabhakar Raghavan, and Verity Inc.
Symphony: Distributed Hashing in a Small World. In Proceedings of the 4th
USENIX Symposium on Internet Technologies and Systems (USITS), 2003.

Laurent Massoulié, Erwan Merrer, Anne-Marie Kermarrec, and Ayalvadi
Ganesh. Peer Counting and Sampling in Overlay Networks: Random Walk
Methods. In 25th annual ACM symposium on Principles of Distributed Com-
puting (PODC), 2006.

M Mehyar, D Spanos, J Pongsajapan, S Low, and R Murray. Asynchronous
Distributed Averaging on Communication Networks. IEEE/ACM Transactions
on Networking, 15(3):512-520, 2007.

Erwan Le Merrer, Anne-Marie Kermarrec, and Laurent Massoulie. Peer to peer
size estimation in large and dynamic networks: A comparative study. In Pro-
ceedings of the 15th IEEE International Symposium on High Performance Dis-
tributed Computing, pages 7-17, 2006.

R Misra and C Mandal. Ant-aggregation: ant colony algorithm for optimal data
aggregation in wireless sensor networks. In IFIP International Conference on

Wireless and Optical Communications Networks, page 5, 2006.
Dragoslav Mitrinovic. Analytic Inequalities. Springer-Verlag, 1970.

A Montresor, M Jelasity, and O Babaoglu. Robust aggregation protocols for
large-scale overlay networks. In International Conference on Dependable Sys-
tems and Networks (DSN), pages 19-28, 2004.

D Mosk-Aoyama and D Shah. Computing Separable Functions via Gossip. In
25th annual ACM symposium on Principles of Distributed Computing (PODC),
pages 113-122, 2006.

190

Bibliography

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

D Mosk-Aoyama and D Shah. Fast Distributed Algorithms for Computing Sep-
arable Functions. IEEE Transactions on Information Theory, 54(7):2997-3007,
2008.

S Motegi, K Yoshihara, and H Horiuchi. DAG based In-Network Aggregation
for Sensor Network Monitoring. In International Symposium on Applications
and the Internet (SAINT), page 8, 2005.

Eduardo Nakamura, Antonio Loureiro, and Alejandro Frery. Information fu-
sion for wireless sensor networks: Methods, models, and classifications. ACM
Computing Surveys (CSUR, 39(3):1-55, 2007.

Suman Nath, Phillip Gibbons, Srinivasan Seshan, and Zachary Anderson. Syn-
opsis diffusion for robust aggregation in sensor networks. In Proceedings of the

2nd international conference on Embedded networked sensor systems (SenSys),
2004.

N Ntarmos, P Triantafillou, and G Weikum. Counting at Large: Efficient Cardi-
nality Estimation in Internet-Scale Data Networks. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE), 2006.

N Ntarmos, P Triantafillou, and G Weikum. Distributed hash sketches: Scalable,
efficient, and accurate cardinality estimation for distributed multisets. ACM

Transactions on Computer Systems, 27(1), 2009.

Boris Pittel. On Spreading a Rumor. SIAM Journal on Applied Mathematics,
47(1):213-223, 1987.

Alberto Prieto and Rolf Stadler. Adaptive Distributed Monitoring with Accu-
racy Objectives. In SIGCOMM Workshop on Internet Network Management
(INM), pages 65-70, 2006.

R Rajagopalan and P Varshney. Data-aggregation techniques in sensor net-
works: a survey. IEEE Communications Surveys & Tutorials, 8(4):48-63, 2005.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In Proceedings of the con-

ference on Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), pages 161-172, 2001.

Bibliography 191

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg (Middleware), pages 329-350, 2001.

J Sacha, J Napper, C Stratan, and G Pierre. Adam?2: Reliable Distribution Esti-
mation in Decentralised Environments. In IEEE 30th International Conference
on Distributed Computing Systems (ICDCS), pages 697-707, 2010.

Yingpeng Sang, Hong Shen, Y Inoguchi, Yasuo Tan, and Naixue Xiong. Secure
Data Aggregation in Wireless Sensor Networks: A Survey. In 7th International
Conference on Parallel and Distributed Computing, Applications and Technolo-
gies (PDCAT), pages 315-320, 2006.

Carl J. Schwarz and George A. F. Seber. Estimating Animal Abundance: Re-
view IIl. Statistical Science, 14(4):427-456, 1999.

A Sharaf, Jonathan Beaver, Alexandros Labrinidis, and K Chrysanthis. Balanc-
ing energy efficiency and quality of aggregate data in sensor networks. Interna-
tional Journal on Very Large Data Bases (VLDB), 13(4):384-403, 2004.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Sub-
hash Suri. Medians and beyond: new aggregation techniques for sensor net-
works. In Proceedings of the 2nd international conference on Embedded net-

worked sensor systems (SenSys), pages 239-249, 2004.

Ion Stoica, Robert Morris, David Karger, M Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM), pages 149-160, 2001.

Apostolos Syropoulos. Mathematics of multisets. In Proceedings of the Work-
shop on Multiset Processing: Multiset Processing, Mathematical, Computer
Science, and Molecular Computing Points of View, pages 347-358. Democri-
tus University of Thrace Department of Civil Engineering 671 00 Xanthi GR
Greece, 2001.

192

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Li Tang, Yin Chen, Fei Li, Hui Zhang, and Jun Li. Empirical Study on the
Evolution of PlanetLab. In Proceedings of the 6th International Conference on
Networking (ICN), pages 64-70. IEEE, 2007.

Robbert van Renesse. The Importance of Aggregation. In André Schiper,
Alex A. Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao, editors, Future
Directions in Distributed Computing, pages 87-92. Springer-Verlag, 2003.

Robbert van Renesse, Kenneth Birman, and Werner Vogels. Astrolabe: A Ro-
bust and Scalable Technology for Distributed System Monitoring, Management,
and Data Mining. ACM Transactions on Computer Systems, 21(2):164-206,
2003.

Hongpeng Wang and Neng Luo. An Improved Ant-Based Algorithm for Data
Aggregation in Wireless Sensor Networks. In International Conference on
Communications and Mobile Computing (CMC), pages 239-243, 2010.

Kyu-Young Whang, Brad Vander-Zanden, and Howard Taylor. A linear-time
probabilistic counting algorithm for database applications. ACM Transactions
on Database Systems (TODS), 15(2):208-229, 1990.

Fetahi Wuhib, Mads Dam, Rolf Stadler, and Alexander Clemm. Robust Mon-
itoring of Network-wide Aggregates through Gossiping. In /0th IFIP/IEEE

International Symposium on Integrated Network Management, pages 226-235,
2007.

B Zhao, J Kubiatowicz, and A Joseph. Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. Technical report, University of Cali-
fornia, Berkeley, 2001.

JZhao, R Govindan, and D Estrin. Computing Aggregates for Monitoring Wire-
less Sensor Networks. In /st IEEE International Workshop on Sensor Network
Protocols and Applications, pages 139-148, 2003.

	Página 1
	Página 2
	Página 3
	Página 4
	robust_agg_phd_thesis_pcj.pdf
	I ExordiumThe Purpose of this Work
	Introduction
	Motivation
	Contributions
	Organization

	Problem Definition
	Properties of Aggregation Functions
	Decomposability
	Duplicate sensitiveness and idempotence

	Taxonomy of common aggregation functions

	II State of the Art
	Related Work
	Communication
	Hierarchy-based
	Ring
	Flooding/Broadcast
	Random Walk
	Gossip-based
	Hybrid

	Computation
	Hierarchical
	Averaging
	Sketches
	Digests
	Counting

	Dependability Issues of Existing Algorithms
	Robustness of Averaging Algorithms
	Push-Sum Protocol
	Push-Pull Gossiping
	Distributed Random Grouping

	III Robust Distributed Aggregation Approach
	Flow Updating
	Algorithm
	Correctness
	Model and Assumptions
	(Simplest) Non Concurrent Model
	Message Loss

	Concurrent Model (with non overlapping groups)
	Message Loss

	Variations and Improvements
	Flow Updating with Preferential Grouping
	Formation of Averaging Groups

	Termination/Quiescence
	Asynchrony

	Estimating Complex Aggregates

	IV Evaluation
	Evaluation
	Simulation Settings
	Comparison Against Other Algorithms
	Fault-Tolerance
	Flow Updating with Preferential Grouping
	Dynamism
	Churn
	Fault Detection

	Input Values Change

	Termination/Quiescence
	Asynchrony

	V PeroratioAchievements and Future Work
	Conclusion
	Future Work

	VI Appendices
	Modeling Flow Updating as a Difference Equation
	State Model
	Message Model
	Example
	Scenario 1 (tree network)
	Scenario 2 (multi-path network)

	Problem
	Additional information
	Exploration
	Similarity between models: State vs Message
	Properties of matrix A

	Bibliography

