
Moving (and averaging) values over channels
with message loss, replay, and re-ordering

Carlos Baquero

(Joint work with Paulo Almeida, Ali Shoker)

Presented at UPMC LIP6, January 2015

Introduction

Moving/Handoff Problem

Nodes in a network have splittable value quantities, and the task is
to reliably move quantities from node to node.

Each transfer involves only two parties, no global agreement.
Possible uses include:

Non-negative inc/dec shared counters (Positive PN-Counter)

Stock escrow

Token/lock transfers

Distributed averaging and derived data aggregates

Sketch of Handoff

Source Node i

state: v
on transfer(j , q) move q to node j ; q ≤ v
v := v − q
sendj(q)

Destination Node j

state: v
on receivei (q)
v := v + q

Sketch of Handoff, commutative monoid with split

Split definition:

(v ′, q) = split(v , h) such that v ′ ⊕ q = v and q ≤ h

Source Node i

state: v any commutative monoid
on transfer(j , h) move h, or less, to node j
(v , q) := split(v , h)
sendj(q)

Destination Node j

state: v any commutative monoid
on receivei (q)
v := v ⊕ q

Network

Conservation of quantities requires an exacly-once delivery
from each send to corresponding receive.

TCP mostly ensures exactly-once, but degrades to
at-most-once upon connection break.

UDP can duplicate, drop and re-order messages.

Naive exactly-once over UDP

Source assigns a unique id to each sent message

Messages are re-transmitted until acknowledged

Destination stores unique ids to avoid duplicated delivers

(more compact sequence numbers ids can be used for FIFO)

+ Source can transmit immediately (one-way handshake)

− Node state at least linear on the number of (past) parties

TCP connection management

No connection specific information between incarnations

Three-way handshake to make connection

Unbounded memory, to keep counters

A transfer over TCP pays a latency price and yet is still sensible to
connection breaks

Handoff

System Model

Network can duplicate, drop and re-order

Nodes only have connection specific info during transfers

Nodes can fail, but eventually recover

Three-way handshake is needed (Attiya, Rappoport. DC 1997)

Strategy

Adapt (piggybacking) three-way handshake steps:

1 Announce available value and sender counter/clock

2 Prepare receive slot and request quantity hint

3 Split value, up to hint, and send exactly-once quantity

4 (Garbage collect at sender, upon acknowledge)

Handoff

val: 8
sck: 10i

j val: 4
dck: 20

Handoff

Time

Handoff

val: 8
sck: 10i

j val: 4
dck: 20

val: 4
dck: 21

s: i ((10,20),2)

2=needs(4,8)

Handoff

Time

1

Handoff

val: 6
sck: 11

t: j ((10,20),2)
val: 8

sck: 10i

j val: 4
dck: 20

val: 4
dck: 21

s: i ((10,20),2)

(6,2)=split(8,2)

Handoff

Time

1 2

Handoff

val: 6
sck: 11

t: j ((10,20),2)
val: 8

sck: 10i

j val: 4
dck: 20

val: 4
dck: 21

s: i ((10,20),2)
val: 6

dck: 21

6=4⊕2

Handoff

Time

1 2 3

Handoff

val: 6
sck: 11

t: j ((10,20),2)
val: 8

sck: 10i

j val: 4
dck: 20

val: 4
dck: 21

s: i ((10,20),2)
val: 6

dck: 21

val: 6
sck: 11

Handoff

Time

1 2 3 4

Handoff

val: 8
sck: 10i

j val: 4
dck: 20

val: 6
dck: 21

val: 6
sck: 11

Handoff

Time

Duplicate Resilient
Communication

Payload monoid data types
Value averaging

Positive reals that ask for half difference, give as much as possible

0
.

= 0

⊕ .
= +

needs(x , y)
.

=
y − x + |y − x |

4

split(x , h)
.

= (
x − h + |x − h|

2
,
x + h − |x − h|

2
)

Derived aggregates include global sums and node counting

Payload monoid data types
Hotel booking (with averaging strategy)

Monodic values might not be in total order

X = {single 7→ 8, double 7→ 12}

Y = {single 7→ 1, double 7→ 20}

Leading to transfers in both directions

{double 7→ 4} = needs(X ,Y)

{single 7→ 3} = needs(Y ,X)

Eventually stabilizing with

X = {single 7→ 5, double 7→ 16}

Y = {single 7→ 4, double 7→ 16}

Experiment setup
Graph properties

Graph with n nodes and each with 2 log n links

(Symmetric forward and backward Chord)

Small world topology. Low path lengths, High clustering

Synchronous message model

Initial values from integer uniform distribution 0 : 255

All converge to average, about 128

Experiment setup
Faults

Simple experiment that aims to check resilience to message drop
and message duplication faults (dropping and duplication can also
lead to re-ordering events), and show final GC of all connection
meta-data.

Execution with no faults

Executions with 25, 50 and 75% message loss faults

Executions with 25, 50 and 75% message replay faults

Execution with 75% mixed faults

Storage probability for replay is at 20% (lower means older replays)

(Note: need and split functions not yet optimized for this topology)

Experiments
No loss

Showing linear meta-data size, excluding log growing clocks

Experiments
25% loss

Experiments
50% loss

Experiments
75% loss

Experiments
No loss

Experiments
25% replay

Experiments
50% replay

Experiments
75% replay

Experiments
No loss

Experiments
75% loss, 75% replay

Comments

+/− Base algorithm is not optimized for this experiment

+ Still, there is clear high resilience to faults

+ State after t transfers is eventually O(log t)

− Topology must ensure symmetric exchanges

− Uncontrolled churn impacts GC:

− Meta-data kept, linear with failed node peers k
+ If degree is log n then k ≤ log n

+ Implemented in C++, for int, float and map payload

Related Work

The level of handshake required for managing a connection.
Hagit Attiya, Rinat Rappoport. Distributed Computing. 1997.

Scalable Eventually Consistent Counters over Unreliable
Networks. Paulo Sérgio Almeida, Carlos Baquero. ArXiv.
2013.

Questions?

Email: cbm@di.uminho.pt
Twitter: @xmal

	Introduction
	Introduction

