Panasync: Dependency tracking among file copies

Paulo Sérgio Almeida
psa@di.uminho.pt

Carlos Baquero
cbm@di.uminho.pt

Victor Fonte
vEff@di.uminho.pt

Distributed Systems Group
Computer Science Department

Minho Unwversity, Braga, Portugal
http://gsd.di.uminho.pt/

Abstract

File copying is frequently used to implement ad hoc man-
agement of file replicas, backups and versions. Such tasks
can be assisted by appropriate applications, at the ex-
pense of introducing some restrictions to the usage pat-
terns. In particular, this is the case of interactions in-
volving disconnected machines and transportable media.
PANASYNC tries to support these actions by introducing
a set, of commands for file copying and re-integration that
complement the file-system commands and provide sup-
port for dependency analysis among time-stamp assisted
files.

1 Introduction

User interaction with the file system is supported by
command line or by graphical user interfaces, both al-
ternatives providing standard operations such as file and
directory creation, renaming, copying and removal. In
their normal activity users can resort to a given opera-
tion in order to achieve different purposes. For instance,
the copy operation can be used to create a backup of
a file, to branch a project or even to substitute a file
with the contents of another. Due to the simplicity of
the basic operations available to the user, the underlying
purpose cannot be perceived by the system. The system
treats the operations indistinguishably, thus having no
provision to assist the user along its tasks. Consequently
the user is on its own, regarding, for instance, file version
management.

The common solution to this problem is to adopt
version-control environments offering a special set of
tools and often embedding their own filing structures in
the underlying file system. However, the adoption of
a special environment for versioning control is usually
a matter of complexity assessment, and users tend to
avoid it when they want to manage what they perceive
as a simple file duplication or versioning task. Few users

resort to versioning support tools when taking a draft
document copy to eventually work on it in a weekend.

Additionally, the use of existing versioning and repli-
cation environments calls for a centralized or at least
pre-set distributed configuration that is frequently inad-
equate to the user mobility needs. Missing features en-
compass the uncoordinated creation of new replicas and
isolated forking of new versions. Together these restric-
tions can lead users back to basic file system operations,
or at least make them think twice before switching into
a coordinated environment.

In this article we discuss the design of a set of tools that
provide autonomous file copying and versioning. These
constructs can be implemented by a set of commands
that manage additional time-stamping data over an off-
the-shelf file system or by the design of a file system
extension that manages and hides the time-stamp data.
These tools can be used as a complement to the standard
file system operations.

2 Related Work

Replicated file systems such as Copa [4], Ficus [3] and
RUMOR [8], are bound to rely on some notion of repli-
cation volumes (typically subtrees in a given machine).
These systems can be related to version control systems
if interpreted as providing version control over a well
defined number of branches, when allowing optimistic
replica evolution on each volume.

In these systems, the use of vector time-stamps for con-
flict detection requires either an indexing of the replica-
tion volumes or a way to univocally identify each volume.
That assumption enables the design of file time-stamps
as mappings from volume 4d (which can be a name or vec-
tor index) into an update counter [5, 7]. A consequence
of this design is that a file cannot be replicated in the
same volume, and in particular in the same directory.

Another problem is the transitive replication that can
occur, for instance, when using transportable media. In

this case, the availability of one replica is not sufficient for
the autonomous creation of the new replication volume
that would host a subsequent replica. All these patterns
of usage, when actually needed, lead the users back to
the use of uncoordinated copy.

The solution to the autonomous identity creation prob-
lem relies on a recursive construction of the new ids, in
the presence of a single file replica. The BAYOU system
[6] uses a similar technique for volume identity creation.
PAaNAsYNC will use a recursive technique that is based
on previous work on autonomous causality [2] and au-
tonomous file time-stamping [1] in order to provide single
file replication and versioning.

Simple but well deployed forms of replication systems,
such as Microsoft Windows Briefcase and the new off-line
files and folders of Windows 2000, target optimistic repli-
cation between a mobile unit (or an instance of trans-
portable media) and one host. This restricted form of
replication fits the general case of replicated file systems.

Traditional versioning systems, such as CVS! and
PRCS?, are targeted to manage short derivations from
a central branch of development. In this sense they sup-
port an arbitrary number of concurrent evolutions but
do not treat them as first class elements, and keep a cen-
tralized control on the versioning information. A recent
trend in versioning systems, as depicted in BITKEEPER?
design, aims to support parallel lines of development that
share code improvements with a more robust ‘diffing’
technique. This approach differs from the PANASYNC
scenario as it targets the management of sets of files
(repositories), in contrast with a file based approach, and
focuses on ‘diff’ portability and not on causality based
domination analysis between parallel evolutions. Never-
theless this trend appears to share common motivation
with our approach whilst at a different level.

3 Revisiting Copy Constructs

PANASYNC intends to add file based replication and ver-
sioning constructs in a way that complements the usual
file manipulation constructs. Since some of their func-
tionality will be complemented, it is important to review
the possible applications of existing operations. Consid-
ering the arbitrary syntax and Unix mapping shown in
Table 1, we discuss how some user tasks expressing repli-
cation or versioning are typically performed.

If the intent is to create a new file unrelated to the
other files, the operation could be create(content,new-
file-name). However, it is sometimes useful to start the
new file with the content of another file (for instance

lhttp://wuw.sourcegear.com/CVS/
thtp ://wuw.xcf .berkeley.edu/~ jmacd/prcs.html
3h‘l:tp ://wuw.bitmover.com/bitkeeper/

create(body,target)
echo "body" > target
copy(base,target)
cp base target
move(base,target)
mv base target

Table 1: Classic file constructs.

when starting a new BATEX document or a CGI script),
which would lead to copy(file-name,new-file-name).

When the intent is to keep a backup copy of a given
file, the operation is something like copy(file-name,file-
name.orig) or slightly different, copy(file-name,file-
name.v01), if several backup versions are to be created.
If, latter on, the user wants to discard changes he issues
something like copy(file-name.orig,file-name). Alterna-
tively if the user needs backup versions for a set of files,
he might make use of a new sub-directory that gathers
a given version of the files, and then use something like
copy(*,dir-name.v01), which keeps the original file names
but places them in a different name space.

Finally, when the intent is to replicate a file or set of
files the practice is to keep the names and copy them
into a different name space (disk and directory). Later
on, replica identification and the possibility of replica re-
integration must be evaluated by the user and lead to
the appropriate copy or move operations.

In all these tasks the copy operation is heavily used
and its different intents are only vaguely captured by the
choice of names and name spaces that the user conducts.
There is no way of providing system support to these
operations and the users are on their own to make either
correct decisions or mistakes.

Its is also clear that the directory structure is used
for several purposes, division of name space, classi-
fication, and identification of different physical stor-
age devices. It can be the case that files like
/floppy/panasync.tex and /home/cbm/psart.tex are
versions of the same entity and /src/q/readme. txt and
/tmp/qinst/readme.txt are totally unrelated.

4 Panasync Operations

In order to assist file replication and versioning tasks,
we propose a set of commands that track dependencies
between versions of files. A file system with PANASYNC
extensions, or user level commands, manages ordinary
as well as panasync-enabled files, the latter having an
extra time-stamp attribute. For convenience of discourse
we designate the panasync-enabled files pfiles and the
others ofiles (ordinary files); we also use the term file to

new([base],target)
pananew base target
duplicate(base,target)
panadup base target

join(base,target)
panajoin base target

Table 2: Some PANASYNC constructs.

refer to either class. The traditional commands apply
to both file types, but pfiles can also be manipulated by
the PANASYNC operations as shown in Table 2 (where we
also present possible Unix mappings).

The new operation is used to create a pfile. Its name,
target, is mandatory and an optional file name for ini-
tialization is allowed by indicating a base file. Usage of
this operation means that new a lineage of files is being
created and that the target pfile is not comparable with
other lineages. Ordinary files are all non comparable.

When a backup, versioning or replication action is
needed, users can resort to the duplicate operation. This
operation creates a target pfile from the base pfile and
ensures that both share the same lineage. After dupli-
cation both pfiles are equivalent, hold the same contents
and should be regarded as siblings. In fact, although base
was the starting point they do not hold a parent/child
relation.

An immediately subsequent join operation with one of
these pfiles as base and the other as target would remove
base since the system detects that they share unchanged
content, as well as positions that can be determined to
be equivalent in the version lineage.

By consulting the pfiles time-stamps the join opera-
tion is able to relate any pair of files, verify if one of
the following conditions holds, and advise appropriate
action:

e Condition: base and target are in distinct lineages,
or one or both of them are ofiles.
Action: Abort the join and do nothing.

e Condition: base dominates target, or target domi-
nates base.
Action: The normal action is to remove base and
place in target the content that dominates (either
from base or target), but an option can be provided
to choose the dominated content.

e Condition: Neither base nor target dominates,
which means that they hold concurrent updates.
Action: Do nothing or prompt the user for a rec-
onciliation file, in which case both base and target
are removed and the new contents are stored in the
position target. This new file dominates all files that
is ancestors would dominate.

This description shows that names are not important
in these operations since pfiles have enough information
to distinguish file instances as well as to compare them.
As a consequence of this, the choice of pfile names need
only address name clash avoidance in the directory sys-
tem that stores them.

In fact it is possible to design an option that applies
a join operation recursively to two whole subtrees. This
would select all pfiles from the subtrees, produce two
flat lists of files and compare those in the same lineage,
removing, for instance, the dominated files from the first
subtree.

Another useful construct, although not a basic one, is
a panasync basel base2 command that produces a join
of the two files in a temporary pfile and immediately
duplicates it again into basel and base2. The overall
effect is to keep two copies with synchronized contents.

Renaming pfiles can be done as usual with the orig-
inal move command, as long as time-stamp association
to file name can be tracked. Depending on the system,
this need can lead to a simple patch to the native move
command or to the introduction of a panamv construct.

Finally, the use of the native copy with a pfile as base
produces a target ofile with unrelated lineage, which is a
useful functionality.

5 Synopsis of Time-Stamping

The complex pattern of version and lineage control can
only be achieved with a sound time-stamping technique
that supports autonomous creation of a partial order
among file replicas, and the identification of lineages. A
presentation of the causality model and time-stamping
technique is beyond the scope of this paper. Some in-
sight on the technique can be found in [2, 1]. Here we
will only address some significant points that character-
ize this time-stamp model.

Vector time-stamps, as originally shown in [5], al-
low the tagging of identical replicas with identical time-
stamps. This is possible due to the fact that the iden-
tity of the replication volumes, and the information of
the hosting volume for each replica, can complement
the information stored in the time-stamp. On the con-
trary, if we wish to have autonomous time-stamps all
the relevant information must be stored in each replica
time-stamp. This leads to the existence of distinct time-
stamps that identify equivalent replicas. The partial or-
der algorithm must detect that simple replica duplication
does not make them different but only raises the possi-
bility of separate modifications. Such replicas cease to
be equivalent once they suffer changes.

Unlike vector time-stamps, this scheme does not im-
pose structural limits on the number of replicas, since

replica identity is recursively constructed with the infor-
mation that is locally available.

6 Example Scenarios

1$ pananew mybibs.bib pana.bib

2$ panadup pana.bib /floppy/pana.bib
3$ cat entryl.bib >> /floppy/pana.bib
4$ panadup /floppy/pana.bib /zip/p.bib

. 1st Scenario

5$ mv /floppy/pana.bib /floppy/panasync.bib
6$ cat DSM.bib >> /zip/p.bib
7$ panajoin pana.bib /zip/p.bib
Info: /zip/p.bib content

dominates pana.bib
8$ panajoin /zip/p.bib /floppy/panasync.bib
Info: /zip/p.bib content

dominates /floppy/panasync.bib

. 2nd Scenario

5$ cat DSM.bib >> /zip/p.bib
6$ cat 0S.bib >> /floppy/pana.bib
7$ panajoin /floppy/pana.bib /zip/p.bib
Warning: Files are concurrent
use -s to specify substitute
8$ sdiff /floppy/pana.bib /zip/p.bib -o merge.bib
9% panajoin /floppy/pana.bib /zip/p.bib -s merge.bib
10$ panajoin /zip/p.bib pana.bib
Info: /zip/p.bib content dominates pana.bib

Figure 1: Example runs with PANASYNC tools.

The example in Figure 1 (with first scenario in Fig-
ure 2) shows a hypothetical use of PANASYNC commands
under the Unix environment. In the setup phase a new
lineage is created together with the pfile pana.bib and
its contents are initialized with mybibs.bib content (1$).
We recall that there is no ordering relation between these
two files.

Afterwards the pana.bib file is duplicated to a direc-
tory mapping a floppy device (2$) and its contents are
changed with the concatenation of entryl.bib (3$). Fi-
nally this file is duplicated into /zip/p.bib (4$). We
can expect that /zip/p.bib and /floppy/pana.bib are
equivalent, and that both dominate the local pana.bib
content.

For simplicity all examples have been illustrated in a
single machine. It must be kept present that all oper-
ation steps are possible on any arbitrary machine that

accesses the used persistent store. The use of floppy and
zip names emphasizes this possibility since they desig-
nate transportable persistent media.

6.1 First Scenario

Now we change the name of the floppy resident file into
/floppy/panasync.bib (5$). In fact we can move this
file to any place or system since its identity does not

depend on its name. Next we add some content to p.bib
and try to join it with the local pana.bib (6$).

This join is straightforward since one of the files dom-
inates the other. As usual, the two files supplied as ar-
guments to panajoin are checked for their relative order
and the join outcome is written to the second file ar-
gument. This is the case even if the second file is the
dominated one.

After the last panajoin invocation the three replicas
from the start of this first scenario have been collapsed
into a single replica at /floppy/panasync.bib. Since
there were no concurrent changes the convergence was
trivially accomplished. A simple way to check for the
presence of concurrent changes, in Figure 2 as well an
in the second scenario figure, it to track the bullets (o)
that indicate changes. This can be done by following the
arrows, from the replicas, in the reverse direction and
check if both have changes that the other has not seen.

6.2 Second Scenario

In this second scenario, with its evolution outline in Fig-
ure 3, we make sure that some concurrency of changes
does occur, by adding content to both /zip/p.bib (5$)
and /floppy/pana.bib (6$). Consequently, the join
tentative over these two files fails and issues a warning
identifying the occurrence of concurrency, and asking for
the provision of a content that re-conciliates the files.

The user is free to choose the content that is to be
provided. Is this case, the user resorts to the sdiff tool
in order to select the merged content from the two con-
current, files and to supply it to the next panajoin invo-
cation.

The last panajoin invocation illustrates that when
merges of concurrent evolutions occur, the order of the
new pfile is such that it dominates all the pfiles that
were previously dominated by either of the merged pfiles.
This factor empowers the user decisions when supplying
a merge and helps future replica convergence, thus con-
stituting a very powerful property that is particular to
this system.

(floppy) panasync.bib
158 mv
(floppy) pana.bib
\\(ﬁoppy) e pana.bib
T3$ cat >>
(floppy) pana.bib

\

(local) mybibs.bib -,..-> (local) e pana.bib

(floppy) panasync.bib
(zip) p.bib
(zip) ep.bib
1\6$ cat >>
(zip) p.bib

P

(local) pana.bib

/

ew

Figure 2: First Scenario. Here a single branch dominates the other branches. The mv action that renames one of

the pfiles does not change its identity and time-stamp.

’T\G$ cat >>
(floppy) pana.bib

\

T3$ cat >>
(floppy) pana.bib

\

(local) pana.bib

f

(zip) e p.bib

f

(ﬂoppy) e pana bib > merge .bib < (le) ep. bib

1\5$ cat >>

(zip) p.bib

-

(floppy) e pana.bib

(local) pana.bib

/

(local) mybibs.bib - > (local) epana.bib

Figure 3: Second Scenario. Two parallel branches suffer concurrent changes and are re-conciliated with a merge
content. The resulting pfile inherits existing domination relations and supersedes an early branch.

7 Design Issues

The basic PANASYNC implementation will be built over a
set of portable command-line tools. The purpose of these
tools is not only to test the use of this dependency track-
ing system, but also to ease its integration into existing
file managers. A second phase will encompass the explo-
ration of an adaptation technique for native file systems,
eventually with the use of a reflection mechanism.

In PANASYNC, file naming is a user convenience al-
though the system does not rely on it to track dependen-
cies between pfiles. Evidences from observation of typical
patterns of usage suggest that PANASYNC users should be
able to change pfile names at will and the system must
still be able to ensure correct dependency tracking. To
achieve this purpose, PANASYNC will rely on a mapping

from a special pfile identifier into its name. This will
enable the system to assess if two pfiles belong to the
same lineage independently of their current names. The
identifier will be given to the pfile upon creation and
associated to the specified name. Each time a mowve is
issued the pfile identifier mapping will be updated. For
practical purposes this identifier can be generated from
traditional techniques based on existing hardware set-
tings (e.g. ethernet address), file creation time and a
random value.

To achieve its purposes, PANASYNC needs to store this
extended information about pfiles. In fact, not only it
will need to record the current name of each pfile, but
also its time-stamp and an MD5 digest to actually track
its dependencies.

Another issue in the design of PANASYNC is the trans-

parent detection of modification of pfiles’ content. This
objective cannot be reliably achieved by evaluating the
creation and modification time-stamps provided by most
of the traditional file systems. Instead, PANASYNC calcu-
lates a MD5 digest for each pfile upon its creation, and
also stores this information on the mappings discussed
above. Each time panadup and panajoin are issued the
MD?5 is recalculated, enabling the detection of modifica-
tions on the pfiles with the setting of a dirty attribute
that is used in the time-stamp construction algorithm.

To ensure portability PANASYNC will provide an exter-
nal representation of pfiles’ attributes. This will enable
transferring pfiles through non-supported systems, such
as email, for instance.

8 Conclusions and Future Work

We have presented the motivation behind the concep-
tion of PANASYNC and shown usage scenarios. The sys-
tem aims to support common tasks of file replication and
versioning, which could be done either manually, with-
out system support, or under control environments that
are focused toward coarser grain scenarios. Also, these
environments cannot track dependencies among an ar-
bitrary number replicas. We believe that the addressed
patterns of fine grain file copying are bound to increase
with ongoing trends of increased user mobility and in-
formation sharing among mobile and fixed units. The
PANASYNC approach does not intend to substitute the
functionality of versioning systems or replicated file sys-
tems, but rather act as orthogonal support for a partic-
ular and common class of use cases.

Apart from the practical design issues, the central
point that enables the conception of a system with these
characteristics is the underlying time-stamping scheme.
Presently, we have reached a time-stamp design that al-
lows identifier simplification upon joins. This design for-
mat allows us to start the construction of the first com-
mand prototypes.

Having designed the time-stamping mechanism, the
next step will be the study of time-stamp size impact
on the system under an average work pattern. Although
not comparable with the small size of standard time at-
tributes we are confident that the extended control pos-
sibilities will make the use of pfiles worth in a significant
set scenarios.

Acknowledgments

The authors would like to thank Rui Oliveira and the
anonymous referees for their comments.

References

[1] Carlos Baquero and Paulo Sérgio Almeida. Towards ef-
ficient time-stamping for autonomous versioning. In Ac-
tas informais do EPCM’99, Encontro Portugués de Com-
putag¢éo Nomada, 1999.

[2] Carlos Baquero and Francisco Moura. Causality in au-
tonomous mobile systems. In Third European Research
Seminar on Advances in Distributed Systems. Broadcast,
EPFL-LSE, April 1999.

[3] Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Gerald J. Popek, and Dieter Roth-
meier. Implementation of the ficus replicated file sys-
tem. In USENIX Conference Proceedings, pages 63—71.
USENIX, June 1990.

[4] J. J. Kistler and M. Satyanarayanan. Disconnected oper-
ation in the Coda file system. In Thirteenth ACM Sympo-
stum on Operating Systems Principles, volume 25, pages
213-225, Asilomar Conference Center, Pacific Grove, US,
1991.

[5] D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen
Stoughton, Bruce Walker, Evelyn Walton, Johanna Chow,
David Edwards, Stephen Kiser, and Charles Kline.
Detection of mutual inconsistency in distributed sys-
tems. Transactions on Software Engineering, 9(3):240—
246, 1983.

[6] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Mar-
vin M. Theimer, and Alan J. Demers. Flexible update
propagation for weakly consistent replication. In Sizteen
ACM Symposium on Operating Systems Principles, Saint
Malo, France, October 1997.

[7] David Ratner, Peter Reiher, and Gerald Popek. Dy-
namic version vector maintenance. Technical Report
CSD-970022, Department of Computer Science, Univer-
sity of California, Los Angeles, 1997.

[8] Peter Reiher, Jerry Popek, Michial Gunter, John Sa-
lomone, and David Ratner. Peer-to-peer reconcilia-
tion based replication for mobile computers. In Max
Muhlhauser, editor, Special Issues in Object-Oriented
Programming, ECOOP’96 II Workshop on Mobility and
Replication. Dpunkt Verlag, 1996.

