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Abstract

Distributed Hash Tables are the core technology on a
significant share of system designs for Peer-to-Peer in-
formation sharing. Typically, a location mechanism is
provided and object identifiers act as keys in the index of
object locations. When introducing a search mechanism,
where single words are used as keys, the key image car-
dinality will be driven by the word popularity and most
of the present designs will be unable to load balance the
index among the nodes. We present two contributions:
A design that allows participating nodes to load balance
the indexing of popular keys and avoid content hot-spots
on single nodes; A distributed mechanism for probabilis-
tic filtering of popular keys (with low search relevance)
that paves the way for scalable full content indezing.

1 Introduction

Peer-to-Peer systems (P2P), where peers of hosts
in a network share information and resources, are
growing into a powerful new paradigm for de-
centralized distributed computing. Early system
models, like those inherent to Napster [11] and
Gnutella [7], have respectively shown the vulnera-
bility of centralized indexing and the non-scalability
of global query dissemination.

Building on these deficiencies, some researchers
described proposals to soften the problems of global
query dissemination [17, 1], keeping the possibility
of key matching at query time, while others de-
vised efficient solutions to the provision of name-
based object location [16, 14, 12, 18, 10], after as-
suming stable key-value pairs. The later class of
approaches provides scalable solutions to the inser-
tion and querying of key-value associations, both
on the number of exchanged messages and, to some
extent, on the required state on each peer.

Consider a distributed index used to locate
objects in a system scaling up to millions of

nodes. The existing approaches only provide ad-
equate solutions to the mapping of object iden-
tifiers into a small set of object locations. Typ-
ically, the concrete mapping is from file names
(e.g. Movie Trailer.mpg) into a set of IP and
port addresses together with a local index number
(e.g. {4110193.136.20.1:451, 450193.100.34.1:325}
). In these mappings, the number of file locations
can be assumed to be small, since each file name
is intended to describe a concrete object and, con-
sequently, its image can only grow as the object is
physically replicated and spontaneously announced
from distinct hosts.

One consensual scalability criteria is that the in-
dexing load must be adequately distributed among
peers so that one peer does not have to support
an unmanageable amount of load, both in terms
of required storage and communication resources.
In this article we will show that existing solutions
only meet this criteria by assuming a small num-
ber of values for each key, and that they will not
trivially adapt to settings with very large sets of
associated values (which we will refer to as the key-
image). Such is the case when enabling search from
sets of descriptive words, in which the index would
map individual words instead of object identifiers
as keys. In fact, except for very specific uses, such
as in Freenet [4] where the object identifier must
be publicized outside the system for confidentiality
purposes, word search is a basic requirement for a
usable document indexing system [9]. Since words
typically follow a Zipf distribution [6, 2] (depicted
in the line on Figures 2 and 3), with a small set
of words present in many description phrases (e.g.
two, the, mp3), it is easy to conclude how the key-
image size would be affected for those words.

In the following sections we will exemplify the
problems of existing solutions and describe an ap-
proach that overcomes it while keeping the design
scalable. We conclude by analyzing and proposing



a solution to the new problems that are introduced
when full content indexing is sought.

2 Co-Domain Sensitivity

Scalable object indexing systems, providing the
functionality of a distributed hash table (DHT) in a
P2P setting, are mostly based on a routing strategy
that progressively directs insertions and queries to
the appropriate logical sections of the P2P overlay
network. In order to randomize the placement of
keys, the usual strategy is to map object identifiers
into bit sequences, by way of a standard hash func-
tion. Some approaches [10, 16, 14] also hash the
node identity, so as to establish associations be-
tween the keys and the hosts that will store them.

These techniques ensure that two keys that are
lexically close will, most probably, not be so after
being hashed, thus fostering a good balancing of
the storage load on the overlay network. This bal-
ancing, however, only applies to the distribution of
keys and not to the balancing of their associated
values (key-image). One can expect that very pop-
ular keys will be randomly distributed across the
network, but even a single one of those keys can
still be a burden for the host that is required to
store it.

This will be less likely to occur when indexing
complete filenames, but when indexing single words
it is easy to imagine that keys such as mp3, that can
be found on most node contents, will force the host
that stores them to keep a key-image that will grow
linearly, O(n), with the number n of nodes in the
system.

Since for object identifier keys the same can only
be expected exceptionally for very popular con-
tents, that are stored across several nodes, it is easy
to overlook this problem when designing DHT al-
gorithms.

Our analysis of existing DHT systems, namely
Chord [16], Pastry [14], CAN [12], Tapestry [18]
and Kademlia [10] lead us to conclude that they
are all subject to some form of co-domain sensitiv-
ity and consequently do not adapt to single word
indexing.

CFS [5] offers a load balancing scheme for P2P
storage of large files. Files are mapped as a se-
quence of blocks, and stored blocks are indexed by
the hash of their contents. This solution, appropri-
ate for immutable files, does not appear to be easily

transposable to a setting with a very mutable con-
tent, in particular key indexing.

The same hot-spot phenomena that is found on
the words that describe published contents can also
be found on the words that are used for search-
ing. Reynolds and Vahdat [13] have addressed the
problem of query hot-spots and shown that sin-
gle words on queries also follow a Zipf distribution.
One should note, however, that the most popular
words on the descriptions are not necessarily the
most popular ones on queries. As a consequence,
content hot-spots created by insert requests may
not match temporal hot-spots resulting from pop-
ular queries.

Query hot-spots have a temporal nature and can
be addressed by caching strategies. However, when
coinciding with key-image hot-spots they can exac-
erbate the problem by adding more communication
load to the already existing space and communica-
tion burden.

In order to address scalability in the co-domain it
seems necessary to dimension resources by striving
for a balanced distribution of the key-image load.
Thus, abandoning the assumption that balancing
the distribution of keys is, by itself, sufficient.

3 Bubble Grouping

Our design, of what we will refer to as bubble group-
ing, builds on the requirement that the indexing
load should not surpass a given limit for each par-
ticipating node, even when indexing a very popu-
lar key. Consequently, a very popular key might
be indexed along several nodes, and each must be
contacted in order to re-construct the whole key-
image.

Although a full description and analysis of this
technique is out of the scope of this article we will
concentrate on the main aspects of bubble group-
ing, in particular on those that depart from previ-
ous DHT designs.

In order to achieve resilience to node failures,
nodes are organized into logical replication groups
called bubbles. In each bubble all nodes replicate
the same state, up to some appropriate consis-
tency criteria. The number of nodes in each bubble
should be kept in a soft variation band, with a lower
limit r and an upper limit 2r, and r should be big
enough in order to tolerate high failure rates from
the nodes associated to domestic users [10].
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Figure 1: Any given bubble, here in gray, knows
other bubbles at logarithmic distances on the key
space.

Bubbles form a logical ring on top of an over-
lay network, so that the key domain (m-bit keys
resulting from the hash of single words) is divided
along all the bubbles in the system. Each bubble
will map a given key interval and be responsible for
storing the keys, and associated key-images, that
fit that interval. With popular keys one might find
that some bubbles are only required to store a single
key, and possibly only a portion of the key-image.

After initially suspecting that the routing solu-
tions that assumed domain balancing would not be
adaptable to the new setting, we have found that
the Chord [16] philosophy could be transformed in
order to provide the same scalability properties in a
co-domain balanced setting. This will ensure that
routing tables are O(log k) and that key placehold-
ers are found with O(logk) jumps, where k is the
magnitude of the key domain?.

Bubbles in the ring are aware of a small set
(O(log k)) of other bubbles that are logarithmically
spaced from its location in the ring, as depicted in
Figure 1. The closest bubbles in this set will be the
two neighbor bubbles.

The balancing of the storage state can be
achieved by a local policy that, when thresholds are
reached, distributes contents to the vicinity bub-
bles. When this occurs some state is migrated
to adjacent bubbles and the key intervals of those
bubbles are adjusted. As the system evolves, in
run-time, bubbles can travel to adjacent zones of
the key space (something which is not possible on
most DHT designs). Gradually, local hot-spots can
be smoothened and the system will progressively
converge to a globally balanced distribution of the
mapping state.

When a new node joins the system by contacting
any bubble it can be directed to the bubble in the

1To avoid collisions the size of the key domain, k = 2™,
must be driven by the vocabulary size, which in turn grows
sub-linearly with the number of indexed contents. Thus, for
large network sizes n, one can see that k£ will be less than n.

vicinity that holds fewer nodes. Finally, when bub-
bles go bellow r they should join with the smallest
adjacent bubble in order to maintain the intended
degree of fault tolerance. Conversely a bubble ex-
ceeding 2r can be partitioned into two consecutive
bubbles and generate more storage space for keys.

4 Content Based Indexing

Search engines are now a basic instrument for ef-
ficient use of the information that is provided on
the Web. With P2P content sharing systems the
search engine cataloging philosophy is not applica-
ble, since node life time? is too small to allow an
effective crawl on the system [10, 15]. Consequently
the alternative would be global query dissemination
(which is unlikely to become scalable) or content
announcement and P2P indexing.

While not developing the issue of content rank-
ing, the discussion bellow will try to give some in-
sight on the issue of content announcement and
querying, and propose a solution philosophy that
keeps the approach scalable.

4.1 Measuring the Index

When addressing content based indexing for text
objects one should be aware that for each quantity
of indexed documents, that are announced to the
DHT, a given load of indexing can be expected to
be distributed throughout the system. It is relevant
to inquire what proportion of indexing is generated
for a given quantity of indexed text.

In order to access this we proceed with a sim-
plistic analysis of the expected impact for each MB
of new text data that is inserted into a running
system. Since we are not doing a full analysis,
we will assume that the impact of new words is
neglectable (considering a stable running system)
and do not consider compressed representations of
the co-domain (since text is even more compressible
than indexes). In fact, by neglecting those factors
the numbers will be more conservative than the real
ones.

The number of unique words per (1) MB of text
can be approached by considering the average word
length (in English) as 5 characters [2], calculating

the expected number of words by % ~ 175000,
and determining the expected number of unique

2When considering domestic users.



words under the Heaps’ Law® [8, 2], 30/175000 ~
12550. Each unique word has an indexing impact
of 8 bytes (IP, port and local 16 bit offset) leading
to an impact of 10400 bytes (around 10% of 1 MB).

These estimates are comparable to the analysis of
inverted index sizes in centralized indexing. In [2]
the figures, for 10KB documents in collections from
1MB to 2GB of text, indicate impacts that range
from 26% to 47% (and 19% to 26% when removing
stopwords).

Since the replication factor, in P2P settings
encompassing domestic users, might have to be
around 20 [10] (since node failure rate is extremely
high in their first hour of uptime), it is easy to con-
clude that the payload, which is at best a sizable
fraction of the indexed text, will usually match its
size or even multiply it by a small factor.

4.2 Scaling Down

Under the present trade-offs between disk storage
and memory costs, it can still be argued that the
expected index payload is undesirable but tolera-
ble. It does not, by itself, hamper scalability but it
does have a non neglectable impact on the overall
communication load, since it will grow linearly with
the total text object state.

It is known, from research on text content index-
ing [2], that not all words have equal importance
on index construction for future querying. Here,
we will concentrate on the fact that words that are
present on a large proportion of documents are not
by itself of particular relevance for direct indexing
and querying.

A search for mp3 that returns five thousand re-
sults does not convey significant information to the
user if it cannot manage more than a small set
of screen listings and a ranking mechanism is not
present.

Even with a ranking mechanism, the user can
only process a given number of results, leading to
the intuition that an upper bound on the key-image
size can be applied if appropriate compensation
mechanisms are put to use.

One such mechanism is to forward a multiple
word query only to the hosts that are associated to
the less common keys (in the query). The results,

3Heaps’ Law [8, 2] is an empirical formula that calculates
the expected number of unique words V' (vocabulary) in a
text as a function of the total number of words n under two
constants, K and 8. V = Knf, with 8 = 0.4 — 0.6 and
K ~ 10 — 100. Here, as in [2], we consider 8 = %,K = 30.

arriving at the querier, should be few because popu-
lar key indexer hosts were excluded on the forward-
ing. With this list, the querier can ask each poten-
tial host to locally check for conformance with the
other keywords (or even avoid this step if an OR
search is the objective, since those are potentially
the most relevant results).

This class of mechanisms can be combined with a
scalable way of reducing key-image growth for very
popular words. Those are the words in the first
hundred positions of the Zipf distribution [6, 2].

4.3 Scalable Insertion Filtering

In order to establish an upper bound to the key-
image it is not sufficient to simply enforce a local
limit for each key — such limit will ensure that space
bounds can be kept without resorting to multiple
bubbles storing a single key. However, since filter-
ing would be applied at the end of the routing pro-
cess, an excessive communication load would still
be observed on those hosts, on their vicinity and
along the overall network.

It is better to filter the unwanted insertions along
the routing path, ensuring that the globally popu-
lar keywords are filtered on the first hosts in the
path. Each host in the insertion path would ap-
ply its filter and reduce the traffic for common key-
words. Ideally the cumulative effect of filters should
be such that the rate of arrival of insertions for all
keys (popular or not) at the bubble that stores it,
does not exceed a given value.

In order to avoid discarding significant docu-
ments for a given common keyword, filtering should
take into account the local frequency of each key-
word in the document. Keywords with high relative
frequency in the associated document, should have
lower probabilities of seeing their insert request dis-
carded by the filtering mechanism.

Under filtering it would be easy to apply a lo-
cal rejection policy that deletes older entries in the
key-image enforcing some local limit. This can be
complemented by a re-announcement policy, cali-
brated according to the node life time distribution,
where each node periodically (re-)publishes its con-
tents. Such strategy provides an easy approach to
the management of stale entries in the distributed
index.
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Figure 2: Insertion reduction with an I, filter.
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Figure 3: Insertion reduction with an I35 filter.

4.4 Exploratory Simulation

To probe the feasibility of this design we conducted
a simulation of a bubble grouping DHT where each
bubble is assigned a range of the key domain that
is calibrated under the expected load in the key-
image. This load is known in advance since each key
is hashed from an English vocabulary where each
key is associated to its probability of occurrence. A
real bubble grouping system would be expected to
evolve, under local load balancing, into this state.

Here, the number of nodes, the mapped key range
and the routing tables are all fixed in advance. The
simulation is then conducted by generating a num-
ber of key insert requests, where each request is
originated in a random node/bubble. The pub-
lished keys are randomly chosen according to their
frequencies®.

If no insertion filters are applied all the key insert
requests will reach their destinations after a small
set, of forwarding jumps. The lines on Figures 2 and
3 show the number of insert requests for each key,
under decreasing order on the number of insert re-
quests. As expected, they follow a Zipf distribution

4For space saving reasons the local keyword document
frequency is not considered in this simulation.

and in a logarithmic scale the distribution is almost
linear.

Node filters should be able to reduce the num-
ber of insert requests that reach their destination
when the keys are popular (left hand side of the fig-
ures) and should not have a significant influence on
those associated to less frequent keys (right hand
side). These filters will have no knowledge of the
global key frequencies and can only act with local
information.

Our basic filter design gathers information on the
last K insert requests, on a set Ix. Each node can
determine if a given insert request 7 belongs or not
to Ix. In the simulation Iy is implemented by
Bloom Filters [3].

In the experiment we compare two filter alterna-
tives when deciding if an insert is to be dropped:
i € Iy; i € I35. Figures 2 and 3 compare the num-
ber of inserts after applying one of these two filters
against the reference line of unfiltered inserts.

The I, filter, Figure 3, provides a radical reduc-
tion on the common keys. However this is achieved
with the cost of introducing some perturbation on
less common keys. In contrast, the I filter, Figure
2, is almost innocuous to the less common keys,
while still having a considerable effect on the re-
duction of common keys.

As desired both filters have most impact on the
first 100 of the generated 14000 distinct keys (=~
1%). This is basically the share of keys who is re-
sponsible for key-image hot-spots, and both filters
manage to keep their impacts at rates that are sig-
nificantly lower. This is, respectively, around 0.1%
and 0.01% for I, and I35, whilst the unfiltered line
shows impacts above 1% for the initial keys. Actu-
ally, with no filters, the most popular key has 6.4%
impact, which means that a host that is associated
to that key would have to cope with this percent-
age of the whole distributed insertion load in the
system.

This experiment provides the basic insight into
the potential of insertion filtering for key-image
hot-spot contention. In order to obtain the full
functionality one would have to ensure that: pop-
ular content keys are detected when forwarding
queries, confining query forwarding to the less com-
mon keys; common keys are dropped as soon as
possible in the route; filters take into account local
keyword document frequencies, in order to drop the
less significant associations.



5 Conclusions

The P2P concept can be applied to very distinct
scenarios. On one extreme it can provide a new
design philosophy to build distributed applications
running on groups of well administrated servers
that provide a defined functionality to a specific
set of users. At the other end, one can find the, by
far, most popular application of P2P: content shar-
ing among end users. In a way, this mimics what
happened in the initial years of the WWW, when
end users started to publish their own content and
pages.

When considering P2P with a major share of
end users, one must accept that the average node
life time will be extremely low, typically bellow
one hour. There are two major consequences: the
search engine approach will not be adequate; algo-
rithms that try to tame query broadcasts by pas-
sively learning about content placement will likely
fail to adapt to very dynamic networks. The re-
maining alternative is content announcement and
DHT algorithms.

We have argued that present DHT algorithms do
not adapt, in terms of load scalability, to the map-
ping of keywords that follow uneven distributions
(with key-image hot-spots). This is the case of some
popular file descriptions, such as mp3, as also is the
case in the Zipf distribution that characterizes text
based contents.

We have shown that these limitations can be ad-
dressed by a DHT design that distributes load ac-
cording to the size of the key-image of indexed keys.
This design keeps the usual scalability properties of
previous DHT algorithms.

Additionally, we have argued that the extra load
that comes from migration from description based
indexing to content based indexing requires a dis-
tributed mechanism that minimizes the insertion of
very common keys. After sketching a search mech-
anism that compensates the missing insertions we
concluded by testing the feasibility of distributed
filtering mechanisms.

By considering the impact that search catalogs
had on the Web, we believe that content search
is a crucial factor and that it can apply a major
modification to the way in which P2P systems are
currently used.
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