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Abstract. Discovery of communities in complex networks is a 
fundamental data analysis task in various domains. Generative models are 
a promising class of techniques for identifying modular properties from 
networks, which has been actively discussed recently. However, most of 
them cannot preserve the degree sequence of networks, which will distort 
the community detection results. Rather than using a blockmodel as most 
current works do, here we generalize a configuration model, namely, a null 
model of modularity, to solve this problem. Towards decomposing and 
combining sub-graphs according to the soft community memberships, our 
model incorporates the ability of describing community structures, 
something the original model does not have. Also, it holds the property, as 
with the original model, that fixes the expected degree sequence to be the 
same as that of the observed network. We combine both the community 
property and degree sequence preserving into a single unified model, 
which gets better community results compared with other models. 
Thereafter, we learn the model using a technique of nonnegative matrix 
factorization and determine the number of communities by applying 
consensus clustering. We test this approach both on synthetic benchmarks 
and on real-world networks, and compare it with two similar methods. The 



experimental results demonstrate the superior performance of our method 
over competing methods in detecting both disjoint and overlapping 
communities.  
Keywords: analysis of algorithms, network dynamics, random graphs, 
networks, clustering techniques 
PACS: 89.75.Hc, 89.75.Fb, 02.10.Ox, 02.60.Cb 

 
1. INTRODUCTION 

Many networked systems, including social networks, information networks and biological 
networks, are found to divide naturally into modules or communities, i.e. groups of vertices with 
relatively dense connections within groups but sparser connections between them [1]. Depending 
on the source context, the groups may be disjoint or overlapping. A fundamental problem in the 
theory of networks, and one that has attracted substantial interest among researchers in the last 
decade is how to detect such communities in empirical network data [2]. There are many methods 
that have been proposed for the task of community detection, such as [1, 3, 4] for disjoint 
communities and some others [5-7] for overlapping communities. For review, the readers can refer 
to Ref. [2]. 

In particular, due to its good performance and sound theoretical principles, generative model 
methods constitutes a promising class of techniques for identifying modular properties from 
networks, and thus are actively being researched and developed [8]. Recently, several 
model-based methods have been proposed [9-16]. Most of them are based on the stochastic 
blockmodel [17] that is a popular tool for detecting community structures in networks. In the 
simplest stochastic blockmodel, each of n vertices in the network is assigned to one of c blocks, 
groups, or communities, and undirected edges are placed independently between vertex pairs with 
probabilities that are a function only of the group memberships of the vertices. If we denote by gi 
the group to which vertex i belongs, then we can define a c × c matrix ψ of probabilities such that 
the matrix element ψgigj is the probability of an edge occurring between vertices i and j. While 
simple to describe, however, this blockmodel ignores variations in vertex degrees, making it 
unsuitable for application in real-world networks, that typically display a broad range of degree 
distributions that can significantly distort the community results [15]. Most of the current work 
that is based on the blockmodel, take some steps to mitigate the inherent, above described, 
drawback but these steps are only effective to some extent. These strategies cannot solve this 
problem at a fundamental level, as they are unable to theoretically fix the expected degree 
sequence to be the same as that of the observed network. Preserving the degree sequence of 
networks is, however, especially important for the task of community detection in the opinion of 
[15], which may improve the community detection results.  

In this work, we try to solve this problem by taking a somewhat different stance. Instead of 
using blockmodel as most current works did, here we generalize a configuration model, namely 
the null model of modularity [18, 19], to incorporate communities. With the idea of decomposing 
and combining the color-z sub-graphs from the perspective of soft clustering, this extended model 
captures a new ability of describing communities that is lacking in the original null model; 
meanwhile, it maintains the property, preserved from the original model, that fixes the expected 
degree sequence to be the same as that of the observed network. Under this model, when we 
describe graphs, besides community structure, we also consider the fact that vertices with high 



degree are, all other things being equal, more likely to be connected than those with low degree, 
simply because they have more edges. Intuitively, as we combine both these two properties into 
one model, we can get a better community result compared with the blockmodels that tend to 
display broad degree distributions. Therefore, in order to implement learning in this model, we 
define a fitness function of squared loss, and solve it by using nonnegative matrix factorization. 
Finally, we introduce a method of model selection to determine the number of communities when 
it is not a prior input parameter.  

Furthermore, as our model provides a soft community membership, it can find both disjoint and 
overlapping communities in networks. Also, because we adopt the squared loss as an objective 
function and use nonnegative matrix factorization as the optimization technique, that makes our 
method suitable for weighted networks. 

This paper is organized as follows. We first review the related work in Section 2. Then in 
Section 3, we introduce our method, namely ENMM, meaning ‘Extending Null Model of 
Modularity’, which includes four parts: the generative model, model properties, parameter 
learning, and model selection. We report on experiments in Section 4. Finally, we present the 
conclusions and discussion in Section 5. 

 
2. RELATED WORK 

Recently, some model-based methods have been proposed, most of which are based on the 
stochastic blockmodel or its variations, and employed different types of optimization algorithms to 
learn models.  

For instance, Ref. [9-12] all extend the basic blockmodel from the perspective of soft 
membership, and take nonnegative matrix factorization (NMF) as the optimization method to 
learn the parameters. To be specific, Wang et al. [9] used the squared loss, and introduced an 
algorithm of symmetric nonnegative matrix factorization (SNMF) to minimize their loss function. 
Psorakis et al. [10, 11] adopted the generalized KL-divergence as the loss function, and proposed 
an algorithm of Bayesian nonnegative matrix factorization (BNMF) as the optimization method. 
Also, they used priors that penalized their model for including too many nonzero parameter values 
and hence created a balance between numbers of communities and goodness of fitting to the 
network data. Zhang et al. [12] removed the normalized constraint that the sum of probabilities for 
each vertex belonging to different communities equals to 1, to better model overlapping 
communities. Further, they used both the squared loss and generalized KL-divergence as the loss 
functions, and designed a method called bounded nonnegative matrix tri-factorization (BNMTF) 
to solve them. Although these methods are all based on NMF (like ours), they did not consider the 
problem of degree sequence preserving, which may distort the community detection results. 

Moreover, there are some other works [13-16] that have adopted similar models. But rather 
than using loss function, they adopted the likelihood probability as the goal, and take a different 
algorithmic approach such as the Expectation-Maximization (EM) algorithm to learn their models. 
Of particular note is Newman’s degree-corrected stochastic blockmodel [15]. They first studied 
the question of why degree heterogeneity in blockmodels is a good idea, and this led them to a 
so-called degree-corrected blockmodel and a heuristic algorithm for community detection by 
inferring model parameters. To the best of our knowledge, this is the only work having the same 
ability, as with our model, that theoretically preserves the degree sequence of networks. However, 
these two works have some key differences. 



Firstly, Newman’s model is an extension of blockmodel to correct degree sequence, while our 
model is a generalization of the null model of modularity to incorporate communities. Thus, they 
have different mechanisms to describe the community structure of networks. Furthermore, 
Newman’s model is based on the assumption of hard clustering which can only detect disjoint 
communities, but our model is a more flexible one, which is under the assumption of soft 
membership and has the ability of finding both disjoint and overlapping communities in networks. 
Last but not least, our model can deal with weighted networks, while Newman’s model does not 
have this ability.  

 
3. THE METHOD 

In this section, we first generalize a configuration model, namely null model of modularity [18, 
19], to incorporate communities; and then describe some interesting properties of it; thereafter, we 
present an approach based on nonnegative matrix factorization, to learn the parameters; and 
finally, we introduce a model selection method to determine the best number of communities.  
3.1 Generative Model 

Consider an undirected graph G = (V, E) with adjacency matrix A, having a given number n of 
vertices divided among a given number c of communities. Assume that its community structure is 
given by S, where Siz denotes the fraction by which vertex i has a community with index (or say 

color) z, subject to . This characterizes a soft community membership, since a vertex 

can belong to more than one community.  
According to S, we can decompose the given network G into c color-z sub-graphs Gz’s with 

z=1,2,…,c. Each Gz has a node set V, and takes diz = diSiz as the node degree of each i∈V, where di 
denotes node i’s degree in G. Then, Gz can be regarded as a soft community of G, which is a 
completely random graph without community structure. The null model of modularity describes 
random graphs with the given degree sequence and with edges rewired at random among the 
vertices, having no communities [18, 19]. Thus, we take the option here to describe each color-z 
sub-graph Gz, with the given degree sequence {d1z, d2z,…,dnz}. Following this null model, the 
expected number of links (or expected link weight) between nodes i and j in Gz can be evaluated 
as 

.                                    (1) 

If we combine all the color-z sub-graphs into an ensemble one, then the expected number of links 
between nodes i and j in the original network G can be written as 

.                              (2) 

Actually, we do not know the soft community membership S in advance; on the contrary, S 
should be inferred to solve the problem of community detection. Under model, above, with model 
parameters diz, we apply it under the following optimization problem: 



,              (3) 

where Lsq is the squared loss function. The best fit between the given network G and its expected 
graph, following (2), can be achieved by optimizing (3), which will be introduced in Section 3.3. 
When we get the model parameters diz, the community membership Siz can then be inferred by  

.                              (4) 

Actually, as Siz provides a soft community membership, it can, not only give a hard partition, 
but also provide the overlapping communities in the network. To be specific, if one wants to 
derive a hard partition, we can simply assign each node i to group r satisfying 
r=argmaxz{Siz,z=1,2,…,c}. But if one wishes to get an overlapping community structure, we first 
scale the entries in each row of the membership matrix S to [0~1] to make the membership value 
of the community that each node prefers best to be 1. We then vary a threshold from 0 to 1 and set 
all those entries in S that exceed the threshold to 1 and 0 otherwise, and then we select the best 
result as the final overlapping community structure.  
3.2 Model Properties 

Our above model is a generalization of the null model of modularity, embodying the idea of 
decomposing and combining the color-z sub-graphs from the perspective of soft clustering, to 
incorporate the ability of describing the community structure in networks. Also, it holds the 
property, as with the original null model, that fixes the expected degree sequence to be the same as 
that of the observed network (proofed in the appendix). Intuitively, this may enable our model, 
compared with the blockmodels that tend to display broad degree distributions, to be more fitted to 
characterize community structures in the real world.  

Here we offer an example to illustrate the ability of our model to describe communities, which 
is shown in Figure 1 and in Table 1. The red and blue sub-graphs of G are indexed by ‘z=1’ and 
‘z=2’ in Table 1. First, we consider the within-community nodes, such as 3 and 4. As d31 and d41 
are both large, the expected number of red links between them is dominant ( = 0.76), which 
causes the expected number of links between nodes 3 and 4 to be large ( = 0.76). On the 
contrary, let us consider node from different communities, such as 3 and 7. As d71 is very small, 
although d31 is large, the expected number of red links between them is still small ( < 1.0e-2); 
similarly, the expected number of blue links between them is also small ( < 1.0e-2). This leads 
to the expected number of links between nodes 3 and 7 being much smaller than that between 
nodes 3 and 4 ( ). This is exactly the common knowledge of communities, which has 
dense intra-connections and sparse inter-connections.  

Besides, our model allows for the fact that vertices with high degree are, all other things being 
equal, more likely to be connected than those with low degree, simply because they have more 
edges. For example, there is  in Figure 1(d), as the degree of node 5 is larger than that 
of node 3. From an information-theoretic viewpoint, an edge between two high-degree vertices is 
less surprising than an edge between two low-degree vertices, and thus intuitively we may get 
better community results as we incorporate this observation in our model.  



 
(a)                (b)                  (c)                 (d) 

Figure 1. Example that illustrates some interesting properties of our model. The parameters diz are 
learned by NMF in Section 3.3, which are shown as Table 1. (a) The observed network G with 
two communities in red and blue respectively. (b) The expected red sub-graph of G, which is 
described by the null model of modularity. (c) The expected blue sub-graph of G. (d) The 
expected graph of G, which is an ensemble of its red sub-graph in (b) and blue sub-graph in (c). 
Note that the width of a link corresponds to its expected values, and that values smaller than 
1.0e-2 are omitted.  
 

Table 1. The learned model parameters diz used in Figure 1 
diz i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 
z = 1 3.999949 3.999974 3.999975 3.999972 4.253827 0.748089 7.14E-04 7.39E-04 7.02E-04 6.89E-04 
z = 2 5.12E-05 2.63E-05 2.45E-05 2.76E-05 0.746173 4.251911 3.999286 3.999261 3.999298 3.999311 

 
3.3 Parameter Learning 

Our above model is a relatively ideal one, which mainly considers disjoint communities. 
However, in the real world, many networks contain communities that overlap [5]. In the opinion 
of [12], in order to better model overlapping community structures, the sum of probabilities for 
each vertex belonging to different communities may not be constrained to 1. For instance, a vertex 
may belong to the community ‘Politics’ with probability 0.9 and to the community ‘Economics’ 
with probability 0.8, due to the strong relationship between these two communities. An entity can 
be very active in multiple communities, but this scenario cannot be modeled well if we impose the 

constraint .  

Based on the above idea, we remove the normalized constraints, and this leads to a generalized 
loss function as  

.             (5) 

As the search space of (3) is inside that of (5), if our model is sound, and if a network contains 

only disjoint communities, the constraint  will be well satisfied. Further, (5) will have 

a better ability when compared with (3) when describing networks with overlapping communities. 
Then, (3) can be considered as a special case of the generalized loss function in (5). Therefore, we 
will take (5) instead of (3) as the objective function here, which is much simpler to solve.  

Now, we begin to discuss how to efficiently infer the model parameters diz. We first define an 
auxiliary matrix X, where Xiz is evaluated as  

.                                  (6) 

Then, the optimization of (5) can be transformed into an equivalent problem of nonnegative 
matrix factorization, such as 



.                         (7) 

According to [20], X can be solved by the following multiplicative update rule 

.                              (8) 

When it converges, using (6) we can infer the model parameters diz by  

,                           (9) 

Subsequently, one may wish to know how releasing the normalized constraint  

will affect the community results. For this purpose, here we offer a simple example to illustrate 
how much off is this expression for overlapping structures and for non-overlapping structures, 
when the algorithm converges. We first define a quality metric to measure how much off is this 
constraint for our result:  

.                             (10) 

Then we use two well-known networks as the testbeds. The first one is the American college 
football network which is widely used when detecting disjoint community structures [1], and the 
second one is the Les Miserables network which has become a de facto testbed for overlapping 
community detection [21]. When the algorithm converges, the doff value of the American college 
football network is 0.0681, which is very small and much smaller that that of the Les Miserables 
network, with doff = 0.2141. More importantly, the clustering accuracy of the American college 
football network is NMI=92.42%, and the clustering quality of the Les Miserables network are 
Q=0.4903 and L=4.7753, which are both better than that of the compared methods (see Section 4.2 
for detailed comparisons).  
3.4 Model Selection 

Recall that our model needs to have the community number c as input, which is a priori 
unknown for many cases. This is the so-called model selection problem. Several approaches to 
model selection have been proposed [11, 13, 22], but most of them are not suitable for our model. 
Fortunately, the model selection method designed by Brunet et al. [23], which is based on the idea 
of consensus clustering, is effective for our model. Therefore, we use it to determine the number 
of communities when this quantity is not of prior knowledge.  

Our NMF may or may not converge to the same solution on each run, depending on the 
random initial conditions. If a clustering into k communities is strong, we would expect that node 
assignment to communities would vary little from run to run. For each run, the node assignment 
can be defined by a connectivity matrix Ck of size n×n, with entry Ck(i,j) = 1 if nodes i and j 
belong to the same community, and Ck(i,j) = 0 if they belong to different communities, where k is 
the given number of communities. We can then compute the consensus matrix, , defined as the 
average connectivity matrix Ck over some runs (50 runs is generally sufficient to stabilize ). 
The entries of  range from 0 to 1 and reflect the probability that nodes i and j cluster together. 
If a community structure is stable, we would expect that Ck tends not to vary among runs, and that 
the entries of  will be close to 0 or 1. Consequently, the general consistency quality of  is 



summarized by the dispersion coefficient defined as  

                           (11) 

where 0 ≤ ρk ≤ 1, and ρk = 1 represents a perfectly consistent assignment.  
A straightforward way to find the best community number is to enumerate all possible k to 

get the one with the maximum ρk [23]. This exhaustive search may become computationally 
expensive for large networks. Here we offer an alternative, with an effective heuristic, to this 
problem. We first use Louvain method [3], which is regarded as one of the best algorithms for 
community detection by [2], to determine an approximate community number cs. Thereafter, we 
decrease k starting from cs until ρk < ρk+1 and set cd = k+1, and then increase k starting from cs 
until ρk < ρk-1 and set cu = k-1. Finally, we determine the best community number c = argmaxk 
{ρk|k=cd,…,cu}. 

 
4. EXPERIMENTS 

In order to evaluate the performance of our method ENMM, we test it on both benchmark 
computer-generated networks and on some widely used real-world networks. In addition, we 
compared it with two related NMF-based methods mentioned in Section 2, SNMF [9] and 
BNMTF [12], which also use the squared loss as objective function and adopt the nonnegative 
matrix factorization as optimization algorithm. Since each of these methods provides a soft 
community membership, it can not only give a hard partitioning but also provide knowledge on 
overlapping communities. Thus, in this section we will test their performance from both of these 
perspectives. 

All experiments are done on a single Dell Server (Intel(R) Xeon(R) CPU 5130 @ 2.00GHz 
2.00GHz processor with 4Gbytes of main memory). The source codes of the algorithms used here 
can all be obtained from the authors. Especially, our code is available in [24]. As the NMF-based 
methods do not necessarily converge to the global optimization, we repeated each algorithm 10 
times with random initial conditions and have chosen the result that gives the smallest squared 
loss. 
4.1 Synthetic Networks 

Two different types of the synthetic benchmarks, one with disjoint community structure [25] 
and the other with overlapping community structure [26], were proposed by Lancichinetti, 
Fortunato and Radicchi (LFR). Here we use both of them to test the ability of each algorithm to 
detect known communities under controlled conditions. In the LFR benchmark graphs, both the 
degree and the community size distributions are power law, which is a statistical property that 
most real-world networks seem to share. Notice that we did not compare the results of BNMTF, 
since its high computation cost meant that it could not provide results within 100 hours for each 
set of the tests. 
4.1.1 LFR benchmark with disjoint communities 

This type of benchmark is proposed by Lancichinetti et al. [25], which is designed for testing 
the ability of algorithms to detect disjoint communities. Here, we employ the widely used 
Normalized Mutual Information (NMI) index as the accuracy measure [27]. The NMI index, 
which makes use of information theory, is regarded as a relatively fair metric compared with the 
other ones [27]. 



Following the experiment designed by Lancichinetti et al. in [25], the parameters setting for the 
LFR benchmark networks are as follows. The network size n is set to 1000, the minimum 
community size cmin is set to either 10 or 20, and the mixing parameter µ (each vertex shares a 
fraction µ of its edges with vertices in other communities) varies from 0 to 0.8 with an interval of 
0.05. We keep the remaining parameters fixed: the average degree d is 20, the maximum degree 
dmax is 2.5×d, the maximum community size cmax is 5×cmin, and the exponents of the power-law 
distribution of vertex degrees τ1 and community sizes τ2 are -2 and -1 respectively. This design 
space leads to two sets of benchmarks. 

In Figure 2, we show that the NMI accuracy attained by each algorithm is as a function of the 
mixing parameter µ. As we can see, the performance of our method ENMM is slightly better than 
that of SNMF, especially when µ is in the range of 0.5 to 0.7.  

  
(a)                                     (b) 

Figure 2. Comparison of ENMM and SNMF in terms of NMI accuracy on the LFR benchmark 
networks of disjoint version. Each data point in the figure is an average over 10 graph instances. 
(a) Results on networks with small communities (n = 1000, cmin = 10, cmax = 50). (b) Results on 
networks with large communities (n = 1000, cmin = 20, cmax = 100). 

 
4.1.2 LFR benchmark with overlapping communities 

This type of benchmark is also proposed by Lancichinetti et al. [26], but designed for testing 
the ability of algorithms to detect overlapping communities. Considering the accuracy measure, 
the standard NMI index does not work in this case. Fortunately, there is a new variant of it, 
namely Generalized Normalized Mutual Information (GNMI), which is extended to handle 
overlapping communities [6]. Thus we adopt this GNMI index as the accuracy measure for this 
experiment.  

Like the experiment designed by Lancichinetti et al. in [26], the parameters setting for this LFR 
benchmarks are as follows. The network size n is 1000, the minimum community size cmin is set to 
either 10 or 20, the mixing parameter µ (each vertex shares a fraction µ of its edges with vertices 
in other communities) is set to either 0.1 or 0.3, the fraction of overlapping vertices (on/n) varies 
from 0 to 0.5 with interval 0.05. We keep the remaining parameters fixed: the average degree d is 
20, the maximum degree dmax is 2.5×d, the maximum community size cmax is 5×cmin, the number of 
communities, each overlapping vertex belongs to (denoted om), is 2, and the exponents of the 
power-law distribution of vertex degrees τ1 and community sizes τ2 are -2 and -1, respectively. 
This design space leads to four sets of benchmarks. 



Figure 3 shows the results that compare our method ENMM with SNMF in terms of the GNMI 
index on the heterogeneous artificial networks with overlapping communities. As we can see, the 
performance of ENMM is clearly better than that of SNMF for all the four samples. In particular, 
when the fraction of overlapping vertices (on/n) is larger, the superiority of our method becomes 
even more obvious. 

  
(a)                                      (b) 

  
(c)                                     (d) 

Figure 3. GNMI accuracy of each algorithm as a function of the fraction of overlapping nodes. 
Each point is an average result over 10 graphs. (a) Comparison on synthetic networks with small 
mixing parameter and small communities (µ = 0.1, cmin = 10, cmax = 50). (b) Comparison on 
synthetic networks with big mixing parameter and small communities (µ = 0.3, cmin = 10, cmax = 
50). (c) Comparison on synthetic networks with small mixing parameter and big communities (µ = 
0.1, cmin = 20, cmax = 100). (d) Comparison on synthetic networks with big mixing parameter and 
big communities (µ = 0.3, cmin = 20, cmax = 100). 
 
4.2 Real-World Networks 

As real networks may have some different topological properties that distinguish them from the 
synthetic ones, we now consider some widely used real-world networks to further evaluate the 
performance of these algorithms. First, we test these algorithms in terms of accuracy on several 
networks whose community structures are known. However, networks that have a known 
community structures are rare. Thus, we also evaluate these different methods in terms of the 
community quality on networks without known community structures. Note that, all the 
real-world networks we used here are obtained from Newman’s website [28]. 



4.2.1 Accuracy comparison 
The real networks we used here, whose ground-truths of community structures is known are 

listed in Table 2, and the comparisons of different algorithms on these networks are shown in 
Table 3. Notice that, ‘Friendship6’ and ‘Friendship7’ denote the same network, but they used 
different community ground-truths. Here we also adopt the NMI index as the accuracy measure. 
As we can see from the results, our method ENMM has the best (or co-best) performance on five 
of the seven networks, and it is also competitive with SNMF and BNMTF on the other two 
networks. In terms of efficiency, ENMM is competitive with that of SNMF, and much faster than 
BNMTF. 

Table 2. Some real-world networks with known community structures 
Datasets n m c (ground-truths) 
Zachary’s karate club 34 78 2 
Dolphin social network 62 160 2 

6 High school friendship network 69 220 7 
Political books 105 441 3 
American college football 115 613 12 
Political blogs 1,490 16,717 2 

 
Table 3. The comparison of each method on real networks in Table 2 

NMI index (%) Run time (seconds)  
ENMM SNMF BNMTF ENMM SNMF BNMTF 

Karate 100 100 100 0.0118 0.0071 1.3152 
Dolphin 88.88 81.41 81.41 0.0069 0.0084 2.5602 
Friendship6 79.30 78.64 71.22 0.0163 0.0222 8.3985 
Friendship7 84.26 82.11 84.30 0.0286 0.0266 9.5503 
Polbooks 54.04 56.48 51.18 0.0219 0.0484 7.0164 
Football 92.42 90.38 92.42 0.0532 0.0612 30.7691 
Polblogs 71.07 70.95 70.78 2.4307 2.2343 2498.1 

Furthermore, we take the dolphin social network as an example to further compare these 
algorithms. Figure 4(a) is the community result obtained by our method ENMM, and Figure 4(b) 
is what is obtained by SNMF and BNMTF. Different shapes denote the actual communities, and 
different colors express the community results got by the algorithms. As we can see, we mismatch 
‘SN98’. However, this node has only one neighbor ‘SN100’ in the square group and one neighbor 
‘Web’ in the cycle group. Accordingly, it seems difficult to decide which group ‘SN98’ should 
belong to. But as the degree of ‘SN100’ is seven and that of ‘Web’ is eight, it looks more 
reasonable to assign ‘SN98’ to the cycle group by using only the information on network 
topology. This is the, correct, result got by our method ENMM. However, for SNMF and 
BNMTF, they both mismatch ‘PL’, which has three neighbors in the square group and two 
neighbors in the cycle group. Thus, it seems as a mistake to assign this node to the green group in 
the results of these two algorithms. 



  
(a)                                    (b) 

Figure 4. Comparison of different algorithms on the dolphin social network. Note that, Different 
shapes denote the actual communities, and different colors express the community results got by 
the algorithms. (a) Community result got by our method ENMM. (b) Community result got by 
SNMF and BNMTF. 
 
4.2.2 Quality comparison 

We also test these algorithms on real-world networks whose community structures are 
unknown (see Table 4). As they do not have ground-truths, their community numbers are all 
obtained by our method of model selection which was introduced in Section 3.4. Because each of 
the algorithms can find both disjoint and overlapping community structures, here we used two 
widely used quality metrics: one is modularity Q [18] for evaluating hard partitions, and the other 
is the generalized map equation L for evaluating overlapping communities [29].  

Table 4. Some real-world networks without known community structures 
Datasets n m c (model selection) 
Les Miserables 77 254 12 
Word adjacencies 112 425 37 
Jazz musicians collaborations 198 2,742 3 
C. Elegans neural 297 2,148 28 
E. coli metabolic 453 2,025 18 
E-mail network URV 1,133 5,451 27 
Network science collaborations 1,589 2,742 277 
Power grid 4,941 6,594 42 
Word association 5,017 29,148 48 

 
Table 5. Comparison of each algorithm on the real networks in Table 4. Here, the greater the 
better, for Q-value, and the smaller the better, for L-value. The notation ‘−’ denotes time > 100 
hours.  

Modularity Q (disjoint) Map equation L (overlaps) Run time (seconds) Datasets 
(abbr) ENMM SNMF BNMTF ENMM SNMF BNMTF ENMM SNMF BNMTF 
Lesmis 0.4903 0.4434 0.4803 4.7753 4.8863 4.8299 6.2094 15.4238 23.2728 
Adjnoun 0.1704 0.1693 0.1698 6.9684 7.0538 7.0446 0.8085 22.1005 122.1150 
Jazz 0.4398 0.4406 0.4410 6.8117 6.8099 6.8091 1.7072 4.1945 113.4448 
Neural 0.2492 0.2465 0.2433 8.0017 8.0307 8.0411 18.2420 34.0775 1721.7 
Metabolic 0.3724 0.3857 0.3745 7.3202 7.3536 7.3388 4.6194 29.2601 1982.2 
Email 0.4772 0.4760 0.4699 8.3767 8.4717 8.5269 50.2086 38.4809 13705 
Netscience 0.8187 0.7954 0.7407 5.2338 5.2922 6.7284 88.8224 90.7758 337010 
Power 0.8786 0.8493  − 7.9611 8.2633 − 125.3689 131.1286 − 
Word 0.4142 0.4078  − 10.7608 10.8191 − 261.5206 300.9315 − 

Table 5 shows the result that compares our method ENMM with SNMF and BNMTF on the 
real-world networks described in Table 4. As we can see, in terms of modularity Q, ENMM has 
the best performance on seven of the nine networks; and in terms of the map equation L, ENMM 
has the best performance on eight of the nine networks. The superiority of ENMM is more 



obvious when a network is larger or when it has more communities. Notice that, Netscience is not 
an ergodic network, which is not originally supported by the map equation. But a non-ergodic 
process on a network can be made ergodic by introducing a small teleportation probability (such 
as 0.15) [4, 29]. Therefore, the map equation can be used for Netscience as well. Again, in terms 
of efficiency, our method ENMM is competitive with SNMF, and much faster than BNMTF. 
 
5. CONCLUSION 

In this work, we generalize a configuration model, namely the null model of modularity [18, 
19], to incorporate communities from the perspective of soft clustering. Then, we define a 
function of squared loss based on this extended model, and solve it by using a technique of 
nonnegative matrix factorization. Thereafter, we introduce a method of model selection to 
determine the number of communities for this model. Our model can theoretically preserve the 
degree sequence of networks. It provides both overlapping and disjoint communities, and is also 
suitable for weighted networks. We have evaluated our above method ENMM both on synthetic 
benchmarks and on some real-world networks, and compared it with two similar methods for 
community detection. The experimental results demonstrated the superior performance of ENMM 
over the competing ones in detecting both disjoint and overlapping communities.  

Nonetheless, our model selection method is not perfect. For large networks, it still needs some 
assistance from other methods, such as Louvain method [3] used here, to improve the efficiency. 
But this problem is also patent in many model-based methods for community detection, and it is 
still an open problem whether a reliable method of model selection can be developed that runs in 
reasonable time over large networks [16]. Thus in the future, we wish to improve our current 
method of model selection, to mitigate this problem, by following some heuristics hints.  

It is noteworthy that, our model function can be also regarded as a generalization of Newman’s 
function of modularity [18] to incorporate overlapping communities. Recently, several extensions 
of modularity have been proposed [2]. Of particular note is the work of Nicosia et al. [30], which 
also supports overlapping communities. It seems that Nicosia’s modularity has a high similarity 
with the one proposed here by us, but they have some key differences. Firstly, Nicosia extended 
the basic function of modularity by introducing a belonging factor to support overlapping 
communities. But our extension is indeed a function of generative model which, instead of directly 
detecting communities, describes how such overlapping structures are generated in the first place. 
Secondly, Nicosia optimized their function by using a genetic-based algorithm, but we used a 
statistical inference method, i.e. nonnegative matrix factorization, to learn our model function. 
Last but not least, Nicosia’s modularity obtains the number of communities by itself, but our 
model function needs a model selection method to determine this quantity.  

Since our model function is an extension of modularity, it may also suffer from the resolution 
limit problem [31], not being able to discern the quality of modules smaller than a certain size. As 
we have noted recently, Traag et al. [32] extended the modularity to support multi-resolutions, and 
also, they introduced a notion of “significance” of a partition, based on subgraph probabilities, to 
state what partitions are significant. Based on this elicitation, we may also be able to introduce a 
similar resolution parameter to our model to incorporate multi-resolutions, and then we can use a 
suitable metric, such as Traag’s significance, to determine the good resolution parameters. But we 
will leave it as our future work. 

 



APPENDIX 
Proposition 1. Under our model, the expected graph  preserves the same degree sequence 

as the observed graph G. 
Proof. Let di be the degree of node i in G. Given an arbitrary set of variables diz, subject to 

, which express our model parameters, then using (2) the degree of any node i in the 

expected graph  can be inferred as  

,                          (A1) 

correctly matching the degree of node i in the observed graph G. 
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