
Composition of State-based CRDTs

Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha and Carla Ferreira

May 25, 2015

1 Introduction

State-based CRDTs are rooted in mathematical structures called join-semilattices
(ore simply lattices, in this context). These order structures ensure that the
replicated states of the defined data types evolve and increase in a partial order
in a sufficiently defined way, so as to ensure that all concurrent evolutions can
be merged deterministically. In order to build, or understand the building prin-
ciples, of state-based CRDTs it is necessary to understand the basic building
blocks of the support lattices and how lattices can be composed.

2 From Sets to Lattices

In this context the most basic structure to define is a set of distinct values.
An example is the set of vowels that can defined by extension as vowels

.
=

{a, e, i, o, u}. Elements in a set have no specific order and they only need to be
distinguishable, i.e. by defining =.

Having a set we can define partial orders by defining a poset over a support
set and an order relation v. This relation can be any binary relation that is
reflexive, transitive and anti-symmetric. Given elements o, p, q in a set.

• (reflexive) o v o

• (transitive) o v p ∧ p v q ⇒ o v q

• (anti-symmetric) o v p ∧ p v o⇒ o = p

Since sets already define = it is possible to create posets transitively by enu-
merating the element pairs related by @. As an example, we can build a poset
with a total order on the set of vowels by defining 〈vowels, {(a, e), (e, i), (i, o), (o, u)}〉
In this example we ordered all elements and thus created a chain, with a @ e @
i @ o @ u, i.e. given any two elements o, p either o v p or p v o.

If some elements were left unordered we could have concurrent elements.

• (concurrent) o ‖ p ⇐⇒ ¬(o v p ∨ p v o)

1



In the extreme case we could have left all elements unordered and defined a
poset that depicted an antichain, where any two elements are always concurrent.
E.g. 〈vowels, {}〉. Having a poset we also have the properties of a set.

A : poset

A : set

For a given poset to be a join-semilattice there must be a least-upper-bound
for any subset of the support set. Given a pair of elements o, p, their least-
upper-bound can be derived by the result of a binary join operator, by o t p.
Since the binary join is commutative and associative it can be iterated over the
elements of any subset to derive the least-upper-bound of the subset. Some
properties of join are listed bellow.

• (idempotent) o t o = o

• (commutative) o t p = p t o

• (associative) o t (p t q) = (o t p) t q

And properties of least-upper-bounds.

• (upper-bound) o v o t p

• (least-upper-bound) o v q ∧ o v q ⇒ o v p t q

A general example of a poset with a join is obtained from any set by selecting
the order to be set inclusion and the join to be set union. In our running example
this would be the lattice defined by 〈vowels,⊆,∪〉. Another simple lattice can
be obtained by taking the maximum in a total order (or dually the minimum),
for naturals we can derive maxint

.
= 〈N,≤N,max〉.

Having a lattice we also have the properties of a poset.

A : lattice

A : poset

A chain (a special case of a poset) always derives a lattice.

A : chain

A : lattice

Notice that although some specific partial orders always derive lattices, as is
the case for chains, in general we can have partial orders that are not lattices.
An example is the prefix ordering on bit strings that can produce concurrent
elements, 010 ‖ 100, and is not a lattice.

We will see in latter sections that in some cases it is useful to have a special
element in the lattice that is the bottom element ⊥. Some properties are.

• (bottom) ⊥ v o

• (identity) ⊥ t o = o

2



The lattice formed by set inclusion has the empty set as bottom, 〈vowels,⊆
,∪, ∅〉. Not all lattices have a “natural” bottom, but it is always possible to
add an extra element as bottom to an existing lattice. We will address this con-
struction when talking about lattice composition by linear sums. As expected,
lattices with bottom also have the lattice properties.

A : lattice⊥
A : lattice

2.1 Primitive Lattices

We now introduce a small set of lattices, that will be later useful to construct
more complex structures by composition.

Singleton A single element, ⊥.

1 : lattice⊥

⊥ v ⊥ ⊥ t ⊥ = ⊥

Boolean Two elements B = {False,True} in a chain, join is logical ∨.

B : lattice⊥

False v True x t y = x ∨ y ⊥ = False

Naturals Natural numbers. We include the 0, thus N = {0, 1, . . .}.

N : lattice⊥

n v m = n ≤ m n t m = max(n,m) ⊥ = 0

3 Inflations make CRDTs

State-based CRDTs can be specified by selecting a given lattice to model the
state, and choosing an initial value in the lattice, usually the ⊥. Mutation
operations can only change the state by inflations and do not return values.
Query operations evaluate an arbitrary function on the state and return a value.

An inflation is an endo-function on the lattice type that picks a value x
among the set of valid lattice states a and produces a new value state such that:

• (inflation) x v f(x)

Inflations can be further classified as non-strict and strict inflations, where
a strict inflation is such that:

3



• (strict inflation) x @ f(x)

We can now classify inflations.

∀x ∈ a · x v f(x)

f : A
v−→ A

∀x ∈ a · x @ f(x)

f : A
@−→ A

f : A
@−→ A

f : A
v−→ A

A state that is only updated as a result of an inflation over its current value,
is immutable under joins with copies of past states.

Notice that an inflation is not the same as a monotonic function, x v y ⇒
f(x) v f(y). Example, the function f(x) = x

2 on positive reals is monotonic
and is not an inflation.

3.1 Primitive Inflations

Building on the primitive lattices introduced above we can build some inflations.

id(x) = x
id : A

v−→ A

True(x) = True
True : B

v−→ B

succ(x) = x + 1
succ : N

@−→ N

3.2 Sequential Composition

Inflations can be composed sequentially. As long as there is at least one strict
inflation in the composition, we are sure to also have a strict composition.

(f • g)(x) = f(g(x))

f : A
v−→ A g : A

v−→ A

f • g : A
v−→ A

f : A
v−→ A g : A

@−→ A

f • g : A
@−→ A

f : A
@−→ A g : A

v−→ A

f • g : A
@−→ A

4



4 Lattice Compositions

Since we are interested in creating lattices we consider a few composition tech-
niques that are known to derive lattices. While in some cases they build from
other lattices, in others they can derive lattices from simpler structures.

4.1 Product

The product ×, or pair construction, derives a lattice formed by pairs of other
lattices. It can be applied recursively and derive a composition from a sequence
of lattices, where operations are applied in point-wise order.

A : lattice B : lattice

A×B : lattice

(x1, y1) v (x2, y2) = x1 v x2 ∧ y1 v y2

(x1, y1) t (x2, y2) = (x1 t x2, y1 t y2)

The construction also extends to lattice⊥ when all sources are also lattice⊥.

A : lattice⊥ B : lattice⊥
A×B : lattice⊥

⊥ = (⊥,⊥)

As an example, the underlying lattice structure of a version vector among
three replica nodes is composable by N×N×N with ⊥ = (0, 0, 0).

Bellow are the properties of inflations over products. A strict inflation on
one of the components leads to an overall strict inflation.

(f × g)(x, y) = (f(x), g(y))

f : A
v−→ A g : B

v−→ B

f × g : A×B
v−→ A×B

f : A
v−→ A g : B

@−→ B

f × g : A×B
@−→ A×B

f : A
@−→ A g : B

v−→ B

f × g : A×B
@−→ A×B

4.2 Lexicographic Product

The � construct builds a lexicographic order from its source lattices. Compo-
nents to the left are more significant and, unless they are equal, they filter out
further comparisons to the right side.

A : lattice B : lattice⊥
A�B : lattice

A : lattice⊥ B : lattice⊥
A�B : lattice⊥

5



(x1, y1) v (x2, y2) = x1 v x2 ∨ (x1 = x2 ∧ y1 v y2)

(x1, y1) t (x2, y2) =


(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2,⊥) otherwise

⊥ = (⊥,⊥)

In the join definition we can observe that the ⊥ value is used only when the
left components can have concurrent values. Note that B could be simply a
lattice (B : lattice) and then join definition could be redefined in the following
manner:

(x1, y1) t (x2, y2) =


(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2, y1 t y2) otherwise

If the left component is a chain, often the case in practical uses, then the
right one can be a simple lattice (without ⊥) and the fourth clause of the join
definition is not used.

A : chain B : lattice

A�B : lattice

And, if the right component is also a chain the composition is a chain.

A : chain B : chain

A�B : chain

Properties of inflations.

(f � g)(x, y) = (f(x), g(y))

f : A
v−→ A g : B

v−→ B

f � g : A�B
v−→ A�B

f : A
v−→ A g : B

@−→ B

f � g : A�B
@−→ A�B

f : A
@−→ A g : B −→ B

f � g : A�B
@−→ A�B

Notice that if we apply a strict inflation to the left component, then the right
can be transformed by any (endo-)function even if non inflationary. In practice
this allows resetting the right component after strictly inflating the left.

6



4.3 Linear Sum

The next composition, linear sum ⊕, picks two lattices, left and right, and
creates a new lattice where any element from the left lattice is always lower
that any element in the right lattice. In the resulting set the elements are
tagged with a label that identifies from which source lattice they came form.
i.e. Left a means that element a came from the left lattice and is now named
Left a. Tagging also ensures that the sets supporting each lattice could have
had elements in common.

A : lattice B : lattice

A⊕B : lattice

A : lattice⊥ B : lattice

A⊕B : lattice⊥

Left x v Left y = x v y Left x t Left y = Left (x t y)
Right x v Right y = x v y Right x t Right y = Right (x t y)
Left x v Right y = True Left x t Right y = Right y
Right x v Left y = False Right x t Left y = Right x

⊥ = Left ⊥

A possible use of this construction is to add a ⊥ to a lattice that didn’t had
one. For instance 1 ⊕ R can add a special element, e.g. nil, that is ordered as
lower than any real number. The same construction can also be used to add
a top element > to a lattice, that can act as a tombstone that stops lattice
evolution. Notice that for any state x, x t > = >.

Properties of inflations.

(f ⊕ g)(Left x) = Left f(x)
(f ⊕ g)(Right x) = Right g(x)

f : A
v−→ A g : B

v−→ B

f ⊕ g : A⊕B
v−→ A⊕B

f : A
@−→ A g : B

@−→ B

f ⊕ g : A⊕B
@−→ A⊕B

4.4 Function and Map

A total function→ is obtained by combining a set with a lattice. This construc-
tion does keywise comparison and joins.

A : set B : lattice

A→ B : lattice

A : set B : lattice⊥
A→ B : lattice⊥

f v g = ∀x ∈ A · f(x) v g(x) (f t g)(x) = f(x) t g(x)

⊥(x) = ⊥

7



A map ↪→ can be obtained from a function by assigning a bottom to keys
that are not present in a given map, and then using the function definitions.
The linear sum construction is used to assign a distinguished bottom to any
lattice V in the co-domain.

K ↪→ V ∼= K → 1⊕ V

K : set V : lattice

K ↪→ V : lattice⊥

For example, we can define a map of vowels keys to integer counters vowels ↪→
N by using a total function vowels→ 1⊕N. Where the map state {a 7→ 3, i 7→ 5}
would be the same as the function state {a 7→ 3, e 7→ ⊥, i 7→ 5, o 7→ ⊥, u 7→ ⊥}.

We define some inflations over maps. The first inflation applies an inflation
to all values in the co-domain and thus inflates the map composition.

map(f)(m) = {(k, f(v)) | (k, v) ∈ m}

f : V
v−→ V

map(f) : (K ↪→ V )
v−→ (K ↪→ V )

The second inflation transforms the value on a given key, and if the key is
missing applies it to ⊥. This allows a strict inflation in the co-domain lattice to
imply a strict inflation in the composition.

applyk(f)(m) =

{
m{k 7→ f(v)} if (k, v) ∈ m

m{k 7→ f(⊥)} otherwise

f : V
v−→ V

applyk(f) : (K ↪→ V )
v−→ (K ↪→ V )

f : V
@−→ V

applyk(f) : (K ↪→ V )
@−→ (K ↪→ V )

4.5 Sets and Multisets

Given any set A it is possible to derive a lattice⊥ by using the set of all possible
subsets, the powerset P(A).

For example, P({x, y, z}) = {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.

A : set

P(A) : lattice⊥

P(A) ∼= A→ B

8



a v b = a ⊆ b a t b = a ∪ b ⊥ = {}

The powerset can also be represented by a function composition that maps
each set element to a boolean that states its presence in the subset.

This composition is very general since it can produce a lattice⊥ from any set.
A natural extension is to represent mutisets by mapping the domain set to

naturals, instead of booleans.

A : set

M(A) : lattice⊥

M(A) ∼= A→ N

a v b = a ⊆ b a t b = a ∪ b ⊥ = {}

The generic inflations defined for functions when used here show that adding
elements is inflationary. For sets represented by A→ B with a given state s we
can define how to add an element e.

add(e)(s) = applye(True)(s)

Likewise, when adding on multisets A → N one increments the element
count, having a strict inflation.

add(e)(s) = applye(succ)(s)

4.6 Antichain of Maximal Elements

Starting from a poset this construction produces a lattice⊥ by keeping an an-
tichain of maximal elements, given the base poset order. Upon join, all elements
that are concurrent are kept, but any element that is present together with a
higher element is removed.

A : poset

A(A) : lattice⊥

A(A) = {maximal(a) | a ∈ P(A)}

maximal(a) = {x ∈ a | @y ∈ a · x @ y}

a v b = ∀x ∈ a · ∃y ∈ b · x v y

a t b = maximal(a ∪ b)

⊥ = {}

9



5 Abridged Catalog

In order to exemplify the composition constructs we present a small set of exam-
ple CRDTs. Simple query functions are included and all mutators are inflations.

Notice that join does not need to be defined as it follows from the composition
rules that were introduced.

5.1 Positive Counter

This simple form of counter can only increase. Replica nodes must have access
to unique ids among a set I and can only increment its position in a map of
ids to integers. While increment mutators are parametrized by id i the query is
anonymous and simply inspects the state.

PCounter = I ↪→ N

inci(a) = applyi(succ)(a)

value(a) =
∑
{v | (i, v) ∈ a}

Notice that if a given node does not yet have an entry in the map and
increments, then succ applies over ⊥, which for N was defined to be 0.

Positive counter with reset

PCounter = (I ↪→ N)× (I ↪→ N)

inci(a) = applyi(succ)(fst(a))

reset(a) = ⊥× fst(a) t snd(a)

value(a) =
∑
{v | (i, v) ∈ fst(a)} −

∑
{v | (i, v) ∈ snd(a)}

5.2 Positive and Negative Counter

This variation allows for both increments and decrements. A solution is to
pair two positive counters and consider the right side as negative. We use
the standard functions fst() and snd() to respectively access the left and right
elements of a pair.

PNCounter = I ↪→ N× I ↪→ N

inci(a) = applyi(succ)(fst(a))

deci(a) = applyi(succ)(snd(a))

value(a) =
∑
{v | (i, v) ∈ fst(a)} −

∑
{v | (i, v) ∈ snd(a)}

10



An alternative way to obtain a similar result is to use a lexicographic pair
and have the first element incremented when one needs to update the count on
the second element.

PNCCounter = I ↪→ N�Z

inci(a) = applyi(id� succ)(a)

deci(a) = applyi(succ� pred)(a)

value(a) =
∑
{snd(v) | (i, v) ∈ a}

pred(x) = x− 1

5.3 Observed-remove Add-wins Set

An observed-remove set with add-wins semantics can be derived by creating
unique tokens whenever a new element is inserted, using for that a grow only
counter per replica, and canceling this tokens, by increasing a boolean to True,
upon removal. Only elements supported by non-canceled tokens are considered
to be in the set.

ORSet+ = E ↪→ I ↪→ N�B

adde,i(a) = applye(applyi(succ�False))(a)

rmve(a) = applye(map(id� True))(a)

membere(a) = ∃(e,m) ∈ a · ∃i, n · (n,False) ∈ m(i)

5.4 Observed-remove Remove-wins Set

An observed-remove set with remove-wins semantics is derived by a dual con-
struction to the previous one, while sharing the same state lattice. Removal
creates unique tokens, and additions need to cancel all remove tokens that are
visible in the state.

ORSet− = E ↪→ I ↪→ N�B

11



rmve,i(a) = applye(applyi(succ�False))(a)

adde(a) = applye(map(id� True))(a)

membere(a) = ∃(e,m) ∈ a · @i, n · (n,False) ∈ m(i)

5.5 Enable-wins Flag

A boolean flag that can be flipped, implemented in Riak under the name flag
data type. It is a special case of an ORSet+ for a singleton set. Flag starts
disabled.

Flag+ = I ↪→ N�B

enablei(a) = applyi(succ�False)(a)

disable(a) = map(id� True)(a)

value(a) = ∃i, n · (n,False) ∈ a(i)

5.6 Disable-wins Flag

A boolean flag that can be flipped, implemented in Riak under the name flag
data type. It is a special case of an ORSet− for a singleton set. Flag starts
enabled.

Flag− = I ↪→ N�B

disablei(a) = applyi(succ�False)(a)

enable(a) = map(id� True)(a)

value(a) = @ i, n · (n,False) ∈ a(i)

5.7 Multi-value Register

A non-optimized multi-value register can be derived by lexicographic coupling
of a version vector clock C with a payload value V . When a new value v is to
be assigned, a new clock, greater than all visible clocks in the state, is created

12



and coupled with the value. These pairs are kept in a antichain of maximal
elements. Thus, upon merge, concurrently assigned values will be collected, but
any subsequent assignment will again reduce the state to a single pair value.

MVReg(V, I) = A(C � V )

C = I ↪→ N

assignv,i(a) = {applyi(succ)(
⊔
{c | (c, v′) ∈ a})� v}

values(a) = {v | (c, v) ∈ a}

Notice that the value is never updated without creating a new clock. Thus,
lexicographic comparison (needed for the operation of the antichain join) is
always decided by the first component, and in practice V can be any opaque
payload without need to define a partial order on its values.

6 Closing Remarks

This report collects several composition techniques for lattices, adopts the notion
of inflation and how it applies to the specification of state based CRDTs over
lattices. Most of the lattice compositions are very standard techniques from
order theory [5]. An early version of this work was presented at Schloss Dagstuhl
under the title Composition of Lattices and CRDTs and the summary of the
presentation is available at [6]. Most of the CRDT constructions used here are
influenced by work in [8, 7, 2, 4, 3, 1].

References

[1] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-
based CRDTs operation-based. In Proceedings of Distributed Applications
and Interoperable Systems: 14th IFIP WG 6.1 International Conference.
Springer, 2014.

[2] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos
Baquero, Valter Balegas, and Sérgio Duarte. Brief announcement: Semantics
of eventually consistent replicated sets. In Marcos K. Aguilera, editor, Int.
Symp. on Dist. Comp. (DISC), volume 7611 of Lecture Notes in Comp. Sc.,
pages 441–442, Salvador, Bahia, Brazil, October 2012. Springer-Verlag.

[3] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Za-
wirski. Replicated data types: specification, verification, optimality. In

13



Suresh Jagannathan and Peter Sewell, editors, POPL, pages 271–284. ACM,
2014.

[4] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and
David Maier. Logic and lattices for distributed programming. In Proceedings
of the Third ACM Symposium on Cloud Computing, page 1. ACM, 2012.

[5] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order
(2. ed.). Cambridge University Press, 2002.

[6] Bettina Kemme, André Schiper, G. Ramalingam, and Marc Shapiro.
Dagstuhl seminar review: Consistency in distributed systems. SIGACT
News, 45(1):67–89, March 2014.

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A com-
prehensive study of Convergent and Commutative Replicated Data Types.
Rapp. Rech. 7506, Institut National de la Recherche en Informatique et
Automatique (INRIA), Rocquencourt, France, January 2011.

[8] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Xavier Défago, Franck Petit, and
V. Villain, editors, Int. Symp. on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS), volume 6976 of Lecture Notes in Comp. Sc., pages
386–400, Grenoble, France, October 2011. Springer-Verlag.

14


