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Abstract

Distributed data aggregation is an important task, allowing the de-
centralized determination of meaningful global properties, that can then
be used to direct the execution of other applications. The resulting val-
ues result from the distributed computation of functions like count, sum
and average. Some application examples can found to determine the
network size, total storage capacity, average load, majorities and many
others. In the last decade, many different approaches have been pro-
posed, with different trade-offs in terms of accuracy, reliability, message
and time complexity. Due to the considerable amount and variety of ag-
gregation algorithms, it can be difficult and time consuming to determine
which techniques will be more appropriate to use in specific settings, jus-
tifying the existence of a survey to aid in this task. This work reviews
the state of the art on distributed data aggregation algorithms, providing
three main contributions. First, it formally defines the concept of aggrega-
tion, characterizing the different types of aggregation functions. Second,
it succinctly describes the main aggregation techniques, organizing them
in a taxonomy. Finally, it provides some guidelines toward the selection
and use of the most relevant techniques, summarizing their principal char-
acteristics.

1 Introduction

Data aggregation is an essential building block of modern distributed systems,
enabling the determination of important system wide properties in a decentral-
ized manner. The knowledge of these global properties can then be used as input
by other distributed application and algorithms. The network size is a common
example of such global properties, which is required by many algorithms in the
context of Peer-to-Peer (P2P) networks, for instance: in the construction and
maintenance of Distributed Hash Tables (DHT) [70, 89]; to set the number of
targets of a gossip protocol [41]. An estimation of the system size is also used in
many other contexts, for example: to set up a quorum in dynamic settings [1],
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or by a membership service for wireless ad hoc networks (more precisely, to
compute the mixing time of a random walk) [6]. The network size is computed
through the count aggregation function. Nevertheless, other meaningful global
properties can be computed using different functions, for example: average can
be applied to determine the average system load which can be used to direct lo-
cal load balancing decisions; sum allows the determination of totals values such
as the total free disk space available in a file-sharing system. In the particular
case of Wireless Sensor Networks (WSN), data gathering is only practicable if
data aggregation is performed, due to the strict energy constraints found on
such environments.

The above examples intend to illustrate some of the main reasons that have
motivated the research and development of distributed data aggregation ap-
proaches along the past years, but more can be found in the literature. Besides
all the existing relevant application examples, aggregation has also being stated
as one of basis for scalability in large scale services [91], reinforcing its impor-
tance. Currently, a huge amount of distinct approaches constitute the body of
related work on distributed data aggregation algorithms, with all exhibiting dif-
ferent trade-offs in terms of accuracy, time, communication and fault-tolerance.
All existing techniques have confirmed that obtaining global statistics in a dis-
tributed fashion is a difficult problem, specially when considering faults and
network dynamism. Moreover, in front of such diversity, it becomes difficult to
choose which distributed data aggregation algorithm should be preferred in a
given scenario, and which one will best suit the requirements of a specific ap-
plication. One of the main motivations of this work is precisely to help readers
make this choice.

Some surveys have been previously published [36, 83, 85, 3, 77] focusing
specifically on aggregation techniques for WSN. Several in-network aggregation
techniques for WSN are depicted in [36], which typically operate at the network
level, needing to deal with the resource constraints of sensor nodes (limited
computational power, storage and energy resources). A review of the existing
literature more focused on energy efficiency is presented in [83], and on security
in [85, 3]. Another work reviewing the state-of-the-art of information fusion
techniques for WSN is also available [77]. In this later work, a broader view of
the sensor fusion process is reviewed, from raw data collection, passing through
a possible summarization (data aggregation) or compression, until the final re-
sulting decision or action is reached. Data aggregation is considered a subset of
information fusion, that aims at reducing (summarize) the handled data volume.

In this survey, we intend to address data aggregation algorithms at a higher
abstraction level, providing a comprehensive and more generic view of the
problem independently of the type of network used. We define the problem
of computing aggregation function in a distributed fashion, and detail a wide
range of distinct solutions. Existing approaches are classified, and their advan-
tages/disadvantage in terms of communication and computational complexity
are discussed. Moreover, we give some important guidelines to help in the deci-
sion of which distributed aggregation algorithm should be use, according to the
requirements of a target application and environment.

The remaining of this survey is organized as follows. In Section 2, we clarify
the concept of aggregation, and define the problem of its distributed computa-
tion. A taxonomy of the existing distributed aggregation algorithms is proposed
in Section 3, describing the most relevant approaches and discussing their pros
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and cons. Section 4 summarize the properties of the most relevant approaches,
and gives some guidelines for their practical application. Finally, some conclud-
ing remarks and future research directions are drawn in Section 5.

2 Problem Definition

In a nutshell, aggregation can be simply defined as “the ability to summarize
information”, quoting Robbert Van Renesse [91]. Data aggregation is consid-
ered a subset of information fusion, aiming at reducing (summarize) the handled
data volume [77]. Here, we provide a more precise definition, and consider that
the process consists in the computation of an aggregation function defined by:

Definition 1 (Aggregation function): An aggregation function f takes a multiset
of elements from a domain I and produces an output of a domain O:

f : NI → O

The input being a multiset emphasizes that: 1) the order in which the
elements are aggregated is irrelevant; 2) a given value may occur several times.
Frequently, for common aggregation functions such as min, max, and sum,
both I and O are the same domain. For others, such as count (which gives
the cardinality of the multiset), the result is a nonnegative integer, regardless
of the input domain.

An aggregation function aims to summarize information. Therefore, the re-
sult of an aggregation (in the output domain O) typically takes much less space
than the multiset to be aggregated (an element from NI). We will leave un-
specified what is acceptable for some function to be considered as summarizing
information, and therefore, an aggregation function. It can be said that the out-
put domain O is not normally a multiset (we do not have normally O = NI) and
that the identity function is clearly not an aggregation function as it definitely
does not summarize information. In most practical cases, the size of the output
is at most a logarithmic of the input size, and often even of constant size.

2.1 Decomposable functions

For some aggregation functions we may need to perform a single computation
involving all elements in the multiset. For many cases, however, one needs
to avoid such centralized computation. In order to perform distributed in-
network aggregation, it is relevant whether the aggregation function can be
decomposed into several computations involving sub-multisets of the multiset to
be aggregated. For distributed aggregation it is useful, therefore, to define the
notion of decomposable aggregation function, and a subset of these, which we
call self-decomposable aggregation functions.

Definition 2 (Self-decomposable aggregation function): An aggregation function
f : NI → O is said to be self-decomposable if, for some (merge) operator � and
all non-empty multisets X and Y :

f(X ] Y ) = f(X) � f(Y )
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In the above, ] denotes the standard multiset sum (see, e.g.,[90]). According
to the above definition, and given that the aggregation result is the same for all
possible partitions of a multiset into sub-multisets, it means that the operator �
is commutative and associative. Many traditional functions such as min, max,
sum and count are self-decomposable:

sum ({x}) = x,

sum(X ] Y ) = sum(X) + sum(Y ).

count({x}) = 1,

count(X ] Y ) = count(X) + count(Y ).

min({x}) = x,

min(X ] Y ) = min(X) umin(Y ).

Definition 3 (Decomposable aggregation function): An aggregation function f :
NI → O is said to be decomposable if for some function g and a self-decomposable
aggregation function h, it can be expressed as:

f = g ◦ h

From this definition, the self-decomposable functions are a subset of the
decomposable functions, where g = id, the identity function. While for self-
decomposable functions the intermediate results (e.g., for in-network aggrega-
tion) are computed in the output domain O, for a general decomposable func-
tion, we may need a different auxiliary domain to hold the intermediate results.

The classic example of a decomposable (but not self-decomposable) function,
is average, which gives the average of the elements in the multiset:

average(X) = g(h(X)), with

h({x}) = (x, 1)

h(X ] Y ) = h(X) + h(Y ),

g((s, c)) = s/c,

in which h is a self-decomposable aggregation function that outputs values of an
auxiliary domain (pairs of values) and + is the standard pointwise sum of pairs
(i.e. (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)). Another example is the range
function in statistics, which gives the difference between the maximum and the
minimum value.

2.2 Duplicate sensitiveness and idempotence

Depending on the aggregation function, it may be relevant whether a given value
occurs several times in the multiset. For some aggregation functions, such as
min and max, the presence of duplicate values in the multiset does not influence
the result, which only depends on its support set (the set obtained by removing
all duplicates from the original multiset). E.g.,

min({1, 3, 1, 2, 4, 5, 4, 5}) = min({1, 3, 2, 4, 5}) = 1
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Decomposable Non-decomposable
Self-decomposable

Duplicate insensitive min, max range distinct count
Duplicate sensitive sum, count average median, mode

Table 1: Taxonomy of aggregation functions.

For others, such as sum and count, the number of times each element occurs
(its multiplicity) is relevant:

8 = count({1, 3, 1, 2, 4, 5, 4, 5}) 6= count({1, 3, 2, 4, 5}) = 5

Duplicate sensitiveness is relevant for distributed aggregation. Many du-
plicate insensitive functions can be implemented using an idempotent binary
operator on the elements of the multiset. This helps in obtaining fault tolerance
and decentralized processing, allowing retransmissions or sending values across
multiple paths.

Definition 4 (Duplicate insensitive aggregation function): An aggregation func-
tion f is said to be duplicate insensitive if for all multisets M , f(M) = f(S),
where S is the support set of M .

Moreover, some duplicate insensitive functions (like min and max) can be
implemented using an idempotent binary operator, that can be successively
applied (by intermediate nodes) on the elements of the multiset (any number
of times without affecting the result). This helps in obtaining fault tolerance
and decentralized processing, allowing retransmissions or sending values across
multiple paths. Unfortunately, the distributed application of an idempotent
operator is not always possible, even for some duplicate insensitive aggregation
functions, such as distinct count (i.e. cardinality of the support set). In fact,
the application of an idempotent operator in a distributed way to compute an
aggregation function is only possible, if the function is duplicate insensitive and
self-decomposable.

2.3 Taxonomy of common aggregation functions

Building on the concepts of decomposability and duplicate sensitiveness, we
can obtain a taxonomy of aggregation functions (see Table 1). This helps to
clarify how suited to distributed aggregation a function is. Non-decomposable
functions are harder than decomposable, and duplicate sensitive are harder than
duplicate insensitive. As we will see, one way to obtain fault-tolerance is to
use a duplicate insensitive approximation of some aggregation, that uses an
idempotent operation (like max) instead of a non-idempotent one (like sum).

3 Taxonomy

In this section, a simple taxonomy of the existing distributed data aggregation
algorithms is proposed, classifying them according to two main perspectives:
communication and computation (see Table 2 and 3). The first viewpoint refers
to the routing protocols and intrinsic network topologies associated to each
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protocol, which are used to support the aggregation process. The second per-
spective points out the aggregation functions computed by the algorithms and
the main principles from which they are based on. Other perspectives (e.g.
algorithm requirements, covered types aggregation functions) could have been
considered, since the mapping between the algorithms attributes is multidimen-
sional. However, we believe that the two chosen perspectives will provide a clear
presentation.

3.1 Communication

Three major classes of aggregation algorithms are identified from the commu-
nication perspective, according to the characteristics of their communication
pattern (routing protocol) and network topology (see Table 2): structured (usu-
ally, hierarchy-based), unstructured (usually, gossip-based), and hybrid (mixing
the previous categories).

The structured communication class refers to aggregation algorithms that
are dependent on a specific network topology and routing scheme to operate
correctly. If the required routing topology is not available, then an additional
preprocessing phase is needed in order to create it, before starting the exe-
cution of the algorithm. This dependency limits the use of these techniques
in dynamic environments. For instance, in mobile networks these algorithms
need to be able to continuously adapt their routing structure to follow network
changes. Typically, algorithms are directly affected by problems from the used
routing structure. For example, in tree-based communication structures a sin-
gle point of failure (node/link) can compromise the delivery of data from all its
subtrees, and consequently impair the applications supported by that structure.
In practice, hierarchical communication structures (e.g. tree routing topology)
are the most often used to perform data aggregation, especially in WSN. Alter-
native routing topologies are also considered, like the ring topology, although
very few approaches rely on it.

The unstructured communication category covers aggregation algorithms
that can operate independently from the network organization and structure,
without establishing any predefined topology. In terms of communication, this
kind of algorithms is essentially characterized by the used communication pat-
tern: flooding/broadcast, random walk and gossip. The flooding/broadcast com-
munication patterns is associated to the dissemination of data from one node
to all the network or group of nodes – “one to all”. A random walk consists
in sequential message transmissions, from one node to another – “one to one”.
The gossip communication pattern refers to a well known communication pro-
tocol, based on the spreading of a rumor [81] (or an epidemic disease), in which
messages are sent successively from one node to a selected number of peers –
“one to many”. In the recent years, several aggregation algorithms based on
gossip communication have been proposed, in an attempt to take advantages
of its simplicity, scalability and robustness. More details about these different
communication patterns (see Table 2), used to perform data aggregation, will
be further described.

The hybrid class groups algorithms that mix the use of different routing
strategies from the previous categories, with the objective to combine their
virtues and reduce their weakness, in order to obtain an improved aggregation
approach when compared to their progenitors used individually.
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Routing Algorithms
TAG [67], DAG [76],
I-LEAG [10],

Hierarchy Sketches [20],
Structured (tree, cluster, multipath) RIA-LC/DC [34, 35],

Tributary-Delta [69],
Q-Digest [88]

Ring (Horowitz and Malkhi, 2003) [47]

Flooding/Broadcast Randomized Reports [7]
Random Tour [71],

Random walk Sample & Collide [40, 71],
Capture-Recapture [68]
Push-Sum Protocol [58],

Unstructured Push-Pull Gossiping [50],
DRG [13],
Flow Updating [52, 53],

Gossip Extrema Propagation [4]
Equi-Depth[44],
Adam2 [84],
Hop-Sampling [60, 61],
Interval Density [60, 61]

Hybrid Hierarchy + Gossip (Chitnis et al., 2008) [15]

Table 2: Taxonomy from a communication perspective.

3.1.1 Hierarchy-based approaches

Traditionally, existing aggregation algorithms operate on a hierarchy-based com-
munication scheme. Hierarchy-based approaches are often used to perform data
aggregations, especially in WSN. This routing strategy consists on the defini-
tion of a hierarchical communication structure (e.g. spanning tree), rooted at
a single point, commonly designated as sink. In general, in a hierarchy-based
approach the data is simply disseminated from level to level, up the hierarchy, in
response to a query request made by the sink, which computes the final result.
Besides the sink, other special nodes can be defined to compute intermediate
aggregates, working as aggregation points that forward their results to upper
level nodes until the sink is reached. Aggregation algorithms based on hierar-
chic communication usually work in two phases, involving the participation of
all nodes in each one: request phase and response phase. The request phase cor-
responds to the spreading of an aggregation request throughout all the network.
Several considerations must be taken into account before starting this phase,
depending on which node wants to performs the request and on the existing
routing topology. For instance: if the routing structure has not been estab-
lished yet, it must be created and ought to be rooted at the requesting node;
if the required topology is already established, first the node must forward its
request to the root, in order to be spread (from the sink) across all the network.
During the response phase, all the nodes answer the aggregation query by send-
ing the requested data toward the sink. In this phase, nodes can be asked to
simply forward the received data or to compute partial intermediate aggregates
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to be sent.
The aggregation structure of hierarchy-based approaches provides a simple

strategy, that enables the exact computation of aggregates (without failures),
in an efficient manner in terms of energy consumption. However, in adverse en-
vironments this type of approach exhibits some fragility in terms of robustness,
since a single point of failure can jeopardize the obtained result. Furthermore,
to correctly operate in dynamic environments, where the network continuously
changes (nodes joining/leaving), extra resources are required to maintain an
updated routing structure.

TAG The Tiny AGgregation service for ad-hoc sensor networks described by
Madden et al. [67] represents a classical tree-based in-network aggregation ap-
proach. As referred by the authors, in a sense TAG is agnostic to the imple-
mentation of the tree-based routing protocol, as far as it satisfies two important
requirements. First, it must be able to deliver query requests to all the net-
work nodes. Second, it must provide at least one route from every node (that
participates in the aggregation process) to the sink, guaranteeing that no du-
plicates are generated (at most one copy of every message must arrive). This
algorithm requires the previous creation of a tree-based routing topology, and
also the continuous maintenance of such routing structure in order to operate
over mobile networks.

TAG supplies an aggregation service inspired in the selection and aggre-
gation features of database query languages, providing a declarative SQL-like
(Structured Query Language) query language to the users. This algorithm of-
fers grouping capabilities and implements basic database aggregation functions,
among others, such as: count, maximum, minimum, sum and average. The
aggregation process consists of two phases: a distribution phase (in which, the
aggregation query is propagated along the tree routing topology, from the root
to the leaves) and a collection phase (where the values are aggregated from the
children to the parents, until the root is reached). The obtention of the aggrega-
tion result at the root incurs a minimum time overhead that is proportional to
the tree depth. This waiting time is needed to ensure the conclusion of the two
execution phases and the participation of all nodes in the aggregation process.

A pipelined aggregate technique (detailed in [66]) has been proposed to min-
imize the effect of the waiting time overhead. According to this technique,
smaller time intervals (relatively to the overall needed time) are used to repet-
itively produce periodic (partial) aggregation results. In each time interval, all
nodes that have received the aggregation request will transmit a partial result,
which is calculated from the application of the aggregation function to their local
reading and to the results received from their children in the previous interval.
Along time, after each successive time interval, the aggregated value will result
from the participation of a growing number of nodes, increasing the reliability
and accuracy of the result, becoming close to the correct value at each step.
The correct aggregation result should be reached after a minimum number of
iterations (in an ideal fail-safe environment).

Following the authors concerns about power consumption, additional op-
timization techniques were proposed to the TAG basic approach, in order to
reduce the number of messages sent, taking advantages of the shared commu-
nication medium in wireless networks (which enables message snooping and
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broadcast) and giving decision power to nodes. They proposed a technique
called hypothesis testing, to use in certain classes of aggregates, where each
node can decide to transmit the value resulting from its subtree, only if it will
contribute to the final result.

DAG An aggregation scheme for WSN based on the creation of a DAG (Di-
rected Acyclic Graph) is proposed in [76], with the objective to reduce the effect
of message loss of common tree-based approaches by allowing nodes to possess
alternative parents. The DAG is created by setting multiple parents (within ra-
dio range) to each node, as its next hop toward the sink. In more detail, request
messages are extended with a list of parent nodes (IDs), enabling children to
learn the parent’s parent (grandparents) which are two hops away. In order to
avoid duplicated aggregates, only a parent is chosen to aggregate intermediate
values, preferably a common parent of its parents. The most common parent’s
parent between the list received from parents is chosen as the destination ag-
gregator, otherwise one of the parents is chosen (e.g. when a node has only
one parent node). Response messages are handled according to specific rules
to avoid duplicate processing: they can be aggregated, forwarded or discarded.
Messages are aggregated if the receiving node corresponds to the destination,
forwarded if the destination is a node’s parent, and discarded otherwise (des-
tination is not the node or one of its parents). Note that, although the same
message can be duplicated and multiple “copies” can reach the same node (a
grandparent), they will have the same destination node and only one of them
(from the same source) will be considered for aggregation (after receiving all
messages from children).

This method takes advantage of the path redundancy introduced by the
use of multiple parents to improve the robustness of the aggregation scheme
(tolerance to message loss), when compared to traditional tree-based techniques.
Though a better accuracy can be achieved, it comes at the cost of an higher
energy consumption, as more messages with an increased size are transmitted.
Note that this approach does not fully overcome the message loss problem of tree
routing topologies, as some nodes may have a single parent, being dependent
from the quality of the created DAG.

Sketches An alternative multi-path based approach is proposed in [20] to
perform in-network aggregation for sensor databases, using small sketches. The
defined scheme is able to deal with duplicated data upon multi-path routing and
compute duplicate-sensitive aggregates, like count, sum and average. This
algorithm is based on the probabilistic counting sketches technique introduced
by Flajolet and Martin [37] (FM), used to estimate the number of distinct ele-
ments in a data collection. A generalization of this technique is proposed to be
applied to duplicate-sensitive aggregation functions (non-idempotent), namely
the sum. The authors consider the use of multi-path routing to support commu-
nication failures (links and nodes), providing several possible paths to reach a
destination. Like common tree-based approaches, the algorithm consists of two
phases: first, the sink propagates the aggregation request across the whole net-
work; second, the local values are collected and aggregated along a multi-path
structure from the children to the root. In this particular case, during the re-
quest propagation phase, all nodes compute their distance (level) to the root and
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store the level of their neighbors, establishing a hierarchical multi-path routing
topology (similar to the creation of multiple routing trees). In the second phase,
partial aggregates are computed across the routing structure, using the adapted
counting sketch scheme, and sent to the upper levels in successive rounds. Each
round corresponds to a hierarchy level, in which the received sketches from chil-
dren nodes are combined with the local one, until the sink is reached. In the
last round, the sink merges the sketches of its neighbors and produces the final
result, applying an estimation function over the sketch. Notice that the use of
an auxiliary structure to summarize all data values (FM sketches), and corre-
spondent estimator, will introduce an approximation error that will be reflected
in the final result. However, according to this aggregation scheme, it is expected
that data losses (mitigated with the introduction of multiple alternative paths)
will have an higher impact in the result accuracy than the approximation error
introduced by the use of sketches (to handle duplicates).

I-LEAG This cluster-based aggregation approach, designated as I-LEAG [10]
(Instance-Local Efficient Aggregation on Graphs), requires the pre-construction
of a different routing structure – Local Partition Hierarchy, which can be viewed
as a logical tree of local routing partitions. The routing structure is composed
by a hierarchy of clusters (partitions), with upper level clusters comprising lower
level ones. A single pivot is assigned to each cluster, and the root of the tree
corresponds to the pivot of the highest level cluster (that includes all the network
graph). This algorithm emphasizes local computation to perform aggregation,
being executed along several sequential phases. Each phase, correspond to a
level of the hierarchy, in which the algorithm is executed in parallel by all
clusters of the corresponding level (from lower levels to upper levels).

Basically, the algorithm proceeds as follow: each cluster checks for local
conflicts (different aggregation outputs between neighbors); detected conflicts
are reported to pivots, which compute the new aggregated value and multicast
the result to the cluster; additionally, every node forwards the received result to
all neighbors that do not belong to the cluster; received values are used to update
the local aggregation value (if received from a node in the current cluster) or to
update neighbor aggregation output (if received from a neighbor of the upper
level cluster), enabling the local detection of further conflicts. Conflicts are only
detected between neighbors that belong to a different clusters in the previous
phase, with different aggregation outputs from those clusters. A timer is needed
to ensure that all messages sent during some phase reach their destination by
the end of the same phase.

Further, two extension of the algorithm were proposed to continuously com-
pute aggregates over a fixed network where node inputs may change along time:
MultI-LEAG and DynI-LEAG [9]. MultI-LEAG mainly corresponds to consec-
utive executions of I-LEAG, improved to avoid sending messages when no input
changes are detected. Inputs are sampled at regular time intervals and the
result of the current sampling interval is produced before the next one starts.
DynI-LEAG concurrently execute several instances of MultI-LEAG, pipelining
its phases (ensuring that every partition level only executes a single MultI-
LEAG phase at a time), and more frequently sampling inputs to faster track
changes but at the cost of a higher message complexity. Despite the authors
effort to efficiently perform aggregation, these algorithms are restricted to static
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networks (with fixed size), without considering the occurrence of faults.

Tributary-Delta This approach mixes the use of tree and multi-path rout-
ing schemes to perform data aggregation, combining the advantages of both to
provide a better accuracy in the presence of communication failures [69]. Two
different routing regions are defined: tributary (tree routing, in analogy to the
shape formed by rivers flowing into a main stem) and delta (multi-path rout-
ing, in analogy to the landform of a river flowing into the sea). The idea is to
use tributaries in regions with low message loss rates to take advantage of the
energy-efficiency and accuracy of a traditional tree-based aggregation scheme,
and use deltas in zones where message losses have a higher rate and impact (e.g.,
close to the sink where messages carry values corresponding to several node read-
ings) to benefit from the multi-path redundancy of sketch based schemes. Two
adaptation strategies (TD-Coarse and TD) are proposed to shrink or expand the
delta region, according to the network conditions and a minimum percentage of
contributing nodes predefined by the user. The prior knowledge of the network
size is required, and the number of contributing nodes needs to be counted (or
count the non contributing nodes in a tributary subtree), in order to estimate
the current participation percentage. Conversion functions are also required to
convert partial results from the tributary (tree-based aggregation) into valid
inputs to be used in the delta region (by the multi-path algorithm). Experi-
mental results applying TAG [67] in tributaries and Synopses Diffusion [78] (see
Section 3.2.3) in deltas, showed that this hybrid approach performs better when
compared to both aggregation algorithms used separately.

Other approaches Several other hierarchy-based aggregation approaches can
be found in the literature, most of them differing on the supporting routing
structure, or on the way it is built. Beside alternative variations of the hierarchic
routing topology, some optimization techniques to the aggregation process can
also be found, especially to reduce the energy-consumption in WSN.

In [62] an aggregation scheme over DHTs (Distributed Hash Tables) is pro-
posed. This approach is characterized by its tree construction protocol, that use
a parental function to map a unique parent to each node, building an aggrega-
tion tree in a bottom-up fashion (unlike traditional approaches). The authors
consider the coexistence of multiple trees to increase the robustness of the algo-
rithm against faults, as well as the continuous execution of a tree maintenance
protocol to handle the dynamic arrival and departure of nodes. Two operation
modes are proposed to perform data aggregation (and data broadcast): default
and on-demand. In the default mode, the algorithm is executed in background,
taking advantage of messages exchanged by the tree maintenance protocol (ap-
pending some additional information to these messages). The on-demand mode
corresponds to the traditional aggregation scheme found on tree-based algo-
rithms.

Zhao et al. [96] proposed an approach to continuously compute aggregates
in WSN, for monitoring purposes. They assume that the network continu-
ously computes several aggregates, from which at least one corresponds to the
min/max – computed using a simple diffusion scheme. A tree is implicitly con-
structed during the diffusion process (node with the min/max value is set as the
root of the created tree) and is used for the computation of other aggregates (e.g.
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average and count). In practice, two different schemes are used: a digest diffu-
sion algorithm to compute idempotent aggregates which is used to construct an
aggregation tree, and a tree digest scheme similar to common hierarchy-based
approaches that operates over the tree routing structure created by the previous
technique.

Alternative hierarchic routing structures are found in the literature to sup-
port aggregation, namely: a BFS (Breadth First Search) tree is used in the
GAP (Generic Aggregation Protocol) [21] protocol to continuously compute
aggregates for network management purposes; the creation of a GIST (Group-
Independent Spanning Tree) based on the geographic distribution of sensors is
described in [54], taking into consideration the variation of the group of sen-
sors that may answer an aggregation query. A previous group-aware optimiza-
tion technique has been proposed: GaNC (Group-Aware Network Configura-
tion) [87]. GaNC influences the routing tree construction by enabling nodes to
preferably set parents from the same group (analyzing the GROUP BY clause of
the received aggregation queries) and according to a maximum communication
range, in order to decrease message size and consequently reduce energy con-
sumption. Some algorithms [73, 63, 93] based on swarm intelligence techniques,
more precisely ant colony optimization, can also be found in the literature to
construct optimal aggregation trees, once more to improve the energy efficiency
of WSN. Ant colony optimization algorithms are inspired in the foraging behav-
ior of ants, leaving pheromone trails that enable others to find the shortest path
to food. In this kind of approach, the aggregation structure is iteratively con-
structed by artificial ant agents, consisting in the paths (from different sources
to the sink) with the higher pheromone values, and where nodes nodes that
belong to more than one path act as aggregation points.

Some studies [65, 45] have shown that deciding which node should act
as a data aggregator or forwarder has an important impact on the energy-
consumption and lifetime of WSN. A routing algorithm, designated AFST
(Adaptive Fusion Steiner Tree), that adaptively decides which nodes should
fuse (aggregate) data or simply forward it is described in [65]. AFST evaluates
the cost of data fusion and transmission, during the construction of the routing
structure in order to minimize energy consumption of data gathering. A further
extension to this scheme was proposed to handle node arrival/departure, Online
AFST [64], with the objective of minimizing the cost and impact of dynamism
in the routing structure. In LEACH (Low-Energy Adaptive Clustering Hierar-
chy) [45, 46], a cluster-based routing protocol for data gathering in WSN, the
random rotation of cluster-heads along time is proposed in order to distribute
the energy consumption burden of collecting and fusing (compressing) cluster’s
data.

Filtering strategies can also be applied to reduce energy consumption in
hierarchy-based aggregation approach. For instance, A-GAP [82] is an exten-
sion of GAP (previously referred) which uses filters to provide a controllable
accuracy of the protocol. Local filters are added at each node in order to con-
trol whether or not an update is sent. Updates are discarded according to a
predefined accuracy objective, resulting in a reduction in terms of communica-
tion overhead (number of messages). Filters can dynamically adjust along the
execution of the protocol, allowing the control of the trade-off between accu-
racy and overhead. Another similar approach to reduce message transmissions
according to a tolerated error value is proposed in [23], adaptively adjusting fil-
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ters according to a Potential Gains Adjustment (PGA) strategy. A framework
called TiNA (Temporal coherency-aware in-Network Aggregation) that filters
reported sensor readings according to their temporal coherency was proposed in
[87]. This framework operates on the top of existing hierarchic-based aggrega-
tion schemes like TAG. In particular, TiNA defines an additional TOLERANCE
clause to allow users to specify the desired temporal coherency tolerance of each
aggregation query, and filter the reported sensor data (i.e. readings within the
range of the specified value are suppressed).

3.1.2 Ring based approaches

Very few aggregation approaches are supported by a ring communication struc-
ture. This particular type of routing topology is typically surpassed by hierar-
chic ones, which are used instead. For instance, the effect of failures in a ring can
be worst than on hierarchic topologies, as a single point of failure can break the
all communication chain. Furthermore, the time complexity of rings to prop-
agate data across all the network is typically higher, providing a slower data
dissemination. However, this kind of topology can be explored in alternative
ways, that can in some sense circumvent the aforementioned limitations.

It is worth referring to an alternative approach described by Horowitz and
Malkhi [47], based on the creation of a virtual ring to obtain an estimation
of the network size (i.e. count) at each node. This technique relies solely
on the departure and arrival of nodes to estimate the network size, without
requiring any additional communication. Each node of the network holds a
single successor link, forming a virtual ring. It is assumed that each node possess
an accurate estimator. Upon the arrival of a new node, a random successor
among the existing nodes, named contact point, is assigned to it. During the
joining process, the new node gets the contact point estimator and increments
it (by one). At the end of the joining process, the two nodes (joining node
and contact point) will yield the new count estimate. Upon the detection of
a departure, the inverse process is executed. This method provides a disperse
estimative over the whole network, with an excepted accuracy that ranges from
n/2 to n2, where n represent the correct network size. In the rest of this
paper, we will always denote n as the network size, unless explicitly indicated
otherwise. Despite the achieved low accuracy and considerable result dispersion,
this algorithm has a substantially low communication cost (i.e. communicates
only upon arrival/departure, without any further information dissemination;
each joining node communicates only with two nodes).

3.1.3 Flooding/Broadcast based approaches

Flooding/Broadcast based approaches promote the participation of all network
nodes in the data aggregation process. The information is propagated from a
single node (usually a special one) to the whole network, sending messages to
all neighbors – “one to all”. This communication pattern normally induces a
high network load, during the aggregation process, implying in some cases a
certain degree of centralization of data exchanges. Tree-based approaches are
a traditional example of use of this communication pattern, but in this case
supported by a hierarchic routing topology. Additional examples which are not
sustained by any specific structured routing topology are described below.
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Randomized Reports A naive algorithm to perform aggregation, will con-
sist of broadcasting a request to the whole network (independently from the
existing routing topology), collect the value at all nodes and compute the re-
sult at the starting node. This will likely lead to network congestion and an
expected overload of the source node, due to feedback implosion. However, a
predefined response probability could be used to mitigate this drawback, such
that network nodes will only decide to respond according to the defined prob-
ability. Such probabilistic polling method was proposed in [7] to estimate the
network size. The source node broadcast a query request with a sampling prob-
ability p, that will be used by all remaining nodes to decide whether to reply or
not. All the received responses will be counted by the querying node (during a
predefined time interval), knowing that it will receive a total number of replies
r according to the given probability. At the end, the network size n̂ can be
estimated at the source by n̂ = r/p.

Other Approaches A similar approach based on the same principle (sam-
pling probability) is proposed in [55], to approximate the size of a single-hop
radio network, considering the occurrence of collisions. In each step, a trans-
mission succeeds if exactly a single station chooses to send a message. Set-
ting a probability p to decide to send a message at each node, the expression
np(1−p)n−1 gives the probability ps of a step being successful. The previous ex-
pression is maximized for p = 1/n where ps ≈ 1/e. It is expected that ps ≈ t/e,
if the experiment is repeated independently t times. Based on the previous prob-
abilistic observation, the algorithm counts the number of successful steps along
successive phases, to estimates the network size. Different probability values
(decrementing) and number of trials (incrementing) are used along each consec-
utive phase, until the number of successful steps is close to the expected value.
Further improvements to this algorithm have been proposed in [56], aiming at
making it immune against adversary attacks.

3.1.4 Random Walk based approaches

Random walk based approaches are usually associated to a data sampling pro-
cess to further estimate an aggregation value, involving only a partial amount of
network nodes. Basically, this communication process consists on the random
circulation of a token. A message is sequentially sent from one node to another
randomly selected neighbor – “one to one”, until a predefined stopping criteria
is met (e.g. maximum number of hops, reach a selected node or return to the
initial one). Usually, a small amount of messages are exchanged in this kind
of approach, since only a portion of the network is involved in the aggregation
process. Due to the partial participation of the network, algorithms using this
communication pattern normally rely on probabilistic methods to produce an
approximation of the computed aggregation function. Probabilistic methods
provide estimations of the result with a known bounded error. If the execution
conditions and the considered parameters of the algorithm are maintained, the
estimation error is expected to be maintained (with constant bounds) along
time. This kind of aggregation algorithms will not converge to the correct ag-
gregation value, and the result will always contain an estimation error.
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Random Tour The random tour approach [71] is based on the execution
of a random walk to estimate a sum of functions of the network nodes, Φ =∑

i∈N φ(i), for a generic function φ(i) where i denotes a node and N the set
of nodes (e.g. to estimate the network size, count: φ(i) = 1, for all i ∈ N ).
The estimate is computed from the accumulation of local statistics into a initial
message, all of which are gathered during a random walk, from the originator
node until the message returns to it. The initiator node i initializes a variable
X with the value φ(i)/di (where di denotes the degree of node i, i.e., number
of adjacent nodes). Upon receive, each node j adds to X by φ(j)/dj (i.e.
X ← X + φ(j)/dj). In each iteration, the message tagged with X is updated
and forwarded to a neighbor, chosen uniformly at random, until it returns to
the initial node. When the originator receives back the message originally sent,
it computes the estimate Φ̂ (of the sum Φ) by Φ̂ = diX.

Other approaches Other approaches based on random walks can be found
in the literature, but they are commonly tailored for specific setting and to
the computation of specific aggregation functions, like count (to estimate the
network or group size).

For instance, to accelerate self-stabilization in a group communication sys-
tem for ad-hoc networks, a scheme to estimate the group size based on random
walks is proposed in [30] (first published in [29]). In this specific case, a mobile
agent (called scouter) performs a random walk and collects information about
alive nodes to further estimate the system size. The agent carries the set of all
visited nodes and a counter associated to each one of them. Whenever the agent
moves to a node, all the counters are incremented by one except the one of the
current node, which is set to zero. Large counter values are associated to nodes
that have been less recently visited by the scouter, becoming more likely to be
suspected of nonexistence. Counters are bounded by the scouter’s maximum
number of moves, which is set according to the expected cover time and a safety
function, before considering a corresponding node as not connected. The main
idea is to remove from the scouter information of nodes – sorted by increasing
order of their counter value, where the gap between successive nodes (kth and
k − 1th) is greater than the number of moves required to explore k connected
elements in a random walk fashion. After having the scouter perform a large
enough number of moves, the number of nodes in the system can be estimated
by simply counting the number of elements kept in the set of visited nodes.

Other relevant approaches based on the execution of random walks to col-
lect samples, like Sample & Collide [40, 71] and Capture-Recapture [68], are
described in Section 3.2.5.

3.1.5 Gossip-based approaches

Commonly, gossip and epidemic communication are indistinctly referred. How-
ever, in a relatively recent review of gossiping in distributed systems [59] a
slight distinction between the two is made. In a nutshell, the difference simply
relies on the interaction directionality of both protocols. The authors state that
gossiping is referred to “the probabilistic exchange of information between two
members”, and epidemic is referred to “information dissemination where a node
randomly chooses another member”. Even so, the effect of both protocols in
terms of information spread is much alike, and strongly related to epidemics.
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Notice that, the information spread in a group in real life (gossip) is similar to
the spread of an infectious disease (epidemics). For this reason, in this work no
distinction will be made between gossip and epidemic protocols.

Gossip communication protocols are strongly related to epidemics, where
an initial node (“infected”) sends a message to a (random) subset of its neigh-
bors (“contaminated”), which repeat this propagation process – “one to many”.
With the right parameters, almost the whole network will end up participat-
ing in this propagation scheme. This communication pattern exhibits interest-
ing characteristics despite its simplicity, allowing a robust (fault tolerant) and
scalable information dissemination over all the network, in a completely decen-
tralized fashion. Nevertheless, it is important to point out that the robustness
of gossip protocols may not be directly attained by any algorithm based on a
simple application of this communication pattern. For instance, an algorithm
correctness may rely on principles and invariants that may not be guaranteed
by a straightforward and incautious use of a gossip communication protocol, as
revealed in [51]. In general, gossip communication tends to be as efficient as
flooding, in terms of speed and coverage, but it imposes a lower network traffic
load (to disseminate data).

Push-Sum Protocol The push-sum protocol [58] is a simple gossip-based
protocol to compute aggregation functions, such as sum or average, consisting
of an iterative pairwise distribution of values throughout all the network. In
more detail, along discrete times t, each node i maintains and propagates in-
formation of a pair of values (sti, wti): sti represents the sum of the exchanged
values, and wti denotes the weight associated to this sum at the given time t
and node i. In order to compute distinct aggregation functions, it is enough
to assign appropriate initial values to these variables. E.g., considering vi as
the initial input value at node i, average: s0i = vi and w0i = 1 for all nodes;
sum: s0i = vi for all nodes, only one node starts with w0i = 1 and the re-
maining assume w0i = 0; count: s0i = 1 for all nodes, only one with w0i = 1
and the others with w0i = 0. In each iteration, a neighbor is chosen uniformly
at random, and half of the actual values are sent to the target node and the
other half to the node itself. Upon receive, the local values are updated, adding
each value from a received pair to its local component (i.e. pointwise sum of
pairs). The estimate of the aggregation function can be computed by all nodes,
at each time t by sti/wti. The accuracy of the produced result will tend to
increase progressively along each iteration, converging to the correct value. As
referred by the authors, the correctness of this algorithm relies on a fundamen-
tal property defined as the mass conservation, stating that: the global sum of
all network values (local value of each node plus the value in messages in tran-
sit) must remain constant along time. Considering the crucial importance of
this property, the authors assume the existence of a fault detection mechanism,
that allow nodes to detect when a message did not reach its destination. In
this situation, the “mass” is restored by sending the undelivered message to
the node itself. This algorithm is further generalized by the authors in their
work – push-synopses protocol, in order to combine it with random sampling to
compute more “complex” aggregation functions (e.g. quantiles) in a distributed
way.
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Other approaches In the last years, several gossip-based approaches have
been proposed, due to the attractive characteristics of gossip communication:
simplicity, scalability and robustness. Several alternative algorithms inspired by
the push-sum protocol have been proposed, like: Push-Pull Gossiping [49, 50]
which provides an anti-entropy aggregation technique (see section 3.2.2), or G-
GAP [95] (Gossip-based Generic Aggregation Protocol) that extends the push-
synopses protocol to tolerate non contiguous faults (i.e. neighbors can not fail
within the same short time period).

Another aggregation algorithm supported by an information dissemination
and group membership management protocol, called newscast protocol, is pro-
posed in [48]. This approach consists of the dissemination of a cache of items
(with a predefined size) maintained by each network node. Periodically, each
node randomly selects a peer, considering the network addresses of nodes avail-
able on the local cache entries. The cache entries are exchanged between the
two nodes and the received information is merged into their local cache. The
merge operation discards the oldest items, keeping a predefined number of the
freshest ones, also ensuring that there is at most one item from each node in the
cache. An estimate of the desired aggregate can be produced by each network
node, by applying the aggregation function to the local cache of items.

3.1.6 Hybrid approaches

Hybrid approaches combine the use of different communication techniques to
obtain improved results from their synergy. Commonly, the use of a hierarchic
topology is mixed with gossip communication. Hierarchic based schemes are
efficient and accurate, but highly affected by the occurrence of faults. On the
other hand, gossip based algorithms are more resilient to faults, but less effi-
cient in terms of overhead (requiring more message exchanges). In general, this
combination enables hybrid approaches to achieve a fair trade-off between per-
formance (in terms of overhead and accuracy) and robustness, when performing
aggregation in more realistic environments.

(Chitnis et al., 2008) Chitnis et al. [15] studied the problem of computing
aggregates in large-scale sensor networks in the presence of faults, and analyzed
the behavior of hierarchy-based (i.e. TAG) and gossip-based (i.e. Push-Sum
Protocol) aggregation protocols. In particular, they observe that tree-based
aggregation is very efficient for very small failures probabilities, but its per-
formance drops rapidly with increasing failures. On the other hand, a gossip
protocol is slightly slowed down (almost unaffected), and is better to use with
failures (compared to tree-based). Considering these results, the authors pro-
posed an hybrid protocol with the intent of leveraging the strengths of both
analyzed mechanisms and minimize their weakness, in order to achieve a better
performance in faulty large-scale sensor networks.

This hybrid approach divides the network nodes in groups, and a gossip-
based aggregation is performed within each one. A leader is elected for each
group, and an aggregation tree is constructed with the leader nodes (multi-hop
routing may be required between leaders) to further perform a tree-based ag-
gregation with the results from each gossip group. The authors also defined
and solved an optimization problem to get the best combination between the
two aggregation mechanisms, yielding the optimal size of the groups according
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to the network size and failure probability. However, in practice it requires the
pre-computation of the gossip group size (by solving the referred optimization
problem) before starting to use of the protocol with optimal settings. Results
from simulations show that the hybrid aggregation approach usually outper-
forms the other two (tree-based and gossip-based) 1.

An extension of the previous approach for heterogeneous sensor networks
is later discussed in [16]. In this case, it is considered that a few distinguished
nodes, designated as microservers, which are more reliable and less prone to fail-
ure than the remaining ones, are available in the network. The aggregation tech-
nique works mostly like the one previously described for the homogeneous case,
but with two differences that take advantage of the reliability of microservers.
First, microservers are preferably chosen as group leaders. Second, microservers
are put on the top of the created aggregation tree which may also be composed
by other less reliable nodes. The use of microservers in the aggregation tree will
increase its robustness, and by putting them at the top will reduce the need
the reconstruct the whole tree when a fault occurs. The evaluation results show
that the aggregation process can be enhanced in heterogenous networks, when
taking advantage of more reliable (although more expensive) nodes.

Other Approaches A more elaborated structure was previously defined by
Astrolabe [92]. Astrolabe is a DNS-like distributed management system that
supports attributes aggregation. It defines a hierarchy of zones (similar to the
DNS domain hierarchy), each one holding a list of attributes called MIB (Man-
agement Information Base). This structure can be viewed as a tree, each level
composed of non-overlapping zones, where leaf zones are single hosts, each one
running an Astrolabe agent, and the root zone includes all the network. Each
zone is uniquely identified by a name hierarchy (similarly to DNS), assigning to
each zone a unique string name within the parent zone; the global unique name
of each zone is obtained by concatenating the name of all its parent zones from
the root with a predefined separator. The zone hierarchy is implicitly defined
by the name administratively set to each agent. A gossip protocol is executed
between a set of elected agents to maintain the existing zones. The MIB held
by each zone is computed by a set of aggregation functions, that produce a
summary of the attributes from the child zones. An aggregation function is
defined by a SQL-like program that is code embedded in the MIB, being set as
a special attribute. Agents keep a local copy of a subset of all MIBs, in partic-
ular of zones in the path to the root and siblings, providing replication of the
aggregated information with weak consistency (eventual consistency). A gossip
protocol is used for agents to exchange data about MIBs from other (sibling)
zones and within its zone, and update its state with the most recent data.

Another hierarchical gossiping algorithm was introduced by Gupta et al. [43],
being one of the first to use gossip for the distributed computation of aggregation
functions. According to the authors, the philosophy of this approach is similar
to Astrolabe, but uses a more generic technique to construct the hierarchy,
called Grid Box Hierarchy. The hierarchy is created by assigning (random or
topology aware) unique addresses to all members, generated from a known hash
function. The most significant digits of the address are used to divide nodes into

1Notice that only static network settings (no node arriving/leaving) were considered by
the authors.
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different groups (grid boxes) and define the hierarchy. Each level of the hierarchy
corresponds to a set of grid boxes, matching a different number of significant
digits. The aggregation process is carried out from the bottom to the top of the
hierarchy in consecutive gossip phases (for each level of the hierarchy). In each
phase: members of the same grid box gossip their data, compute the resulting
aggregate after a predefined number of rounds, and then move to the next phase.
The protocol terminates when nodes find themselves at the grid box at the top
of the hierarchy (last phase). Note that, this approach does not rely on any
leader election scheme to set group aggregators, in fact the authors argue the
inadequacy of such mechanism in unreliable networks prone to message loss and
node crashes.

Recently, an approach that combines a hierarchy based technique with ran-
dom sampling was proposed in [14] to approximate aggregation functions in
large WSN. In this approach, the amount of collect data is regulated by a
sampling probability produced from the input accuracy (expressed by two pa-
rameters ε and δ, i.e., relative error less than ε with probability greater than
1 − δ) and the aggregation function (i.e. count, sum or average), aiming
at reducing the energy consumption to compute the aggregate. This algorithm
considers that the sensing nodes are organized in clusters (according to their
geographic location), and that cluster heads form a spanning tree rooted at the
sink. Basically, the aggregation proceeds as following: first, the sink computes
the sampling probability p (according to ε and δ) and transmits it along with the
aggregation function to all cluster heads across the spanning tree; then, cluster
heads broadcast p to their cluster and each node within independently decides
to respond according to the received probability; samples are collected at each
cluster head which computes a partial result; finally, the partial results are ag-
gregated upward the tree (convergecast) until the sink is reached, and where the
final (approximated) result is computed. This algorithm, referred by the authors
as BSC (Bernoulli Sampling on Clusters), mixes the application of a common
hierarchy based aggregation technique such as TAG (see Section 3.1.1) between
cluster heads, with a flooding/broadcast method like Randomized Reports (see
Section 3.1.3) to sample the values at each cluster.

3.2 Computation

In terms of computational principles on which the existing aggregation algo-
rithms are based, the following main categories (see Table 3) were identified:
Hierarchical, Averaging, Sketches (hash or min-k based), Digests, Deterministic,
and Sampling. These categories intrinsically support the computation of differ-
ent kinds of aggregation functions. For instance, Hierarchical approaches allow
the computation of any decomposable function. Averaging techniques allow the
computation of all duplicate sensitive decomposable functions that can be de-
rived from the average, by using specific initial input values and combining
the results form different instances of the algorithms. Sketches techniques also
allow the computation of duplicate sensitive decomposable functions, but that
can be derived from the sum 2. Moreover, schemes based on hash sketches are
natively able to compute distinct counts (non decomposable duplicate insensi-
tive), and those based on min-k can be easily adapted to compute it (e.g. in

2Note that, count is the sum of all elements considering their input value as equal to 1.
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Aggregation Basis/Principles Algorithms
TAG [67], DAG [76],

Hierarchic I-LEAG [10],
Tributary-Delta [69],
(Chitnis et al., 2008) [15]
Push-Sum Protocol [58],

Decomposable Push-Pull Gossiping [50],
Functions Averaging DRG [13],
Functions Flow Updating [52, 53],

(Chitnis et al., 2008) [15]
Sketches [20],

Sketches RIA-LC/DC [34, 35],
Extrema Propagation [4],
Tributary-Delta [69]

Q-Digest [88],
Complex Digests Equi-Depth[44],
Functions Adam2 [84]

Random Tour [71],
Randomized Reports [7],
Sample & Collide [40, 71],

Counting Sampling Capture-Recapture [68],
Hop-Sampling [60, 61],
Interval Density [60, 61],
(Kutylowski et al., 2002) [55]
(Horowitz and Malkhi, 2003) [47]

Table 3: Taxonomy from the computation perspective.

extrema propagation, see 3.2.3, using the input value as seed of the random
generation function, so that duplicated values will generate the same number).
Digests support the computation of any kind of aggregation function, as this
type of approach usually allows the estimation of the whole data distribution
(i.e. values and frequencies) from which any function can be obtained. On the
other hand, some techniques are restricted to the computation a single type of
aggregation function, such as count, which is the case of Sampling approaches.

Besides determining the supported aggregation function, the computational
technique on which an aggregation algorithm is based constitutes a key ele-
ment to define its behavior and performance, especially in terms of accuracy
and reliability. Hierarchical approaches are accurate and efficient (in terms
of message and computational complexity), but not fault tolerant. Averaging
schemes are more reliable and also relatively accurate (converge along time),
although less efficient (require more message exchanges). Approaches based on
the use of sketches are more reliable than hierarchical schemes, adding some
redundancy and providing fast multi-path data propagation, however they in-
troduce an approximation error (depending on the number of inputs and size
of the used sketch). Digests essentially consists on the reduction (compression)
of all inputs into a fixed size data structure, using probabilistic methods and
losing some information. Consequently, digests provide an approximation of the
computed aggregation function, not the exact result. Sampling schemes are also

20

https://www.researchgate.net/publication/221213281_Tributaries_and_Deltas_Efficient_and_Robust_Aggregation_in_Sensor_Network_Streams?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221213281_Tributaries_and_Deltas_Efficient_and_Robust_Aggregation_in_Sensor_Network_Streams?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/4207947_Decentralized_Schemes_for_Size_Estimation_in_Large_and_Dynamic_Groups?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/4207947_Decentralized_Schemes_for_Size_Estimation_in_Large_and_Dynamic_Groups?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221039836_Fast_Estimation_of_Aggregates_in_Unstructured_Networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/1957377_Medians_and_Beyond_New_Aggregation_Techniques_for_Sensor_Networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/220973591_Fault-Tolerant_Aggregation_by_Flow_Updating?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/4038189_Gossip-based_computation_of_aggregate_information?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/2868745_Estimating_Network_Size_from_Local_Information?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/2868745_Estimating_Network_Size_from_Local_Information?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/224189989_Fault-Tolerant_Aggregation_for_Dynamic_Networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221284008_Robust_computation_of_aggregates_in_wireless_sensor_networks_distributed_randomized_algorithms_and_analysis?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/234797410_Gossip-based_distribution_estimation_in_peer-to-peer_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/220952359_Efficient_and_robust_sensor_data_aggregation_using_linear_counting_sketches?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/220566772_Peer_counting_and_sampling_in_overlay_networks_based_on_random_walks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221426627_Energy-Efficient_Size_Approximation_of_Radio_Networks_with_No_Collision_Detection?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/222670711_Active_and_passive_techniques_for_group_size_estimation_in_large-scale_and_dynamic_distributed_systems?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/222670711_Active_and_passive_techniques_for_group_size_estimation_in_large-scale_and_dynamic_distributed_systems?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221459055_Adam2_Reliable_Distribution_Estimation_in_Decentralised_Environments?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/220851856_TAG_A_Tiny_AGgregation_service_for_Ad-Hoc_sensor_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221343938_Peer_counting_and_sampling_in_overlay_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221343938_Peer_counting_and_sampling_in_overlay_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/4217244_DAG_based_in-network_aggregation_for_sensor_network_monitoring?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/4084911_Approximate_aggregation_technique_for_sensor_databases?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/243768909_Estimating_Aggregates_on_a_Peer-to-Peer_Network?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/220439374_Gossip-Based_Aggregation_in_Large_Dynamic_Networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/262211159_Aggregation_methods_for_large-scale_sensor_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/262211159_Aggregation_methods_for_large-scale_sensor_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/262211159_Aggregation_methods_for_large-scale_sensor_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/262211159_Aggregation_methods_for_large-scale_sensor_networks?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/251363316_Network_Size_Estimation_In_A_Peer-to-Peer_Network?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/221343987_Veracity_radius_-_Capturing_the_locality_of_distributed_computations?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4
https://www.researchgate.net/publication/220293636_Efficient_and_Robust_Schemes_for_Sensor_Data_Aggregation_Based_on_Linear_Counting?el=1_x_8&enrichId=rgreq-d98a69c9-4a9d-4f84-bead-d5d1cb30e392&enrichSource=Y292ZXJQYWdlOzUxOTQyODk2O0FTOjEwNDg3NTA4NjA1NzQ3MkAxNDAyMDE1NTc4MDQ4


based on probabilistic methods to compute the count, being inaccurate and
lightweight in terms of message complexity, as only a portion of the network is
asked to participate.

In the following sections, the main principles and characteristics of these
distinct classes are explained in a comprehensive way, and some important ex-
amples are described. A taxonomy of the identified computational principles is
displayed in Table 3, associating them to the most relevant distributed aggre-
gation algorithms.

3.2.1 Hierarchical

Hierarchical approaches take direct advantage of the decomposable property
of some aggregation functions. Inputs are divided into separated groups and
the computation is performed distributively in a hierarchical way. Algorithms
from this class depend on the previous creation of a hierarchic communication
structure (e.g. tree, clusters hierarchy), where nodes can act as forwarders or
aggregators. Forwarders simply transmit the received inputs to an upper level
node. Aggregators apply the target aggregation function directly to all received
input (and its own), and forward the result to an upper level node. The correct
result is yield at the top of the hierarchy, being the aggregation process carried
out from the bottom to the top.

Algorithms from this class allow the computation of any decomposable func-
tion, providing the exact result (at a single node) if no faults occur. The global
processing and memory resources required are equivalent to the ones used in a
direct and centralized application of the aggregation function, but distributed
across the network. However, these algorithms are not fault tolerant, e.g. a
single point of failure may lead to the lost of all data beneath it.

Most of the algorithms from this category correspond to the ones belong-
ing to the hierarchic communication class, like TAG [67], DAG [76], and I-
LEAG [10]. Other algorithms can be found combining a hierarchical computa-
tion with another computation principle, namely: Tributary-Delta [69] mix a
common hierarchical computation, with the use sketches in regions close to the
sink ; (Chitnis et al., 2008) [15] performs hierarchic aggregation on the top of
groups, and averaging is applied inside each one. See sections 3.1.1 and 3.1.6
for more details about the aforementioned algorithms.

3.2.2 Averaging

The Averaging class essentially consists on the iterative computation of partial
aggregates (averages), continuously averaging and exchanging data among all
active nodes that will contribute to the obtention of the final result. This kind of
approach tends to be able to reach a high accuracy, with all nodes converging to
the correct result along the execution of the algorithm. A typical application of
this method can be found in most gossip-based approaches (section 3.1.5), where
all nodes continuously distribute a share of their value (averaged from received
values) with some random neighbor, converging along time to the global network
average (correct aggregation result). Algorithms from this category are more
reliable than hierarchic approaches, working independently from the supporting
network topology and producing the result at all nodes. However, they must
respect an important principle, commonly designated as “mass conservation” in
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order to converge to the correct result. This invariant states that the sum of the
aggregated values of all network nodes must remain constant along time [58].

Algorithms based on this technique are able to compute decomposable and
duplicate-sensitive functions, which can be derived from the average operation;
using different inputs initializations (e.g. count), or combining functions ex-
ecuted concurrently (e.g. sum, obtained by multiplying the results from an
average and a count). In terms of computational complexity, this method usu-
ally involves the computation of simple arithmetic operations (i.e. addition and
division), using few computational resources (processor and memory) and being
fast to execute (at each node). This kind of algorithms are able to produce
(almost) exact results, depending on their execution time (without failures).
The minimum execution time required by these algorithms (number of itera-
tions), to achieve a high accuracy, is influenced by the network characteristics
(i.e. size, connection degree, and topology) and the communication pattern
used to spread the partial averages. The robustness of this type of aggregation
algorithm is strongly related with their ability to conserve the global “mass”
of the system. The loss of a partial aggregate (“mass”) due to a node failure
or a message loss introduces an error, resulting in the subtraction of the lost
value from the initial global “mass” (leading to the non-contribution of the lost
amount to the calculation of the final result, and therefore to the convergence
to an incorrect value). In this kind of methodology, it is important to enforce
the “mass” conservation principle, assuming itself as a main invariant to ensure
the algorithms correctness.

Push-Pull Gossiping The push-pull gossiping [49] algorithm performs an
averaging process, and it is gossip-based like the push-sum protocol [58] (previ-
ously described in section 3.1.5). The main difference of this scheme relies on the
execution of an anti-entropy aggregation process. The concept of anti-entropy in
epidemic algorithms consists in the regular random selection of another site, to
resolve all the differences between the two, exchanging complete databases [24].
In particular, this algorithm executes an epidemic protocol to perform a pair-
wise exchange of aggregated values between neighbor nodes. Periodically, each
node randomly chooses a neighbor to send its current value, and waits for the
response with the value of the neighbor. Then, it averages the sent and received
value, and calculates the new estimated value. Each time a node receives a
value from a neighbor, it sends back its current one and computes the new es-
timate (average), using the received and sent values as parameters. In order to
be adaptive and handle network changes (nodes joining/leaving), the authors
consider the extension of the algorithm with a restarting mechanism (executing
the protocol during a predefined number of cycles, depending on the desired
accuracy). However, they do not address the “mass” conservation problem –
impact of message losses or node failures.

A further study of this aggregation algorithm is discussed in [50], proposing a
more mature solution that covers some practical issues: split the algorithm exe-
cution in two distinct threads; use of timeouts to detect possible faults, ignoring
data exchanges in those situations; suggest different versions of the algorithm
according to the aggregation function to compute; suggest the execution of sev-
eral instances of the algorithm in parallel to increase its robustness.
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DRG (Distributed Random Grouping) This approach [13] essentially
consists on the continuous random creation of groups across the network, in
which aggregates are successively computed (averaged). DRG was designed
to take advantage of the broadcast nature of wireless transmission, where all
nodes within radio range will be prone to ear a transmission, directing its ap-
plication to WSN. The algorithm defines three different working modes for each
node: leader, member, and idle mode. According to the defined modes and the
performed state transitions, the execution of the algorithm can be separated in
three main steps. First, each node in idle mode independently decides to become
a group leader (according to a predefined probability), and consequently broad-
cast a Group Call Message (GCM) to all its neighbors, subsequently waiting for
members. Second, all nodes in idle mode which received a GCM from a leader
respond to the first one with a Joining Acknowledgment (JACK) tagged with
their aggregated value, becoming members of that group (updating their state
mode accordingly). In the third step, after gathering the group members val-
ues from received JACKs, the leader computes (averages) the group aggregate
and broadcast a Group Assignment Message (GAM) with the result, returning
to idle mode. Each group member waits until it receives the resulting group
aggregate from the leader to update its local value (with the one assigned in
the GAM) and returns to idle mode, not responding to any other request until
then.

The repeated execution of this scheme – creation of distributed random
groups to perform in-group aggregation – allows the eventual convergence of
the estimate produced at all nodes to the correct aggregation result, as long as
the groups overlap along time. The performance of DRG is influenced by the
predefined probability of a node becoming leader, which determines its capacity
to create groups (quantity and size of groups). Note that, in order to account
for the occurrence of faults and avoid consequent deadlock situations that could
arise in this algorithm, it is necessary to consider the definition of some timeouts
(for the leaders to wait for JACKs, and the members to wait for a GAM).
Intuitively, one will notice that the values set for these timeouts will highly
influence the performance of the algorithm, although this detail is not addressed
by the authors. An analysis of DRG on WSN with randomly changing graphs
(modeling network dynamism) is provided in [12], assuming that the graph
only changes at the beginning of each iteration of the algorithm (unrealistic
assumption in practice, otherwise this leads to mass loss).

Flow Updating Flow Updating [52] is a recent aggregation technique which
is inspired from the concept of network flows (from graph theory). Unlike com-
mon averaging approaches, that start with the initial input value and iteratively
change it by exchanging “mass” along the execution of the algorithm, this ap-
proach keeps the initial input unchanged, exchanging and updating flows associ-
ated to neighbors. The key idea is to explore the concept of flow, and instead of
storing the current average at each node in a variable compute it from the input
value and the contribution of the flows along the edges to the neighbors. In a
sense, flows represent the value that must be transferred between two adjacent
nodes for them to produce the same estimate, and are skew symmetric (i.e. the
flow value from i to j is the opposite from j to i: fij = −fji). For example:
considering two directly connected nodes i and j with initial input values vi = 1
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and vj = 3, for them to produce the same average 1+3
2 = 2, the flows at node i

and j must be respectively set to fij = −1 and fji = 1.
In more detail, each node i stores a flow value fij to each neighbor j, besides

its input value vi which is unchanged by the algorithm. Periodically, each node
computes a new estimate e′i by averaging the ones received from neighbors ej
with its own ei (obtained from subtracting all flows to its input value). The
flows fij to each neighbor j are then locally updated in order to produce the
new estimation result, adding the difference between the new estimate and the
one previously received to the respective flow value. Afterwards, the node sends
in a message the flows fij to each neighbor j, as well as the new estimate. Upon
reception of a message, node j updates its flow fji with the symmetric value
addressed to him −fij , and keeps the received estimate to further compute the
next average. The iterative execution of this process across the whole network
allows the estimate of all nodes to converge to the global average of the input
values.

This approach distinguishes itself from the existing averaging algorithms by
its fault-tolerant capabilities. It solves the mass conservation problem observed
on other averaging approaches when subject to message loss, that affect their
correctness leading them to converge to a wrong value. Other approaches require
additional mechanism to detect and restore the lost mass which is not feasible
in practice. In contrast, Flow Updating is by design able to support message
loss, only delaying convergence without affecting the convergence to the correct
value, without requiring any additional mechanism. This is achieved by keeping
the input values unchanged and performing idempotent flow updates which
guarantee their skew symmetric property. Moreover, it has been recently shown
that this approach is resilient to node crash and able to support churn (with
requiring protocol restarts), self-adapting to network changes [53].

Other Approaches A well-known averaging approach, the Push-Sum (push-
synopses) Protocol [58] has already been described in section 3.1.5. In the last
years, other approaches inspired by the Push-Sum Protocol have been proposed,
intending to be more efficient in term of performance and robustness. Kashyap
et al. [57] reduces the number of messages needed (communication overhead)
to compute an aggregation function at the cost of an increase in the number of
rounds. G-GAP (Gossip-based Generic Aggregation Protocol) [95] extends the
push-synopses protocol [58] to support discontinuous failures (no adjacent node
can fail within a period of 2 rounds) by restoring the mass loss resulting from
failures (temporarily storing at each node previous data contributions).

Dimakis et al. [26, 25] propose an algorithm to improve the convergence
time in random geometric networks. This scheme is similar to push-pull gossip-
ing [49], differing on the peer selection methods. Instead of selecting a one-hop
node as target of the averaging step, peers are selected according to their geo-
graphical location. In particular, a location is randomly chosen and the node
closer to that local is selected. A greedy geographic routing process is used to
reach the node at the target location, assuming that nodes known their own
geographic location.

Two averaging algorithms for asynchronous and dynamic networks are pro-
posed in [72]. The core of the proposed schemes is based on a pairwise update,
similarly to the push-pull gossiping (although not referred to the authors), ad-
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dressing practical concerns that arise in asynchronous settings. In the first pro-
posed algorithm nodes implement a blocking scheme to avoid the interference of
other nodes in the update step and guarantee mass conservation. Additionally,
a deadlock avoidance mechanism is considered, by imposing a sender-receiver
relation on each link based on node UIDs (Unique IDentifiers). An extension
to the first algorithm is proposed to cope with churn. The blocking mechanism
(maintaining the directed relationship between nodes) is removed, and an ad-
ditional variable is used to account for changes of each neighbor. When a node
leaves the network, all its neighbors subtract the value associated to it from
their state.

3.2.3 Sketches

The main principle of this kind of aggregation algorithm is based on the use
of an auxiliary data structure with a fixed size, holding a sketch of all network
values. The input values are used to create sketches that are aggregated across
the network, using specific operations to update and merge them. Operations
on sketches are order and duplicate insensitive, enabling them to be aggregated
through multiple paths, being independent from the routing topology. This kind
of technique is based on the application of a probabilistic method, generally
allowing the estimation of the sum of the values held in the sketch.

Sketching techniques can be based on different methods, with different ac-
curacy bounds and computational complexities. Algorithms from this class are
mostly based on the application (with some improvements) of two main ideas:
hash sketches [37, 94, 31, 38] and k-mins sketches [17].

Hash sketches allow the probabilistic counting of the number of distinct
elements in a multiset (cardinality of the support set). This type of sketch
essentially consists in a map of bits, initially set to zero, where each item is
mapped into a position in the binary valued map (generally involving a uniform
hashing function) setting that bit to one. The distinct count is estimated by
checking the position of the most significant one bit (leftmost), or counting the
number of zero bits in the sketch. The first hash sketching technique was pro-
posed by Flajolet and Martin [37], being commonly designated as FM sketches
(uniformly hash items into an integer, and maps only the less significant one bit
of its bitmap representation to the sketch). In this first study, the authors also
proposed the PCSA (Probabilistic Counting with Stochastic Averaging) algo-
rithm to reduce the variance of the produced estimate, using multiple sketches
and averaging their estimate (distributing the hash of an element to only one of
the sketches). Another approach, Linear Counting [94] uses a hash function to
directly map each element into a position of the sketch (setting that bit to one),
and use the count of the number of zeros to produce an estimate. A further
improvement to PCSA, designated LogLog, was described in [31], reducing re-
quired memory resources (an optimized version super-LogLog is also proposed,
improving accuracy and optimizing memory usage applying a truncation and
restriction rule). HyperLogLog [38] recently improved LogLog, consuming less
memory to achieve a matching accuracy.

The k-mins sketches method was first introduced to determine the size of
the transitive closure in directed graphs [17]. It consists on assigning k inde-
pendent random ranks to each item according to a distribution that depends
on its weight, and keeping in a vector of the minimum ranks in the set. The
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obtained k-vector of the minimum ranks is used by an estimator to produce an
approximated result. In other words, it can be said that k-mins sketches reduces
the estimation of the sum to the determination of minimums of a collection of
random numbers (generated using the sum operands as input parameters of the
random distribution from which they are drawn). An improved alternative to
k-mins sketches, designated bottom-k sketches, was recently proposed in [19].

The computational cost of sketching is dependent on the complexity of the
operations involved in the creation and update of the sketches (e.g. hash-
ing functions, random number generation, minimum/maximum determination),
and the resources used by the estimator to produce a result. Algorithms based
on sketches are not accurate, being based on probabilistic methods and intro-
ducing an error factor in the computed aggregation function. There is a trade-off
between the accuracy and the size of the sketches. The greater the sketch size
the tighter are the accuracy bounds of the produced estimate, although requiring
additional memory resources and a larger processing time. This kind of aggre-
gation algorithm tends to be fast, although conditioned by the dissemination
protocol used to propagate the sketches, being able to produce an approximate
result after a number of iterations close to the minimum theoretical bound (the
network diameter).

RIA-LC/DC Fan and Chen [34] proposed a multi-path routing aggregation
approach for WSN based on the use of Linear Counting (LC) sketches [94],
which they later named RIA-LC (Robust In-network Aggregation using LC-
sketches) [35]. The algorithm proceeds in two phases, like common multipath
hierarchy-based approaches (see Section 3.1.1). In the first phase, the aggre-
gation request (query) is spread from the sink throughout the whole network,
creating a multipath routing hierarchy. In the second phase, starting at the
lower level of the hierarchy, nodes respond to the aggregation request by creat-
ing a LC-sketch correspondent to its current local readings and sending it to the
nodes at the upper level. All received sketches are combined with the local one
(using the OR operation), and the result is sent to the next level until the top
of the hierarchy is reached where the sink computes the aggregation estimate
from the resulting LC-sketch.

Equation 1 is used to estimate the number of distinct items represented in a
LC-sketch, where m is the size of the allocated bit vector, and z is the count of
the number of bits with value equal to zero. In order to allow the computation
of the sum, each node creates a sketch by mapping a number of distinct items
corresponding to its input value. For example, assuming that each node has a
unique ID, if the node i has an input equal to 3, it maps the items (IDi, 1),
(IDi, 2), and (IDi, 3) into the LC-sketch. In more detail, in this case the use of
an hash function from the original LC-sketch design (to map duplicated items
to the same bit) is replaced by a uniform random generator (since there are
no duplicate items), randomly setting to 1 a number of bits equal to the input
value.

n̂ = −m ln (z/m) (1)

The authors show by theoretical comparison and experimental evaluation
that their approach outperforms in terms of space and time requirements the
ones based on FM sketches [37], namely Sketches [20] (see 3.1.1). They also
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claim a higher accuracy and lower variance when compared with existing sketch
schemes. Moreover, they tackle some practical issues, like message size con-
straints, avoid the use of hash functions, and enable the specification of an
approximation error.

Recently, the authors improved RIA-LC by considering the use of sketches
with variable sizes instead of fixed size sketches, referring to the new tech-
nique as RIA-DC (Robust In-network Aggregation using Dynamic Counting
sketches) [35]. The authors observed that the large preallocated sketches used
in RIA-LC were wasting space, since at the beginning of the computation must
of the bits are set to zero. In RIA-DC the initial size of sketches is variable
and depends on the local sensor reading. Along the aggregation process the
size of the sketches is adjusted (gradually increasing toward the sink), in order
to satisfy a given accuracy constrain. RIA-DC decreases message overhead and
energy consumption compared to RIA-LC, keeping similar accuracy properties.

Extrema Propagation This approach reduces the computation of an ag-
gregation function, more precisely the sum of positive real numbers, to the
determination of the minimum (or maximum) of a collection of random num-
bers [4, 5]. Initially, a vector xi of k random number is created at each network
node i. Random numbers are generated according to a known random distribu-
tion (e.g., exponential or gaussian), using the node initial value vi as the input
parameter for the random generation function (e.g., as the rate of an expo-
nential distribution). Then, the execution of the aggregation algorithm simply
consists of the computation of the pointwise minimum (or alternatively maxi-
mum) between all exchanged vectors. This technique supports the use of any
information spreading algorithm as a subroutine to propagate the vectors, since
the calculation of minimums is order and duplicate insensitive. In particular,
the authors consider that at each round all nodes send their resulting vector to
all their neighbors.

At each node, the obtained vector is used as a sample to produce an approx-
imation of the aggregation result, applying a maximum likelihood estimator
derived from extreme value theory (branch of statistics dealing with the ex-
treme deviation from the median of a probabilistic distribution). For example,
considering the generation at each node of k random number with an exponen-
tial distribution of rate vi and the use of the minimum function to aggregate the
vectors. Equation 2 gives the estimator for the sum of all vi from the sample of
minimums xi[1], ...xi[k] in the vector xi, with variance sum2/(k − 2):

ŝum =
k − 1∑k
j=1 xi[j]

(2)

This algorithm is focused on obtaining a fast estimate, rater than an accurate
one. Although, the accuracy of this aggregation algorithm can be improved by
using vectors of larger size, adjusting k to the desired relative accuracy (e.g.
k = 387 for a maximum relative error of 10%, with a confidence of 95%). A
further extension to the protocol to allow the determination of the network
diameter has been proposed in [11].

Other Approaches A representative approach based on FM sketches has
already been described in section 3.1.1 – Sketches [20]. In this multi-path ap-
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proach, a generalization of PCSA is used to distinguish the same aggregates
received from multiple paths, and subsequently manage to compute duplicate-
sensitive aggregation functions. Other similar approaches can be found in the
literature based on hash sketches, like Synopsis Diffusion [78] and Wildfire [8].
These approaches apply essentially the same aggregation process, operating in
two phases (request/response) and only differing on small aspects.

Synopsis Diffusion [78] is an aggregation approach for WSN close to the one
proposed by Sketches [20]. In a sense, this work presents a more generic frame-
work relying on the use of duplicate insensitive summaries (i.e. hash sketches),
which they call ODI (Order- and Duplicate-Insensitive) synopses. Namely, they
generically define the synopses functions (i.e., generation, fusion and evalua-
tion) required to compute aggregation functions, and provide examples of ODI
synopses to compute more “complex” aggregates (i.e., not decomposable aggre-
gation functions). For instance, besides the scheme based on FM sketches, they
propose other data structures (and respective functions) to uniformly sample
sensor readings and compute other sampling based aggregation functions. The
authors also tackled additional practical concerns. Namely, they explored the
possibility of implicitly acknowledging ODI synopses to infer messages losses,
and suggested simple heuristics to modify the established routing topology (as-
signing nodes to another hierarchic level), in order to reduce loss rate.

Wildfire [8] is based on the use of FM sketches to estimate sum, but it is
targeted for dynamic networks. Despite the fact of operating in two phases like
previous hash sketch approaches, unlike them it does not establish any specific
routing structure (i.e. multipath hierarchy) to aggregate sketches. After receiv-
ing the query, nodes start combining the received sketches with their current
one, and then send the result if it differs from the previous one.

A distributed implementation of some basic hash sketches schemes has been
proposed in [79, 80]. DHS (Distributed Hash Sketches) is supported by a
DHT, taking advantage of the load balancing properties and scalability of such
structure. More specifically, the authors describe how to build DHS based on
PCSA [37] and supper-LogLog [31].

Mosk-Aoyama and Shah [75, 74] proposed an algorithm, called COMP, to
compute the sum of values from individual functions (referred to as separable
functions). This algorithm is very similar to Extrema Propagation but less
generic, as it is restricted to the properties of exponential random variables
distribution. Furthermore, COMP uses a biased estimator, being less accurate
than Extrema Propagation which uses unbiased ones.

3.2.4 Digests

This category includes algorithms that allow the computation of more complex
aggregation functions, like quantiles (e.g., median) and frequency distributions
(e.g., mode), besides common aggregation functions (e.g., count, average and
sum). Basically, algorithms from this class produce a digest that summarizes
the system data distribution (e.g., histogram). The resulting digest is then used
to approximate the desired aggregation functions. We refer to a digest as a data
structure with a bounded size, that holds an approximation of the statistical
distribution of input values in the whole network. This data structure commonly
corresponds to a set of values or ranges with an associated counter.

Digests provide a fair approximation of the data distribution, not holding
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an exact representation of all the system values due to efficiency and scalability
reasons. The accuracy of the result obtained from a digest depends on its
quality (i.e., used data representation) and size. Digest allow the computation
of a wider range of aggregation functions, but usually require more resources
and are less accurate than the other more specialized approaches.

Q-Digest An aggregation scheme that allow the approximation of complex
aggregation functions in WSN is proposed in [88]. This approach is based on
the construction and dissemination of q-digests (quantile digests) along a hi-
erarchical routing topology (without routing loops and duplicated messages).
A q-digest consists of a set of buckets, hierarchically organized, and their cor-
responding count (frequency of the values contained by the bucket). Buckets
are defined by a range of values [a, b] and can have different sizes, depending
on the distribution of values they represent. Each node maintains a q-digest of
the data available to it (from its children). Q-digests are built in a bottom-up
fashion, by merging received digests from child nodes, and further compressing
the resulting q-digest according to a specific compression factor (less frequent
values are grouped in large buckets). Aggregation functions are computed by
manipulating (e.g., sort q-digest nodes) and traversing the q-digest structure
according to a specific criteria (depending on the function to be computed).

The authors provide an experimental evaluation, where they show that q-
digests allow the approximation of quantile queries using fixed message sizes,
saving bandwidth and power when compared to a naive scheme that collects
all the data. The naive scheme obtains an exact result, but with increasing
message size along the routing hierarchy. Obviously, there is a trade-off between
the obtained accuracy and the message size used. The authors suggest a way
to compute the confidence factor associated to a q-digest (i.e., error associated
to a query), but the effect of faults is not considered in their study.

Equi-Depth A gossip-based approach to estimate the network distribution
of values is described in [44]. This scheme is based on the execution of a gossip
protocol and the application of specific merge functions to the exchanged data,
to restrict storage and communication costs. In more detail, each node keeps a
list of k values (digest), initially set to its input value. At each round, nodes
get the list of values from a randomly chosen neighbor and merge it with their
own, applying a specific procedure. The result from the execution of several
rounds produces an approximation of the network distribution of values (i.e.,
histogram). Four merging techniques were considered and analyzed by the au-
thors: swap, concise counting, equi-width histograms, and equi-depth histograms.

Swap simply consists in randomly picking k values from the two lists (half
from each of them) and discarding the rest. Although simpler, by discarding
half of the available data in each merge, important information is likely to be
lost.

Concise counting associates a tuple, value and count, to each list entry. The
merge process consists in sorting the tuples (by value), and individually merging
the tuples with the closest values, in order to keep a fixed list size. Tuples are
merged by randomly choosing one of the values and adding their count.

The equi-width technique breaks the range of possible values into bins of
equal size, associating a counter to each one. Initially, nodes consider the range
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from 0 to the current input value, as the extremes are not known. Bins are
dynamically resized when new extremes are found: all bins are mapped into
larger ones, based on their middle value and the range of the new bin, adding
their counter to the new mapped bin. This technique requires only the storage
of the extreme values and counts, since all bins have an equal width, reducing
the volume of data that needs to be stored and exchanged when compared to
other techniques (e.g., concise counting). However, equi-width can provide very
inaccurate results for severely skewed distributions.

In equi-depth, bins are divided not to be of the same width but to contain
approximately the same count. Initially, fixed size bins are set, each repre-
sented by a pair <value, counter>, dividing the range from 0 to the input
value. Whenever data is exchanged, all pairs (received and owned) are ordered,
and consecutive bins that yield the smallest combined bins (in terms of count)
are merged, repeating the process until the desired number of bins is obtained.
Bin merge consists in adding the counters and using the arithmetic weighted
mean as value. This method intends to minimize the counting disparity across
bins.

In order to deal with changes in input values along time, the authors consider
the execution of the protocol in phases, restarting it. The authors experimen-
tally evaluated their protocol comparing the previous merging techniques. The
results obtained show that equi-depth outperformed the other approaches, pro-
viding a consistent trade-off between accuracy and storage requirements for all
tested distributions. The author also evaluated the effect of duplicates, from
the execution of the gossip protocol. They argue from the results obtained that
although duplicates bias the estimated result, it is more advantageous (sim-
pler and efficient) to assume their presence than to try to remove them. The
occurrence of faults and change in the input values were not evaluated.

Adam2 Adam2 is a gossip based algorithm to estimate the statistical distri-
bution of values across a decentralized system [84]. More precisely, this scheme
approximates the CDF (Cumulative Distribution Functions) of an attribute,
which can then be used to derive other aggregates. In this case, a “digest”
is composed by a set Hi of k pairs of values (xk, fk), where xk represents an
interpolation point and fk is the fraction of nodes with value less or equal than
xk. At a high abstraction level, it can be said that the algorithm simply exe-
cutes several instances of an averaging protocol (i.e., Push-Pull Gossiping [50])
to estimate the fraction of nodes in each pair of the CDF.

In more detail, each node can decide to start an instance of Adam2 ac-
cording to a predefined probability 1

n̂iR
, where n̂i is the current network size

estimate at node i and R is an input parameter that regulates the aggregation
instances frequency (i.e. on average one every R rounds). Each instance is
uniquely identified by its starting node. Initially, the starting node i initializes
the interpolation set Hi in the following way: fractions fk are set to 1 if the
node attribute reading vi is less or equal than the corresponding interpolation
value xk, and set to 0 otherwise. Nodes store a set of interpolation points Hi for
each running algorithm instance (initiated by a node i). Upon learning about
a new instance, a node j initializes its Hi setting fk = 1 if aj ≤ xk and fk = 0
otherwise, and starts participating in the protocol. A push-pull like aggrega-
tion is then performed, where nodes randomly choose a neighbor to exchange
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their set Hi, which are subsequently merged by averaging the fractions at each
interpolation point. Along time, the fractions will eventually converge at each
node to the correct result associated to each pair. After a predefined number of
rounds (time-to-live) the CDF is approximated by interpolating the points of
the resulting set Hi. Note that, Adam2 concurrently estimates (by averaging)
other aggregation functions besides CDF, namely count to determine the net-
work size, and min/max to find the extreme attribute values. The result from
these aggregation functions are later used as input values to the next instances
of the algorithm to tune and optimize its execution (i.e., calculate the instance
starting probability, and set new interpolation points).

Like in Push-Pull Gossiping [49, 50], Adam2 handles dynamism (i.e., at-
tribute changes and churn) by continuously starting new instances of the algo-
rithm – restart mechanism. The authors evaluated the algorithm by simulation,
comparing it with previous techniques to compute complex aggregates (e.g.,
Equi-Depth). The results obtained show that Adam2 outperforms the com-
pared approaches, exhibiting better accuracy.

Other Approaches One of the first algorithms to compute complex aggre-
gation functions in WSN was introduced by Greenwald and Khanna [42]. Their
approach is similar to the one previously described for q-digest (3.2.4): nodes
compute quantile summaries (digest) that are merged in a bottom-up fashion
along a tree topology, until the root is reached.

Another gossip based scheme to estimate the distribution of input readings,
able to detect outliers, was introduced in [32, 33]. In a nutshell, this approach
operates like the push-sum protocol [58] (described in Section 3.1.5), but ma-
nipulates a set of clusters (digests) instead of a single value, applying a specific
clustering procedure.

In general, existing aggregation approaches can be extended to compute
more complex aggregation functions, for instance combining them with an ad-
ditional sampling technique. However, this additional functionality is not part
of the essence of their core algorithm, bearing different characteristics (e.g. ac-
curacy) and concerns. Some examples can be found in [58] where push-sum is
extended with a push-random protocol to obtain random samples, and in [18]
which introduces algorithms to estimate several spatially-decaying aggregation
functions.

3.2.5 Counting

This category refers to a restricted set of distributed algorithms, designed to
compute a specific aggregation function: count. count allows the determi-
nation of important properties in the design of some distributed applications.
For instance, in this context it finds a common practical application in the de-
termination of the size of the system (or group), or to count the number of
votes in an election process. The algorithms from this class rely on the use
of some randomized process, most of them usually based on the execution of
some sampling technique to provide a probabilistic approximation of the size
of the sample population. Nonetheless, a few algorithms are found that do not
explicitly collect samples for size estimation, instead applying a probabilistic
estimator over some observed events.
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Algorithms based on sampling are strongly influenced by the probabilistic
method used to obtain the result, inheriting its properties. For instance, the
accuracy of the algorithm corresponds to the one provided by the probabilistic
method used, being bounded by the error factor associated with it. Several
probabilistic methods have been applied to samples to yield a counting estima-
tion, namely: birthday problem [22] – concerns the probability of two elements
sampled out of a population not being repeated, inspired from the probability of
two people out of a group not having a matching birthday; capture-recapture [86]
– probabilistic method based on the repeated capture of samples from a closed
population (population that maintains a fixed size during the sampling pro-
cess), where the number of common elements between samples are accounted to
provide an estimate of the population size; fundamental probabilistic methods –
application of Bernoulli based sampling methods [14], and other basic probabilis-
tic concepts on some sampled statistical information, like the distances between
nodes (number of hops) or the number of messages successfully sent/received,
in order to estimate de size of the network. In all cases, typically sampling is
performed at a single node, and it can take several rounds to collect a single
sample. Moreover, an estimation error is always present, even if no faults occur.
For example, in Sample & Collide [40, 71] the estimation error can reach 20%,
and a sampling step takes d̄T (where d̄ is the average connection degree and T
is a predefined timer that must be sufficiently large to provide a good sample
quality), needing to be repeated until l sample collisions are observed.

As previously referred, in some cases a size estimation can be obtained by
directly applying an estimator on some available system knowledge (observed
events or other known properties), without any previous explicit sampling. Al-
though, in general the estimator inputs result from other sampling sources.
For instance, in the approach proposed by Horowitz and Malkhi [47] (see sec-
tion 3.1.2) an estimator function is used at each node to estimate the network
size, based on the observation of two events (nodes joining or leaving the net-
work), incrementing/decrementing the estimator. In this case the nodes join-
ing/leaving at each node can be seen as the input sample used to provide the
estimate. Other approaches, like the one proposed in [27, 28], provide a size
estimation based on knowledge of the routing structure, in this particular case
counting the number of high degree nodes (which can be considered the input
sample). This kind of techniques does not provide accurate results, in most
cases yielding a rough approximation to the correct value.

Sample & Collide This approach [40, 71] addresses the problem of counting
the number of peers in a P2P overlay network, inspired by a birthday problem
technique (first proposed by Bawa et al. on a technical report [7]). The ap-
plication of this probabilistic method requires the collection of uniform random
samples. To this end, the authors proposed a peer sampling algorithm based
on the execution of a continuous time random walk, in order to obtain unbi-
ased samples (asymptotically uniform). The sampling routine proceeds in the
following way: an initiator node i sets a timer with a predefined value T , which
is sent in a sampling message to a randomly selected neighbor; upon receiving
a sampling message, the target node (or the initiator after setting the timer)
picks a random number U uniformly distributed within the interval [0, 1], and
decrements the timer by log (1/U)/di (i.e. T ← T − log (1/U)/di, where di is
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the degree of node i); if the resulting value is less or equal than zero (T ≤ 0)
then the node is sampled, its identification is returned to the initiator and the
process stops; otherwise the sampling message is sent to one of its neighbors,
chosen uniformly at random. The quality of the samples obtained (approxi-
mation to a uniform random sampling) depends on the value T initially set to
the timer. The described sampling step (to sample one peer) must be repeated
until one of the nodes is repeatedly sampled a predefined number of times l (i.e.
l sample collisions are observed). After concluding this sampling process, the
network size n is estimated using a Maximum Likelihood (ML) method. The
ML estimate can be computed by solving Equation 3, where Cl corresponds
to the total number of samples until one is repeated l times, using a standard
bisection search. Alternatively, the result can be approximated within

√
n of

the ML-estimator by Equation 4 (asymptotically unbiased estimator), which is
computationally more efficient.

Cl−l−1∑
i=0

i

n− 1
− l = 0 (3)

n̂ = C2
l /2l (4)

The accuracy of the produced result is determined by the parameter l, and
its fidelity depends on the capacity of the sampling method to provide uniformly
distributed random samples (T must be sufficiently large).

Capture-Recapture Mane et al. [68] proposed an approach based on the
capture-recapture statistical method to estimate the size of closed P2P net-
works (i.e. networks of fixed size, with no peers joining or leaving during the
process). This method requires two or more independent random samples from
the analyzed population, and further counting the number of individuals that
appear repeated in each sample. The authors use random walks to obtain in-
dependent random samples. Considering a two-sample strategy, two random
walks are performed from a source node, one in each sampling phase (capture
and recapture). In more detail, each random walk proceeds in the following way:
the source node sends a message to a randomly selected neighbor, which at its
turn forwards the message to another randomly chosen neighbor; the process
is repeated until a predefined maximum number of hops is reached (parameter:
time-to-live) or the message gets back to a node that has already participated
in the current random walk. During this process, the information about the tra-
versed path (i.e. the UIDs of all participating nodes) is kept in the forwarded
message. When one of the random walk stopping criteria is met, the message
is sent back to the source node with the list of the “captured” nodes, following
the reverse traversed path (stored in the message). The information received at
the source node from the sampling steps is used to compute the estimate n̂ of
the network size, applying Equation 5 (where n1 is the number of nodes caught
in the first sample, n2 is the number of nodes caught in the second sample, and
n12 represent the number of recaptured nodes, i.e. caught in both samples).

n̂ =
((n1 + 1)× (n2 + 1))

(n12 + 1)
(5)
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Hop-Sampling One of the approaches proposed by Kostoulas et al. [60, 61] to
estimate the size of dynamic groups is based on sampling the receipt times (hop
counts) of some nodes from an initiator. Receipt times are obtained across the
group from a gossip propagation started by a single node, the initiator, that will
further sample the resulting hop counts of some nodes to produce an estimate of
the group size. In more detail, the protocol proceeds as following: the initiator
starts the process by sending an initiating message (to itself); upon receiving
the initiating message nodes start participating in the protocol, forwarding it
to a number (gossipTo) of other targets, until a predefined number of rounds
(gossipFor) is exceeded, or a maximum quantity of messages (gossipUntil) have
been received; gossip targets are chosen uniformly at random from the available
membership, excluding nodes in a locally maintained list (fromList) from which
a message has already been received; exchanged messages carry the distance to
the initiator node, which is measure in number of hops; each node keeps the
received minimum number of hops (MyHopCount), and sends the current value
incremented by one. After concluding the described gossip process, waiting for
a predefined number of rounds (gossipResult), the initiator samples the number
of hops (MyHopCount) from some nodes selected uniformly at random. The
average of the sampled hop counts is then used to estimate the logarithm of
the size of the group (log(n)). Alternatively to the previous sampling process,
where nodes wait for the initiator sample request, nodes can decide themselves to
send their hop count value back to the initiator node, according to a predefined
probability to allow only a reduced fraction of nodes to respond.

Interval Density A second approach to estimate the size of a dynamic group
has been proposed in [60, 61]. This algorithm measures the density of the
process identifiers space, determining the number of unique identifiers within
a subinterval of this space. The initiator node passively collects information
about existing identifiers, snooping the information of complementary protocols
running on the network. The node identifiers are mapped to a point in the real
interval [0, 1] by applying a hash function to each one. The initiator estimates
the group size by determining the number of sampled identifiers X lying in a
subinterval I of [0, 1], returning X/I. Notice that this kind of approach assumes
a uniformly random distribution of the identifiers, or uses strategies to reduce
the existing correlation between them, in order to avoid biased estimations.

Other Approaches Some counting approaches based on a centralized prob-
abilistic polling to collect samples were previously described in this work (in
section 3.1.3). Namely, randomized reports which illustrate the basic idea of
probabilistic polling, and another approach [55] that samples the number of
message successfully sent in a single-hop wireless network (further improved in
[56]).

Other probabilistic polling algorithms are also available in the specific con-
text of multicast groups, to estimate their membership size. For example, in [39]
some older mechanisms were analyzed and extended, and in [2] an algorithm
using an estimator based on Kalman filter theory was proposed to estimate the
size of dynamic multicast groups.
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4 Summary and Practical Guidelines

Here, we summarize the properties of the main classes of algorithms, stating
their advantages and disadvantages (see Table 4), and give some guidelines
about their use in specific settings.

Hierarchy-based approaches (see 3.1.1 and 3.2.1) require a specific routing
structure (e.g. spanning tree) to operate, and thus are limited by the ability
of such structure to cope with churn and link failures. However, this kind of
approach is very cheap in term of messages exchange, requiring only 2N − 1
messages3 to compute the correct average at the sink, i.e. two messages for
each N nodes (except the sink), one to broadcast the aggregation request to
its child nodes and another to send the result to its parent. In terms of time,
the aggregation process takes 2h rounds (at most 2D, with D representing the
network diameter), where h is the height of the routing hierarchy, i.e. h rounds
to spread the aggregation request and another h rounds to aggregate the re-
sults from child nodes to parents. This kind of technique is commonly used in
energy constrained environments (i.e. WSN), taking advantage of the reduced
messages exchanges. Therefore, we would only recommend the application of
such aggregation schemes to fault free scenarios, which is often not the case.
This kind of approach can be significantly affected by the occurrence of a single
failure, losing all the subtree data and greatly impacting the result produced
at the sink. For this reason, in scenarios where faults might occur and without
regarding energy efficiency, sketch techniques should be preferred, at least pro-
viding some path redundancy to reach the sink (at the cost of k factor increase
in terms of messages, with k representing the number of alternative routing
paths).

Sketches approaches (see 3.2.3) can be applied independently from the un-
derlying routing topology, being adequate to use in faulty scenarios where only
a fair approximation of the aggregate is required. This kind of technique is fast,
the closest to the theoretical minimum, requiring only D rounds for all nodes to
obtain the estimation result, achieving this at a total cost of d̄ND messages (i.e.
each N nodes send at most one message to each d neighbors at each round)4.
This kind of approach is adequate for faulty scenarios, especially if one privileges
obtaining a fast estimate rather than a precise one. In particular, we recom-
mend the use of Extrema Propagation[4] (see 3.2.3) which is able to provide
a better and unbiased estimation, when compared to other sketch algorithms.
Nonetheless, if a precise estimation is required in a faulty environment, another
type of aggregation approach should be chosen, namely an averaging technique.

Averaging algorithms (see 3.1.5 and 3.2.2) work independently from the rout-
ing topology, and have the particularity to converge along time to the correct
result, being able to produce results at all nodes with high accuracies even in
faulty environments. The execution time of this kind of algorithms depends
on the target accuracy, converging exponentially with linear rounds (at an ap-
proximately constant convergence factor between each round), with all nodes
sending from one to d message at each round. This kind of approach is slower
and consequently requires more messages (although smaller) than sketches, but
can exhibit better properties in terms of fault-tolerance, especially to cope with

3This is for scenarios where radio broadcast is used to transmit data, such as in WSN.
Otherwise, approximately d̄(2N − 1) messages are required, where d̄ is the average degree.

4In the case of WSN, with radio broadcast the total message cost is reduced to ND.
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Advantage Disadvantage Requirements
- accurate - result at a single - specific routing

Hierarchical (without faults); node; structure (e.g.
- very efficient - not fault-tolerant; spanning tree);

(messages);
- local knowledge

- very fast; of neighbor IDs,
Sketches - result at all nodes; - less accurate; or global UIDs;

- fault-tolerant; - source of
randomness;

- accurate;
Averaging - result at all nodes; - less efficient - local knowledge

- fault-tolerant; (messages); of neighbor IDs;
- churn support;

- not accurate
Sampling - efficient - result at a single - global UIDs;

(messages); node; - source of
- not fault-tolerant randomness;

- computation of - less accurate;
Digests complex aggregates; - resources needed - local knowledge

- result at all nodes; (e.g. larger of neighbor IDs;
messages);

Table 4: Summary of the characteristics of main data aggregation classes.

churn. In particular, Flow Updating [53] is the only known fault-tolerant ag-
gregation approach which is able to continuously adapt to network changes,
without resorting on any kind of restart mechanism like others (i.e. that pe-
riodically reset and start a fresh execution of the algorithm). Moreover, apart
from Flow Updating, it has been shown that the other averaging approaches
exhibit some dependability issues, not converging to the correct value. For this
reason, from the existing averaging approaches we will only recommend the use
of Flow Updating, which is adequate to use in dynamic and faulty scenarios,
where accurate estimates are required and there is no strict constraint on the
quantity of exchanged messages.

Sampling aggregation techniques (see 3.1.4 and 3.2.5) does not seem to bring
any advantages when compared to the other kind of approaches. This kind of
approach provides an irregular approximation at a single node, not being accu-
rate and usually restricted to the computation of a single aggregation function:
count. Furthermore, the random walk based approaches are usually slow, tak-
ing several rounds to obtain a sample, and unreliable as the random walk might
be lost in a faulty environment.

One should notice that most of the existing approaches only allow the com-
putation of simple aggregation functions, such as average, sum and count,
or others that can be derived from their combination (by executing multiple
instances of the used algorithm). In many cases, this kind of aggregation func-
tions is enough, but in many other situations the computation of more complex
aggregation functions is more useful. A simple example can be found consider-
ing some load balancing application that aims to distribute equitably the global
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load of a system. In this case, the knowledge of the total or average load does
not provide enough information to assess the distribution of the system load,
i.e. determine if some processing nodes are overloaded or idle. Even the com-
putation of the maximum and minimum is insufficient, although it allows the
detection of a gap between the global load distribution, as it does not provide
information about the number of processes at each load level. In this situa-
tion, an estimation the statistical load distribution is required to provide the
desired information and reveal outlier values. Other examples can be found in
the context of monitoring applications. For instance, in WSN estimating the
distribution of the monitored attribute can be very useful to distinguish iso-
lated sensor anomalies from the occurrence of a relevant event characterized by
a certain amount of abnormal values. Few approaches are available to compute
more complex aggregates and able to approximate the statical distribution of
some attribute (see 3.2.4). Existing algorithms from this class (i.e. digests) are
more resource consuming and less accurate than other approach, so that their
application should be carefully evaluated despite their additional value.

5 Final Remarks and Future Directions

This survey was organized around three main contributions. First, it provides
a formal definition of the target aggregation problem, defining different type of
aggregations function and their main properties. Second, a taxonomy of the
of the existing algorithms is proposed, from two perspectives: communication
and computation, and the most relevant algorithms are succinctly described.
Finally, a summary of the characteristics of the main approaches is provided,
giving some guidelines about their suitability to different scenarios.

Distributed data aggregation has been an active field of research in the last
decade, and a huge diverse amount of techniques can be found in the literature.
For this reasons, this survey intends to be an important time saving instrument,
for those that desire to get a quick and comprehensive overview of the state of
the art on distributed data aggregation. Moreover, by carefully highlighting
the strength and limitations of the more pertinent approaches, this study can
provide a useful assistance to help readers choose which technique to apply in
specific settings.

Currently, there is no ideal general solution to the distributed computation of
an aggregation function, all existing techniques have its pitfalls (some more than
others). Therefore, more research in this field will be expected in the next few
years. In particular, due to the added value of computing complex aggregates,
new algorithms might arise to estimate the statistical distribution of values, as
the few existing approaches exhibit some limitations in terms of accuracy and
resource consumption. Additional research efforts should be made to improve
the support to churn, message loss, and continuous estimation of mutable input
values.
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