
Indirect Calls: Remote Invocations on loosely coupled SystemsCarlos Baquero�Distributed Systems - DIUniversidade do Minho - Braga, PortugalFebruary 29, 1996AbstractIntegration of Mobile computers into World-wide networks is traditionally managed byhosting them into the �xed network. We ar-gue that this approach excludes some import-ant forms of interaction. We present a com-munication mechanism, suitable for develop-ing applications that take advantage of transi-ent connections. These communications canbe supported by several transport mechan-isms, including Email and plain �le copyingbetween non networked computers.1 IntroductionFuture applications can be expected to fol-low two major trends, Mobility and World-wideness. These two issues are strongly inter-related as Worldwide systems often experi-ence disconnected operation under networkpartitions and Mobile computers are partiallyintegrated (possibly hosted) into worldwidenetworks.A common scenario for the integration ofmobile hosts (MHs) is based on a �xed world-wide network to which MHs connect fromtime to time, either by �xed or wireless links.Initial work under this scenario resulted in anumber of proposals for communication sup-port [1]. We argue that this scenario misses�cbm@di.uminho.pt

important cases that are driven by the het-erogeneity of machines and network con�gur-ations. Some of the concerns are:� How to communicate with applicationson machines with no network support ?� How to handle communication betweentwo applications that seldom run in thesame period of time ?� Could casual interconnections amonghosts (mobile and �xed), driven by phys-ical mobility, be used to deliver messagesamong some applications ?These cases are not uncommon and can beexpected to be more frequent in the future.Some users often proceed to daily moves oftheir mobile computers from the o�ce tohome, and may have a �xed host at home.In this case, at a given time the MH, if notisolated, can be connected to the o�ce ma-chines or to the home one. A way of handlingcommunication among applications on all thismachines would be desirable.A common case is that of users with MHsmeeting while disconnected from the �xednetwork and establishing a transient link.These casual or planned links could be usedto foster communication among visited ma-chines and networks, in a epidemic fashion[8, 3, 2].In this paper we describe a mechanism forhandling communication in a loosely coupled1



environment. This mechanism can be usedto program applications that tolerate a com-munication pattern based on one way mes-sages with potentially long delivery delays.Example applications are Appointment Bookmanagers [5], Bibliographic database syn-chronization [7] and sharing of WWW Book-marks.2 Remote call environmentThe devised communication mechanism wasintended to be orthogonal to the languagestub mechanisms as long as some form ofone way calls (with no return value) weresupported by the chosen system. The Inter-language Uni�cation (ILU) project [6] andtools, developed in the Xerox Parc, providesupport for RPC like calls within a ObjectOriented environment. These tools are basedon a Interface Speci�cation Language (ISL)and, from the parsing of a ISL speci�cation,can produce client and server stubs for sev-eral languages, including C, C++, Modula-3, Phyton and Lisp. Since ILU, among otheradvantages, supported the speci�cation of oneway calls on the ISL, it was chosen as the ap-plication interface. ILU uses TCP channelsfor handling invocations. Our system will in-tercept these channels and create persistentrepresentations of the invocations.2.1 Client-Server programmingunder ILUILU tools generate client and server stubsfrom a ISL speci�cation, in a way resemblingrpcgen for the RPC environment. We brie
ysketch the programming environment for theC++ language.Considering that, for instancem the ISL de-scribes an object with two methods, the gen-erated server stubs will de�ne a class that in-cludes two abstract methods that representthe ISL methods. These methods include an

appropriate signature for the C++ languageand should be implemented in a subclass bythe programmer of the server. Once de�ne,the server code should register the object andenter a main loop in the server stubs. Inthe ILU 1.8 version, registering an object ina server leads to the creation of a �le in abindings directory in the �le system. Thisdirectory should be made accessible to the cli-ents and contains information that identi�esthe object and the dynamic TCP port used tocommunicate with it. The main loop in theserver stubs ensures that registered objectshandle incoming TCP connections.Client code should include the stubs thatde�ne a proxy for the server objects and aftermaking a lookup of a published object, canuse it with the generated method representa-tions in C++. The lookup operation, as ex-pected, will refer to the bindings directory.2.2 Programming with asynchron-ous callsOur application test case was a simple WWWbookmark (Hot List) synchronizer. This ap-plication was structured in two executables,HotDaemon and HotClient. The HotDaemonkeeps the state of the common list and, wouldinvocate other running copies of it in othermachines, when a new bookmark as been in-serted. As such this executable had both cli-ent and server stubs. The HotClient is ex-ecuted with a bookmark as parameter, andwill call its associated server, passing him thebookmark. Consequently, HotClient execut-ables only include the client stub. A simplePerl executable can be used to parse theNetscape bookmarks �le and make the neces-sary invocations to HotClient.The de�ned ISL, for this test case, is assimple as possible.INTERFACE HotWWW;2



TYPE STRING = SEQUENCE OF SHORT CHARACTER;TYPE URL = STRING;TYPE HotList = OBJECTMETHODSASYNCHRONOUS AddURL (IN url : URL) ,ASYNCHRONOUS AskAddURL (IN url : URL) ,END;AddURL is invoked by peer servers andwill add the bookmark to the called server.AskAddURL is called from the clients addingthe bookmark on the called server and lead-ing it to issue the appropriate AddURL calls onthe other servers.3 PartitioningOnce the application is constructed and run-ning in a fully connected environment, theILU TCP communication and bindings canbe intercepted, by our system, to provide in-direct communication capabilities.3.1 Interception and DeliveryTwo daemons apply the necessary modi�ca-tions to the existent communication protocol.The daemon, Intercept-Freeze, running onthe client will intercept outgoing invocations,creating persistent messages in a /tmp/outdirectory in the �lesystem. Another dae-mon, Melt-Deliver, running on the serverwill monitor a /tmp/in directory and delivermessages, when appropriate, to the applica-tion server daemons.This process can be set up once thebindings directory is written by the serverstub. With the binding information in thisdirectory and once the directories cease to beshared, Intercept-Freeze will modify thebindings so that he will be called by the clientstubs. Upon this calls, messages are writtenwith �le names that fully identify their des-tination. The �le contents is the (opac) rawdata produced by the ILU client marshalers.

Once the persistent packets reach the/tmp/in directory in the destination machine,Melt-Deliver opens TCP streams to the ap-plication server stubs delivering the raw data.Packets not relevant to this machine are justcopied into /tmp/out.Routing of messages from /tmp/out in amachine to /tmp/in in another machines canbe done by hand, or with the aid of a Perlrouter that interfaces with several transportmechanisms, such as, emailing of uuencode�les and use of RCP or FTP. The possibilityof routing by hand is relevant to the use 
oppydisks or 
ash PC cards to foster communica-tion between non networked machines.4 DiscussionThe option of using mobile computers or plainstorage media to convey one way invoca-tions among applications raises the import-ant problem of how to control the deliveryand the order of delivery of messages. Underthis framework, messages are handed throughreplication among potentially good carriers,depending on their destination applications.Traditionally, it would be highly desirableto ensure that messages from an applicationA to an application B, arrive at B in the or-der that they were issued in A. Unfortunately,this seems to be incompatible with the use ofthis class of useful but uncontrolled carriers.Although persistent messages are named ina way that identi�es the order in which theywere issued, this is (currently) only used tocreate unique names.If incoming messages where to be delayedin the server machine until all relevant oldermessages arrived [4], there could be an in�n-ite wait if a given carrier fails to make con-tact. This happens if we assume that not allongoing messages are replicated in all carri-ers. One could argue that if the clients arenoti�ed of which messages were delivered,3



then they could supply each carrier with allundelivered messages, so that when one car-rier makes contact it can supply a whole se-quence of ordered messages. Unfortunately,and again due to the uncontrolled behavior ofcarriers, this could fastly lead to unmanage-able loads of messages if delivery noti�cationssu�er long delays.Due to these reasons the current systemdoes not try to enforce a order on the de-livery of messages. We believe that undersome restrictions a ordered delivery of mes-sages could be obtained. If so it should bepresented as an alternative to the more 
ex-ible unordered delivery. These tradeo�s re-semble those existent on TCP vs UDP com-munication.The used instrumentation of the ILU sys-tem provided a rich and heterogeneous pro-gramming environment. Due to its orthogon-ality, with the consequent lack of modi�ca-tions to the ILU system, it should be able tosuit newer versions of the ILU system 1.Naturally, large penalties can be expectedon the delivery of invocations. These penal-ties should be understood in relation to thenature of the relevant applications. The sup-port of indirect communication means thatwhile some messages may take less than 1second, others can take days, but still ful�lltheir objective.Future applications that �t in this commu-nication policy will be able to bene�t froma mix of strong prede�ned interactions andcasual unplanned interactions driven by usermobility in heterogeneous environments. In-teraction on stable networks is easily suppor-ted by the use of RCP, NFS, and other of-the-shelf �le sharing mechanisms. Email deliverycan also enable interaction between machineswith email capabilities but no TCP/IP con-nectivity.1Apparently ILU 2.0 still supports the previousbinding mechanism

5 AcknowledgmentsSome of these issues were explored under theGIM project, that also included Jose OrlandoPereira, Antonio Luis Sousa and Rui Oli-veira. The author would like to thank hisPhD supervisor, Francisco Moura, as well asVitor Guedes for the conversations aroundthis work.References[1] B. Badrinath, A. Bakre, Tomasz Imielinsky, andR. Mrantz. Handling mobile clients: A case for in-direct interaction. In Fourth Workshop on Work-station Operating Systems, October 1993.[2] Carlos Baquero. Synergetic state evolution undermobile computing. Technical report, DistributedSystems, MInho University, 1995.[3] Andrew Birrel, Roy Levin, Roger Needham, andMichael Schroeder. Gravepine: An exercise indistributed computing. Communications of theACM, 25(4), April 19982.[4] Silvano Ma�eis, Walter Bischofberger, and Kai-Uwe Matzel. A generic multicast transport ser-vice to support disconnected operation. Technicalreport, Department of Computer Science, CornellUniversity, 1995.[5] Jose Orlando Pereira and Antonio Luis Sousa.Group informationmanager. at http://luizinho.di.uminho.pt/gim/,1995. Distributed Systems Group, Minho Uni-versity.[6] MikeSpreitzer and et al. Inter-language uni�cation.at ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.[7] Douglas Terry, Marvin Theimer, Karin Petersen,Alan Demers, Mike Spreitzer, and Carl Hauser.Managing update con
icts in bayou a weakly con-nected replicated storage system. In Symposiumon Operating Systems Principles, Copper Moun-tain Resort, Colorado, Dec 1995. ACM.[8] Marvin Theimer, Alan Demers, Karin Peterson,Mike Spreitzer, Douglas Terry, and Brent Welch.Dealing with tentative data values in desconnec-ted work groups. Technical report, Computer Sci-ence Laboratory, Xerox PARC, 1995.4


