Synergetic State Evolution under Mobile Computing”

Carlos Baquero!

DI - Universidade do Minho
4700 Braga, Portugal
cbm@di.uminho.pt

May 1995

Abstract

The recent trend towards mobility and ubiqui-
tous computing issued a new perspective over
the traditional models of distributed compu-
tation. Observation of Human behavior, in
particular the study of Human information in-
terchange techniques and protocols presents a
simple, yet fruitful, mean of gathering insight
on the possible protocols for interaction among
mobile hosts. This work will try to go one step
further on the study of mobile interactions by
leaving the usual semi-centralized approach to
mobile computing. Instead of focusing on the
reconciliation of mobile hosts with the networ-
ked support stations, we will study the pos-
sibility of progressive adjustments, both by a
mobile host and a support station and between
mobile hosts.

1 Introduction

The recent trend towards mobility and ubiqui-
tous computing issued a new perspective over
the traditional models of distributed computa-
tion. Disconnected operation raises new boun-
daries in the classical management of network
partitions, and calls for enhanced techniques
of replica reconciliation and conflict avoidance.

*Technical Report.
TThe autor is supported by JNICT-PRAXIS XXI
grant BD / 3123 / 94.

Fortunately, and unlike network partitions,
disconnected operation is almost always an an-
ticipated action (at lest for nomadic compu-
ting).

Observation of Human behavior, in parti-
cular the study of Human information inter-
change techniques and protocols presents a
simple, yet fruitful, mean of gathering insight
on the possible protocols for interaction among
mobile hosts. These protocols will be analyzed
from the perspective of persistent data store
management, which will be the primary focus
of this study.

Humans, as a social species, have developed
many forms of interaction for the support of
cooperative work. Even, point to point comu-
nication, can include several small differences
in the way the same message is transmited.
We may transmit an information that we have
originated, and by transmiting it to someonoe
else, we may be expecting that it keeps it con-
fidential or (on the opposite) we may expect
him to disseminate it as broadly as possible.
We can be expecting or not a reply to our co-
munication, and this reply can be needed from
all receptors or just from some specific one. In
another situation, we can be just forwarding a
message, and we may be able, or not, to en-
sure that is not redudant or up to date. These
examples start to show the diversity of direct
and indirect comunication that we have at our
disponsal, and wich, we hope, will be usefull
in mobile comunication.



This work will try to go one step further
on the study of mobile interactions by leaving
the usual semi-centralized approach to mobile
computing. Typical frameworks for mobile
computation are based on a network of support
stations (N.SS) that act as connection points
for mobile hosts (M H). Instead of focusing
on the reconciliation of mobile hosts with the
networked support stations, we will study the
possibility of progressive adjustments, both by
a M H and a NSS and between M Hs.

The FICUS distributed file system[6] al-
ready pointed in this direction by estabelishing
a peer to peer protocol for replica manage-
ment. The beneficts of these kind of protocols
are also explored in the Bayou system [3].

Next follows a description of the area of con-
cern of the MATE (Mobile Aplications Tran-
sactional Environment) project, under the
AMIGOS framework, followed by its presen-
tation through the remaining of this docu-
ment.

2 Focused connection sta-
tes

Mobile hosts, when active, can be, at a gi-
ven time and with respect to the support
stations, either (C') connected by a fast re-
liable link, such as ethernet or serial cable;
(PD) partially disconnect!, when using a slow
and possible unreliable link, such as a cellu-
lar phone or radio link; (D) or in disconnec-
ted operation. Existing frameworks support
some or all of the previous possibilities, na-
mely: {C, PD, D} {C,D}{PD,D}.

In the remaining of this description we will
abstract from issues related to the PD state,
concentrating on the duality Connected vs
Disconnected. Apart from the low level issues
of PD which are subject of ongoing investiga-
tion [7], such as the development of communi-
cation mechanisms that are aware of and tole-
rate mobility, we expect that the higher level

10Oz, alternatively, partially connected.

semantics of PD can be selected from features
present for C' and D states. As PD varies with
the degree of available connection, the selected
balance of features will also vary.

3 A Global or a Synergetic
State

Systems based on M Hs and N SS’s, have inhe-
rently a given structuring hierarchie. Persis-
tent data objects usually have the "official” co-
pies in the fixed network, and M Hs act as tem-
porary copy holders that ultimately have to be
reconciliated with the copies held on the cen-
tral hosts. In a more decentralized approach
there is no default placeholder for official co-
pies. This leads to the need for an explicit
binding of ownership to data objects.

3.1 Data Objects and Replicas

In MATE each persistent data object may
have several replicas, beeing one of them held
on the storage manager (SM) that owns the
data object. Replicas will act as persistent
prozys for the replica held on the owner SM.
A SM is associated with an host or a group
of tightly coupled hosts, though for simplicity
reasons we will assume here a one to one re-
lationship between hosts and SM’s. All the
replicas must have a field that designates the
owner host (in fact the SM). Although some
applications, for security reasons, may require
that the owner is a fixed (non mobile) host,
others may work better or even require the
ownership to be held on a mobile host. A tipi-
cal exampleis the use of schedulers, where each
user holds its personal schedular data in its
private machine. Ownership migration should
also be permited, although ensuring that all
the replicas point to the same owner. A given
owner will know for each owned data object,
how many replicas exist and who holds them?.

2The need to know who holds them may be subject
of relaxation if a autenticated mechanims of handing-
off replicas 1s devised.



A given S M; will have a indexed list, fxy— sns,
of references to other SMs whose owned repli-
cas he holds. Fach replica RY in SM;, will
have a index (€ N) to the local list of referen-
ces. With this scheme the change of owner for
a data object, is notified by comunicating with
the SMs that hold replicas of that object. Na-
turally, in a mobile setup, not all replica hol-
ders can be notificated at the same time. This
will lead to a transient phase where the former
owner and all the already notified SMs will try
to disseminate this change.

3.2 Dissemination Protocol

The propagation of information through the
SM comunity follows a simple but very syner-
getic politic, that mimics human cooperative
behavior.

7If A meets B or A can contact B,
and A knows or thinks that knows so-
mething that B should know then: A
will ask B if he needs it and will even-
tually hand him that information”

Going back to the example of disseminating
the changing of a data object owner, we can
devise under this filosophy a suitable protocol.

The former, or the new owner, contacts all
reachable SMs that hold replicas, and besides
updating them also informs them wich SMs
could not be contacted. The updated SMs
will try to update the necessary replica holders
in the near future.

This protocol creates some redundancy as
some S Ms may receive multiple notifications,
which in fact also happens among Human inte-
ractions. Possible solutions are asking before
trying to update a mate; detecting directly or
indirectly that a given information has already
been fully spread or is now outdated; giving to
only a few SMs the responsability of propaga-
ting some specifc information.

3.3 Transactions

It is with the introduction of transactional sup-
port, that the notion of owner of persistent
data object, shows its relevance in MATE’s
design. As stated by previous works [8, 10, 4],
the transaction models used on non mobile dis-
tributed systems, are not suitable for a mobile
environment. On a distributed system, tran-
sactions can expect to access up to date copies
of data objects. When this is ensured and no
conflicting actions are detected these transac-
tions can commit and make their changes per-
manent and visible to other transactions. On
a mobile environment, we should be able to
make transactions locally visible even before a
permanent commit can be estabelished.

MATE supports more than one commit le-
vel. Although the actual number of commit le-
vels may benefict from not being restricted to 2
commit levels, we will assume for the moment
the definition of two commit levels. Using Pi-
toura and Bhargava terminology [10] we will
coin this levels as loose and strict®.

A given SM can enforce loose commits on
any stored replica and can enforce strict com-
mits on replicas that he owns. From these pre-
mises results that loose comits are not durable
as they can be aborted if one of the replica
owners does not agree to promote a strict com-
mit. The likelywood of abort occurence can
be reduced by asking some delegation of res-
ponsability from the replica owners, as will be
shown latter, on this article.

Consider the following example:

Three users have their personal M Hs with
one SM per machine (wich yields SMy, SM;
and SMs). FEach user runs a appointment
scheduler that stores its data in a persistent
object ¢ (from callendar). There will be three
different calendars and each user will have its
own callender and replicas of the other callen-
dars. SM; owns its callendar ¢1;,; and keeps
two replicas: ¢y;,1 that represents the callendar

owned by SMs; ¢s;,1 that is owned by SMs.

3Actually, the autors define strict and loose

transactions.



Suppose that user 1 is currently isolated and
wants to schedule a meeting with the other
users for a given time slot ¢. A transaction T
will start on SM; and will examine the availa-
bility of time slot ¢ in ¢14,1, C2in1 and czg. If
t is not available in ¢y;,; then 7" should abort.
Otherwise, if ¢ is not available in ¢y;,; or in
csin1 there is still a vague possibility of success
(as that time slot may have been set free) and
T may choose either to abort or to issue a lo-
ose commit. If t is available in all ¢4;,1 replicas
stored in SM; then a loose commit is 1ssued.

Loose commits make the changes visible to
subsequent local transactions and keep a log
of operations in the accessed replicas for pos-
terior reexecution and conflict detection when
trying to estabelish a strict commit. It should
be noted that we avoid the use of "global com-
mit” as in MATE the notion of globality is
related to the set of replica holders, wich are
tipically a subset of all existing SMs. So, a
strict commit is, for the intervining partici-
pants, a global commit. Actually in real life
there is seldom a piece of information that peo-
ple globaly accept as true and official, while it
is much easier to make agreements among cir-
cunscrit groups of people.

Latter, if and when S M; makes contact with
SM; (supposing he meets SM; before mee-
ting SMs), the transaction T will try to es-
tabelish a loose commit in SM;. The official
replica Cy;,2 can now be examined and com-
pared with ¢g;,1, if €902 as not changed since
the last ¢y;,1 synchronization then we can just
update c¢z;,2. This can be done either by co-
pPYINg ¢gin1 into €92 o by rexecuting the loged
operations (held for ¢gin1) over cgina.

If 9402 as changed then the log of ¢g;,1 must
be checked for conflict detection. Conflict de-
tection will be based on compatibility matrixes
for operations [2], or the a more expressive spe-
cification notation like, invalidate descriptions
[1], wich enables the expression of hadoc syn-
chronization mechanisms instead of just read-
write and write-write synchronization. Depen-
ding on the result, two things may happen: T
must be aborted (wich possibly affects other

transactions in SM;) or the log may be al-
lowed to execute over cg;,2. In the later case,
the settling of a loose commit for T' on S M,
deppends now on the observation of ¢3;,2. The
time of synchronization of ¢3;,2 and ¢3;,; must
be compared and the availability of time slot ¢
checked. If ¢ is available then T' can issue a lo-
ose commit on S M;, otherwise and depending
on the adopted policy we may still proceed and
issue a loose commit or alternatively opt for an
abort on transaction T'. As a consequence of
this contact between SAM; and SM;, the six ¢
replicas hold among these SMs become syn-
chronized.

Loose commits act as an unbiased compro-
mise. The SM that issues a loose commit
is aware that the transaction may be even-
tually aborted by another SM, but, despite
that, promisses to accept the commited data
and agrees to be unable to abort it by him-
self. Within this compromise we are able to
start strict commits when the last replica hol-
der is contacted. We can try to visualize this
by seeing loose comits as a wave that starts in
a SM and propagates along the other replica
holders until reaching the last M H, then the
wave refluxes as a strict commit wave until all
the intervinient S Ms are reached. Unfortuna-
tely the loose commit wave may hit some obs-
tacle (outdated replicas or concurrency con-
trol conflicts) and refluxe early as a loose co-
Recall that this interaction
follows the dissemination protocol policy pres-
cribed on section 3.2.

mit abort wave.

In our example, the strict commit phase is
reached when SM; or SM; (wich have issued
loose commits for transaction T') contact S Ms.
Suppose that SM, contacts SMs. The offi-
cial replica ¢s;,3 can now be tested for recon-
ciliation with cs;,2 under de described proto-
col. Deppending on the result, T' may proceed
into a strict commit on both SMs or origi-
nate a loose comit abort on SM,.
cases S My should be informed of the resulting
action. SM; will be notified when he meets

SM2 or SMg

In either



4 Locks and Delegation

Lock management is beeing addresses on two
AMIGOS subprojects, Vitor Guedes on the
management of file replicas for file system sup-
port to disconnected operation [5], and Jeppe
Damkjaer Nielsen on the study of timed locks
for transactional support over the file system
[9]. On the MATE subproject, lock mana-
gement is interpreted as a form of delegation
from SMs over their owned replicas.

When a given SM, contacts another SM,
he can request from the later, locks over
its (SM,) owned replicas after synchronizing
them. These granted locks can be assigned
an expiration period, after wich the delegated
properties cease to be ensured by the owner
SM. The delegated properties should be spe-
cified acordingly to specific aplication needs,
and are not yet fully identified. We can, howe-
ver, forecast some tipical cases:

Reads The owner SM ensures that there will
be no changes to a replica, during some
period. This enables isolated transactions
to issue strict reads over read-locked repli-
cas. These locks can be granted to more
than one replica. In fact, once they are
granted, it would be advisable to notity
the other replica owners so that they can
benefict from the read-lock.

Writes The owner SM ensures that a given
SM can have strict write permissions for
a given period of time. This allows the
borrow of replicas for a given period, wi-
thout having to initiate a owner migration
protocol.

Commits The owner SM ensures that he
will not enforce strict commits for some
period. These assurance allows postpo-
ning the reconciliation of competing loose
commits until a given time. With this
the aplication may induce some fairness
among disconnected updates on M Hs
that reconnect on predictable periods.

In general, any property which can be as-
signed to a replica can be subjcet to some de-
legation from its primary holder. Other good
candidate properties can be found on compa-
tibility matrixes and on invalidation specifica-
tions.

5 Project Development

The concerns and the design philosophy of the
MATE project, here depicted, will be develo-
ped on my PhD research, supervised by Fran-
cisco Moura. This will encompass the develop-
ment of a suitable programming framework on
C++, for the support of mobility and the ex-
pression of transactional properties. The pro-
gramming framework will then be used to im-
plement and measure these policies.

A possible testbed for the validation of some
of these ideas is beeing produced under the
GIM project. Working on this project, which
will develop a mobile scheduler management
aplication, are Orlando, Anténio and Rui Oli-
veira.

References

[1] P. Anastassopoulos and Jean Dollimore. A
unified approach to distributed concurrency
control. In Distributed Computer Systems,
pages 545-571, January 1994.

[2] Naser S. Barghouti and Gail E. Kaiser. Con-
currency control in advanced database sys-
tems. ACM Computing Surveys, 23(3), Sep-
tember 1991.

[3] Alan Demers, Karin Petersen, Mike Spreit-
zer, Douglas Terry, Marvin Theimer, and
Brent Welch. The bayou architecture: Sup-
port for data sharing among mobile users.
In IFEFE Workshop on Mobile Systems and
Aplications, Computer Science Laboratory,
Xerox Palo Alto Research Center, December
1994.

[4] Robert Gruber, Frans Kaashoek, Barbara
Liskov, and Liuba Shrira. Disconnected ope-
ration in the thor object-oriented database



[7]

system. In IFEFE Workshop on Mobile Sys-
tems and Aplications, Laboratory for Com-
puter Science, Massachusetts Institute of Te-
chnology, December 1994.

Vitor M. P. Guedes. Mobile compu-
ting systems: Research report. See at
http://alfa.di.uminho.pt/ mesvpg, Septem-
ber 1994.

Richard G. Guy, John S. Heidemann, Wai
Mak, Thomas W. Page, Gerald J. Popek, and
Dieter Rothmeier. Implementation of the fi-
cus replicated file system. In USENIX Con-
ference Proceedings, pages 63-71. USENIX,
June 1990.

Tomasz Imielinski and B. R. Badrinath. Mo-
bile wireless computing: Challenges in data
management. Comunications of the ACM,
37(10):18-28, October 194.

Vivek R. Narasayya. Distributed transac-
tions in a mobile computing system. Techni-
cal report, University of Washington, March
1994.

Jeppe Damkjaer Nielsen. Project on tran-
sactions in mobile computing. obtained by
email, 1995.

Evaggelia Pitoura and Bharat Bhargava. Re-
vising transaction concepts for mobile com-
puting. In IEEE Workshop on Mobile Sys-
tems and Aplications, Department of Com-
puter Science, Purdue University, December
1994.



