
Synergetic State Evolution under Mobile Computing�Carlos BaqueroyDI - Universidade do Minho4700 Braga, Portugalcbm@di.uminho.ptMay 1995AbstractThe recent trend towards mobility and ubiqui-tous computing issued a new perspective overthe traditional models of distributed compu-tation. Observation of Human behavior, inparticular the study of Human information in-terchange techniques and protocols presents asimple, yet fruitful, mean of gathering insighton the possible protocols for interaction amongmobile hosts.This work will try to go one stepfurther on the study of mobile interactions byleaving the usual semi-centralized approach tomobile computing. Instead of focusing on thereconciliation of mobile hosts with the networ-ked support stations, we will study the pos-sibility of progressive adjustments, both by amobile host and a support station and betweenmobile hosts.1 IntroductionThe recent trend towards mobility and ubiqui-tous computing issued a new perspective overthe traditional models of distributed computa-tion. Disconnected operation raises new boun-daries in the classical management of networkpartitions, and calls for enhanced techniquesof replica reconciliation and conict avoidance.�Technical Report.yThe autor is supported by JNICT-PRAXIS XXIgrant BD / 3123 / 94.

Fortunately, and unlike network partitions,disconnected operation is almost always an an-ticipated action (at lest for nomadic compu-ting).Observation of Human behavior, in parti-cular the study of Human information inter-change techniques and protocols presents asimple, yet fruitful, mean of gathering insighton the possible protocols for interaction amongmobile hosts. These protocols will be analyzedfrom the perspective of persistent data storemanagement, which will be the primary focusof this study.Humans, as a social species, have developedmany forms of interaction for the support ofcooperative work. Even, point to point comu-nication, can include several small di�erencesin the way the same message is transmited.We may transmit an information that we haveoriginated, and by transmiting it to someonoeelse, we may be expecting that it keeps it con-�dential or (on the opposite) we may expecthim to disseminate it as broadly as possible.We can be expecting or not a reply to our co-munication, and this reply can be needed fromall receptors or just from some speci�c one. Inanother situation, we can be just forwarding amessage, and we may be able, or not, to en-sure that is not redudant or up to date. Theseexamples start to show the diversity of directand indirect comunication that we have at ourdisponsal, and wich, we hope, will be usefullin mobile comunication.1



This work will try to go one step furtheron the study of mobile interactions by leavingthe usual semi-centralized approach to mobilecomputing. Typical frameworks for mobilecomputation are based on a network of supportstations (NSS) that act as connection pointsfor mobile hosts (MH). Instead of focusingon the reconciliation of mobile hosts with thenetworked support stations, we will study thepossibility of progressive adjustments, both bya MH and a NSS and between MHs.The FICUS distributed �le system[6] al-ready pointed in this direction by estabelishinga peer to peer protocol for replica manage-ment. The bene�cts of these kind of protocolsare also explored in the Bayou system [3].Next follows a description of the area of con-cern of the MATE (Mobile Aplications Tran-sactional Environment) project, under theAMIGOS framework, followed by its presen-tation through the remaining of this docu-ment.2 Focused connection sta-tesMobile hosts, when active, can be, at a gi-ven time and with respect to the supportstations, either (C) connected by a fast re-liable link, such as ethernet or serial cable;(PD) partially disconnect1, when using a slowand possible unreliable link, such as a cellu-lar phone or radio link; (D) or in disconnec-ted operation. Existing frameworks supportsome or all of the previous possibilities, na-mely: fC;PD;Dg,fC;Dg,fPD;Dg.In the remaining of this description we willabstract from issues related to the PD state,concentrating on the duality Connected vsDisconnected. Apart from the low level issuesof PD which are subject of ongoing investiga-tion [7], such as the development of communi-cation mechanisms that are aware of and tole-rate mobility, we expect that the higher level1Or, alternatively, partially connected.

semantics of PD can be selected from featurespresent for C and D states. As PD varies withthe degree of available connection, the selectedbalance of features will also vary.3 A Global or a SynergeticStateSystems based onMHs and NSSs, have inhe-rently a given structuring hierarchie. Persis-tent data objects usually have the "o�cial" co-pies in the �xed network, andMHs act as tem-porary copy holders that ultimately have to bereconciliated with the copies held on the cen-tral hosts. In a more decentralized approachthere is no default placeholder for o�cial co-pies. This leads to the need for an explicitbinding of ownership to data objects.3.1 Data Objects and ReplicasIn MATE each persistent data object mayhave several replicas, beeing one of them heldon the storage manager (SM) that owns thedata object. Replicas will act as persistentproxys for the replica held on the owner SM .A SM is associated with an host or a groupof tightly coupled hosts, though for simplicityreasons we will assume here a one to one re-lationship between hosts and SM 's. All thereplicas must have a �eld that designates theowner host (in fact the SM). Although someapplications, for security reasons, may requirethat the owner is a �xed (non mobile) host,others may work better or even require theownership to be held on a mobile host. A tipi-cal example is the use of schedulers, where eachuser holds its personal schedular data in itsprivate machine. Ownership migration shouldalso be permited, although ensuring that allthe replicas point to the same owner. A givenowner will know for each owned data object,how many replicas exist and who holds them2.2The need to know who holds them may be subjectof relaxation if a autenticated mechanims of handing-o� replicas is devised.2



A given SMi will have a indexed list,fN,!SM ,of references to other SMs whose owned repli-cas he holds. Each replica Rxi in SMi, willhave a index (2 N) to the local list of referen-ces. With this scheme the change of owner fora data object, is noti�ed by comunicating withthe SMs that hold replicas of that object. Na-turally, in a mobile setup, not all replica hol-ders can be noti�cated at the same time. Thiswill lead to a transient phase where the formerowner and all the already noti�ed SMs will tryto disseminate this change.3.2 Dissemination ProtocolThe propagation of information through theSM comunity follows a simple but very syner-getic politic, that mimics human cooperativebehavior."If A meets B or A can contact B,and A knows or thinks that knows so-mething that B should know then: Awill ask B if he needs it and will even-tually hand him that information"Going back to the example of disseminatingthe changing of a data object owner, we candevise under this �losophy a suitable protocol.The former, or the new owner, contacts allreachable SMs that hold replicas, and besidesupdating them also informs them wich SMscould not be contacted. The updated SMswill try to update the necessary replica holdersin the near future.This protocol creates some redundancy assome SMs may receive multiple noti�cations,which in fact also happens among Human inte-ractions. Possible solutions are asking beforetrying to update a mate; detecting directly orindirectly that a given information has alreadybeen fully spread or is now outdated; giving toonly a few SMs the responsability of propaga-ting some specifc information.

3.3 TransactionsIt is with the introduction of transactional sup-port, that the notion of owner of persistentdata object, shows its relevance in MATE'sdesign. As stated by previous works [8, 10, 4],the transaction models used on non mobile dis-tributed systems, are not suitable for a mobileenvironment. On a distributed system, tran-sactions can expect to access up to date copiesof data objects. When this is ensured and noconicting actions are detected these transac-tions can commit and make their changes per-manent and visible to other transactions. Ona mobile environment, we should be able tomake transactions locally visible even before apermanent commit can be estabelished.MATE supports more than one commit le-vel. Although the actual number of commit le-vels may bene�ct from not being restricted to 2commit levels, we will assume for the momentthe de�nition of two commit levels. Using Pi-toura and Bhargava terminology [10] we willcoin this levels as loose and strict3.A given SM can enforce loose commits onany stored replica and can enforce strict com-mits on replicas that he owns. From these pre-mises results that loose comits are not durableas they can be aborted if one of the replicaowners does not agree to promote a strict com-mit. The likelywood of abort occurence canbe reduced by asking some delegation of res-ponsability from the replica owners, as will beshown latter, on this article.Consider the following example:Three users have their personal MHs withone SM per machine (wich yields SM1, SM2and SM3). Each user runs a appointmentscheduler that stores its data in a persistentobject c (from callendar). There will be threedi�erent calendars and each user will have itsown callender and replicas of the other callen-dars. SM1 owns its callendar c1in1 and keepstwo replicas: c2in1 that represents the callendarowned by SM2; c3in1 that is owned by SM3.3Actually, the autors de�ne strict and loosetransactions.3



Suppose that user 1 is currently isolated andwants to schedule a meeting with the otherusers for a given time slot t. A transaction Twill start on SM1 and will examine the availa-bility of time slot t in c1in1, c2in1 and c3in1. Ift is not available in c1in1 then T should abort.Otherwise, if t is not available in c2in1 or inc3in1 there is still a vague possibility of success(as that time slot may have been set free) andT may choose either to abort or to issue a lo-ose commit. If t is available in all c?in1 replicasstored in SM1 then a loose commit is issued.Loose commits make the changes visible tosubsequent local transactions and keep a logof operations in the accessed replicas for pos-terior reexecution and conict detection whentrying to estabelish a strict commit. It shouldbe noted that we avoid the use of "global com-mit" as in MATE the notion of globality isrelated to the set of replica holders, wich aretipically a subset of all existing SMs. So, astrict commit is, for the intervining partici-pants, a global commit. Actually in real lifethere is seldom a piece of information that peo-ple globaly accept as true and o�cial, while itis much easier to make agreements among cir-cunscrit groups of people.Latter, if and when SM1 makes contact withSM2 (supposing he meets SM2 before mee-ting SM3), the transaction T will try to es-tabelish a loose commit in SM2. The o�cialreplica C2in2 can now be examined and com-pared with c2in1, if c2in2 as not changed sincethe last c2in1 synchronization then we can justupdate c2in2. This can be done either by co-pying c2in1 into c2in2 or by rexecuting the logedoperations (held for c2in1) over c2in2.If c2in2 as changed then the log of c2in1 mustbe checked for conict detection. Conict de-tection will be based on compatibilitymatrixesfor operations [2], or the a more expressive spe-ci�cation notation like, invalidate descriptions[1], wich enables the expression of hadoc syn-chronization mechanisms instead of just read-write and write-write synchronization. Depen-ding on the result, two things may happen: Tmust be aborted (wich possibly a�ects other

transactions in SM1) or the log may be al-lowed to execute over c2in2. In the later case,the settling of a loose commit for T on SM2deppends now on the observation of c3in2. Thetime of synchronization of c3in2 and c3in1 mustbe compared and the availability of time slot tchecked. If t is available then T can issue a lo-ose commit on SM2, otherwise and dependingon the adopted policy we may still proceed andissue a loose commit or alternatively opt for anabort on transaction T . As a consequence ofthis contact between SM1 and SM2, the six creplicas hold among these SMs become syn-chronized.Loose commits act as an unbiased compro-mise. The SM that issues a loose commitis aware that the transaction may be even-tually aborted by another SM; but, despitethat, promisses to accept the commited dataand agrees to be unable to abort it by him-self. Within this compromise we are able tostart strict commits when the last replica hol-der is contacted. We can try to visualize thisby seeing loose comits as a wave that starts ina SM and propagates along the other replicaholders until reaching the last MH, then thewave reuxes as a strict commit wave until allthe intervinient SMs are reached. Unfortuna-tely the loose commit wave may hit some obs-tacle (outdated replicas or concurrency con-trol conicts) and reuxe early as a loose co-mit abort wave. Recall that this interactionfollows the dissemination protocol policy pres-cribed on section 3.2.In our example, the strict commit phase isreached when SM2 or SM1 (wich have issuedloose commits for transaction T ) contact SM3.Suppose that SM2 contacts SM3. The o�-cial replica c3in3 can now be tested for recon-ciliation with c3in2 under de described proto-col. Deppending on the result, T may proceedinto a strict commit on both SMs or origi-nate a loose comit abort on SM2. In eithercases SM1 should be informed of the resultingaction. SM1 will be noti�ed when he meetsSM2 or SM3.4



4 Locks and DelegationLock management is beeing addresses on twoAMIGOS subprojects, Vitor Guedes on themanagement of �le replicas for �le system sup-port to disconnected operation [5], and JeppeDamkjaer Nielsen on the study of timed locksfor transactional support over the �le system[9]. On the MATE subproject, lock mana-gement is interpreted as a form of delegationfrom SMs over their owned replicas.When a given SMx contacts another SMyhe can request from the later, locks overits (SMy) owned replicas after synchronizingthem. These granted locks can be assignedan expiration period, after wich the delegatedproperties cease to be ensured by the ownerSM . The delegated properties should be spe-ci�ed acordingly to speci�c aplication needs,and are not yet fully identi�ed. We can, howe-ver, forecast some tipical cases:Reads The owner SM ensures that there willbe no changes to a replica, during someperiod. This enables isolated transactionsto issue strict reads over read-locked repli-cas. These locks can be granted to morethan one replica. In fact, once they aregranted, it would be advisable to notifythe other replica owners so that they canbene�ct from the read-lock.Writes The owner SM ensures that a givenSM can have strict write permissions fora given period of time. This allows theborrow of replicas for a given period, wi-thout having to initiate a owner migrationprotocol.Commits The owner SM ensures that hewill not enforce strict commits for someperiod. These assurance allows postpo-ning the reconciliation of competing loosecommits until a given time. With thisthe aplication may induce some fairnessamong disconnected updates on MHsthat reconnect on predictable periods.

In general, any property which can be as-signed to a replica can be subjcet to some de-legation from its primary holder. Other goodcandidate properties can be found on compa-tibility matrixes and on invalidation speci�ca-tions.5 Project DevelopmentThe concerns and the design philosophy of theMATE project, here depicted, will be develo-ped on my PhD research, supervised by Fran-cisco Moura. This will encompass the develop-ment of a suitable programming framework onC++, for the support of mobility and the ex-pression of transactional properties. The pro-gramming framework will then be used to im-plement and measure these policies.A possible testbed for the validation of someof these ideas is beeing produced under theGIM project. Working on this project, whichwill develop a mobile scheduler managementaplication, are Orlando, Ant�onio and Rui Oli-veira.References[1] P. Anastassopoulos and Jean Dollimore. Auni�ed approach to distributed concurrencycontrol. In Distributed Computer Systems,pages 545{571, January 1994.[2] Naser S. Barghouti and Gail E. Kaiser. Con-currency control in advanced database sys-tems. ACM Computing Surveys, 23(3), Sep-tember 1991.[3] Alan Demers, Karin Petersen, Mike Spreit-zer, Douglas Terry, Marvin Theimer, andBrent Welch. The bayou architecture: Sup-port for data sharing among mobile users.In IEEE Workshop on Mobile Systems andAplications, Computer Science Laboratory,Xerox Palo Alto Research Center, December1994.[4] Robert Gruber, Frans Kaashoek, BarbaraLiskov, and Liuba Shrira. Disconnected ope-ration in the thor object-oriented database5



system. In IEEE Workshop on Mobile Sys-tems and Aplications, Laboratory for Com-puter Science, Massachusetts Institute of Te-chnology, December 1994.[5] Vitor M. P. Guedes. Mobile compu-ting systems: Research report. See athttp://alfa.di.uminho.pt/ mesvpg, Septem-ber 1994.[6] Richard G. Guy, John S. Heidemann, WaiMak, ThomasW. Page, Gerald J. Popek, andDieter Rothmeier. Implementation of the �-cus replicated �le system. In USENIX Con-ference Proceedings, pages 63{71. USENIX,June 1990.[7] Tomasz Imielinski and B. R. Badrinath. Mo-bile wireless computing: Challenges in datamanagement. Comunications of the ACM,37(10):18{28, October 194.[8] Vivek R. Narasayya. Distributed transac-tions in a mobile computing system. Techni-cal report, University of Washington, March1994.[9] Jeppe Damkjaer Nielsen. Project on tran-sactions in mobile computing. obtained byemail, 1995.[10] Evaggelia Pitoura and Bharat Bhargava. Re-vising transaction concepts for mobile com-puting. In IEEE Workshop on Mobile Sys-tems and Aplications, Department of Com-puter Science, Purdue University, December1994.
6


