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Abstract

Version vectors and their variants play a central role in update tracking in optimistic
distributed systems. Existing mechanisms for a variable number of participants use a
mapping from identities to integers, and rely on some form of global configuration or
distributed naming protocol to assign unique identifiers to each participant. These ap-
proaches are incompatible with replica creation under arbitrary partitions, a typical mode
of operation in mobile or poorly connected environments. We present an update tracking
mechanism that overcomes this limitation; it departs from the traditional mapping and
avoids the use of integer counters, while providing all the functionality of version vectors
in what concerns version tracking.

1 Introduction

Mobile computing has evolved in the previous decade into what is now a common mode
of operation for a significant share of distributed systems. This mobile context helped to
promote optimistic strategies and, with them, the need for version vectors in update track-
ing. Nevertheless, the same mobile context also brings to surface some of the limitations
of version vectors, in particular concerning the identification of participating entities in
the computation in such potentially dynamic environments.

The concept of version vector [12] is connected to the twin concept of vector clock
[5, 10], and both are rooted on causality in distributed systems [9]. These concepts share
an equivalent structure that consists in a mapping from process/replica identifiers to integer
counters,I ,! N. In practice, version vectors and vector clocks are more often represented
as a fixed sequence of integer counters,f1; 2; : : : ; kg ! N, which is a reasonable choice
as long as the number of entities is known in advance. Figure 1 shows an execution in a
replicated system where fixed size version vectors are used to track updates to each of the
three replicas in the system. The direction of evolution is represented by the arrows, with
dot annotated arrows,

Æ!, depicting updates on a given element of the system.
Although structurally similar, vector clocks and version vectors play different roles

on distributed systems. Vector clocks are known to provide a view over a distributed
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Figure 1: Use of version vectors to track updates among three replicas.

computation, different events being identified by distinct vector clock values1. The role
of version vectors is to detect mutual inconsistency among replicas and to determine the
most recent version among two causally related replicas. All replicas that have seen the
same updates, typically after a synchronization procedure, share the same version vector
value – see again Figure 1.

A well known problem of version vectors and vector clocks is that they are unbounded
in size [14, 17]. In fact, they are twice unbounded. Each integer counter can grow indefi-
nitely and the number of identified entities can also grow unbounded.

A less known problem, which we address in this paper, resides in the identification
requirement of both version vectors and vector clocks [2, 13]. Each participating entity
must be assigned a unique identifier in order to obtain a proper mapping to integer coun-
ters. In a well connected environment, it would be simple to request a unique identifier
from a server or to run a distributed protocol for the generation of a unique identifier. Such
protocols are not possible in the current mobile setting when subject to partitioned opera-
tion. Moreover, significant technology and research trends are pointing towards wireless
ad hoc networking setups, where entities are autonomous and operate in local clusters on
a proximity basis [11, 3, 6]. In such environments, partitioned operation is the common
mode of operation and an answer to the identification problem must be sought.

In circumstances in which we can afford probabilistically unique identifiers, algo-
rithms may resort to some form of random based ids in order to cope with replica creation
under partitioned environments. Contrary to these approaches, our work does not rely on
probabilistic uniqueness and assumes that guaranteed unique identifiers must be provided.

1.1 Fixed vs. Variable number of Replicas

Classic replication systems operate over a well defined number of replicas. Such is the
case of the system depicted in Figure 1. The more general case of a dynamic replica-
tion system, introduces the need to accommodate replica creation and retirement. One
approach would be to represent replica creation by introducing new horizontal lines and
new replica identifiers in the system representation, and likewise to discontinue those lines
towards the future, upon replica retirement.

The approach we follow, instead, represents all the functionality of replica creation,
1In Fidge Logical Time, two events share the same clock value when representing a synchronization event

between two instances. Usually, asynchronous message passing is assumed and this does not occur.
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synchronization and retirement by two simple constructs: replica forking and joining of
replicas. Synchronization can then be represented by joining two replicas and forking the
resulting one. An example is presented in Figure 2.d1 // g1b1 <<xxxx

""F
FF

Fa1 Æ // a2 <<xxxx

##G
GG

G
e1 // f1 EE

�
�

�
�

�
�

�
�1 Æ // 2 Æ // 3 ;;wwwwtime //

Figure 2: Some possible evolutions of data elements showing two frontiers of coexisting
elements (denoted by single and double-dotted lines).a Æ // a0 // a00OO
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Figure 3: Encoding a fixed number of replicas (left) under fork-and-join dynamics (right).

This dynamic replication system is more general than the fixed one and can be used to
encode the latter. In Figure 3 we give the intuition to this encoding by representing under
fork-and-join dynamics a traditional version vector setting for three replicas, using the
same names for elements in equivalent positions and omitting the name of extra elements.
From this example, it is also easy to see that an equivalent mapping can be found for runs
with a variable number of replicas.

1.2 Frontier Elements vs. All Elements

In certain circumstances, one may want to relate any two elements occurring in the dis-
tributed evolution, that is, all elements in the distributed computation are subject to order-
ing. For instance, in the computation depicted in Figure 2, one may want to inquire how2
anda1 relate and determine thata1 is in the past of2. Such querying could be necessary
when debugging a recorded execution of the replicated system.

In other circumstances, namely in update tracking, one may only need to relate coex-
isting elements, that is, only elements in the same reachable configuration. If this is the
case, it wouldn’t make sense to query how2 anda1 relate since these elements never
coexist in any arbitrary system evolution. In this sense, a reachable configuration is per-
ceived as forming afrontier. Any two elements that are connected by a direct arrowed
path never coexist, and consequently never belong to the same frontier of contemporane-
ous elements.

If we concentrate on element2 we can observe that, for the depicted evolution, there
are two possible frontiers to which2 can belong. The first, represented by a single dotted
line, might occur if1 gave place to2 before the bifurcation ofb1. The second frontier,
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double dotted, occurs ifb1’s bifurcation is prior to2’s transformation into3. In fact, it is
possible that both frontiers occur in a particular system run.

In any case, an ordering system that targets frontier elements should have enough
information to relate any two events that can occur in any possible system frontier. It is
intuitive to accept that ordering of frontier elements is sufficient for version management,
since only coexisting elements are subject to queries on their relation properties. We
believe that this observation can have an important impact on the design of future version
management techniques.

Under the distinction that we have just presented it is now clear that traditional version
vectors are overly expressive: they are capable of overall ordering albeit in their applica-
tion context a frontier ordering would be sufficient. One could conjecture that a com-
pressed substitute of version vectors would be conceivable for traditional settings with
fixed numbers of entities, and such substitute would not contradict Charron-Bost mini-
mality results [4] (stated in the context of vector clocks but easily inferable for version
vectors). This is not, however, the purpose of this article.

It is easy to conclude that classical (fixed size) version vectors are associated to fron-
tiers of constant size, the vector dimension, while dynamic forms of version vectors, c.f.
[14], act on variable frontiers.

Our goal is to develop a decentralized, autonomous form of version vectors – named
version stamps– that allows frontier ordering with autonomous creation of identifiers from
any available replica. By considering frontier ordering we seek a compact solution to the
identification problem that can act as an alternative to version vectors in dynamic settings.

1.3 Structure of the Paper

The rest of the paper is structured as follows. The next section introduces a model of causal
histories of events, using a global view on events. Sections 3 and 4 develop the concept of
version stamps and introduce a set of invariants over their structure. Section 5 establishes a
functional equivalence between version stamps and causal histories, and Section 6 refines
the version stamp model while keeping the equivalence. Section 7 concludes the article.

2 Causal Histories in Dynamic Settings

Detection of version dependencies among data elements can be constructed over a notion
of causal history of update events [15]. In the construction of such history we assume
a global view over the system in order to obtain a description that is intuitively correct.
Afterwards, a version stamping system that does not rely on a global view will be con-
structed and proved to represent the same dependency order between elements that can be
derived from the causal history.

To model causal histories we keep a mapping from element identities to sets of update
events. Since we are only interested in comparing frontier elements, we only keep in
the mapping the set of elements that define each frontier (thus elements that may have
existed in its past are not included). This map can be seen as representing a “current
configuration”.

Operations (update, fork and join) are described by transformations between configu-
rations.

We use the traditional notation for functions:fa 7! fxg; b 7! fy; zg;  7! fx; z; wgg
represents a function that maps elementsa, b and to sets of events; some events (likex
andz) can be in the causal history of several elements.
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Notation. We usefF ; a 7! x; b 7! yg to represent a function that mapsa to x, b toy and that maps other elements in the domain according to functionF . This notation
expresses also that botha and b do not belong to the domain ofF . This is useful to
perform “pattern matching” over functions (Note that usingF [fa 7! x; b 7! yg does not
imply thatx; y 62 dom(F ).). A similar notation can be used for ‘pattern matching’ over
sets:fA; a; bg denotes a setA [ fa; bg such thata; b 62 A.

Definition 2.1 An initial configuration can be captured byfa 7! fgg and represents a
system with one data element. From any reachable configuration, the following transfor-
mations can occur:� fC; a 7! Ag update(a)�! fC; a0 7! A [ fegg with e 62 E(fC; a 7! Ag),� fC; a 7! Ag fork(a)�! fC; b 7! A;  7! Ag,� fC; a 7! A; b 7! Bg join(a;b)�! fC;  7! A [Bg,
with E(fCg) := SfC(i) j i 2 dom(C)g.

Although mapping only “current” elements, the corresponding event sets store all up-
date events that have occurred in the causal history of each element: events are not dis-
carded. A global view is present because each update event has a global unique identity
that cannot be computed by only looking at the element being updated.

When querying the relationship between elements, according to known updates, the
goal is to distinguish three possible situations: Equivalence – the same set of events; Ob-
solescence – all the update events and at least one more in the dominating element; Mutual
inconsistency – at least one different update event in each element. Given a configurationfC; a 7! X; b 7! Y g:� a equivalent to b iff X = Y ,� a obsolete relative tob iff X � Y ,� a inconsistent with b iff X 6� Y andY 6� X.

Comparison of elements in a frontier can be deduced from the causal histories as
defined above. In fact, all these situations are represented by a pre-order on the elements
of a given frontier. Given a configurationC, for any two elementsa; b in the domain ofC, we have: a ��C b() C(a) � C(b):

The simplicity of this model is only possible in the presence of a global view over the
set of events in the system.

3 Version Stamps

Our goal is to devise a stamping mechanism that can be used to infer the order be-
tween frontier elements that is induced by comparing sets of causal histories (as described
above). The mechanism must not depend on any form of global view; it must work au-
tonomously and rely only on the local information that is kept within the data elements
being operated upon. An efficient use of space is also highly desirable in order to support
a practical use.
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Figure 4: Version Stamps.

We now present an informal description of version stamps. Figure 4 presents the
example from Figure 2 where the version stamp corresponding to each element is shown.
Each version stamp is made up of two components, which we represent as[update j id℄.
The id component acts as the element identity: it distinguishes the element from all other
coexisting elements (in a frontier). Theupdatecomponent stores information about which
updates are known to a given element. It avoids the use of counters and consists of a single
id-like value which collectsid’s as they were (in ancestor elements) when updates were
performed. Each component is presented as a sum of binary strings.

The first two version stamps in the left show that when the frontier is only one element
updates do not need to have expression on the stamps. In fact, the update operation simply
copiesid into update; this means that after an update, subsequent ones do not affect a
version stamp. This is an example of the goal, in the design of version stamps, to discard
information that is irrelevant to the comparison of coexisting elements in a frontier.

At a fork operation theid in the resulting stamps is recursively constructed by ap-
pending either 0 or 1 to the right of the ancestorid. A fork does not modify theupdate
component as it does not introduce any update event (the ones tracked by the mechanism).

When a join between two elements occurs the resultingid is built by merging the two
ancestorid’s. Theupdatecomponent is built likewise, merging the two ancestorupdate
components; this reflects the combined knowledge of past updates.

An important property of the mechanism is the possible simplification of stamps after
joins. The intuition is that a join decreases the number of elements in a frontier, leading
to smaller identities being needed to distinguish them. A fork followed by a join of the
resulting elements should result in an element with the originalid. The intermediate el-
ementsid’s only differ in the appended 0 and 1; after being merged they are collapsed
into the originalid. (A simplification ofid induces also a simplification ofupdate.) Some
analogies can be made: the simplification of minterms in boolean algebra, the collaps-
ing of neighbour blocks in the buddy memory allocation system [8] or collecting weights
in Huang’s termination detection algorithm [7]. Likewise,id’s denote non-intersecting
parts of ‘the whole’; their complexity adjusts dynamically, reflecting the granularity of the
frontier of coexisting elements.

3.1 Synopsis of formal presentation

The locality goal of the mechanism can be seen to be met by looking at the definition of
the operations (below). To prove that version stamps can be used to infer the same order
as induced by causal histories, we split the presentation of version stamps and proof of
correctness in several steps.

We start by presenting a non-reducing version of the mechanism, in which no sim-
plification at joins occur, and prove several auxiliary invariants that characterize some
properties of version stamps. Afterwards, we show that both causal histories and the non-
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reducing version of the mechanism induce the same pre-order between elements at any
given frontier. To do this we must first prove a stronger result that implies the required
equivalence. Finally, we present a rewriting rule on version stamps that represents the
simplification after a join. We show that it preserves all previously defined invariants as
well as the proved result relating causal histories to version stamps.

4 Version Stamps: Non-Reducing

A version stamp is a pair(u; i), respectively theupdateand theid. Both components share
the same structure, and are members of a setN (names). We now characterizeN .

Let �� be the partially ordered set of all finite binary strings (sequences off0; 1g)
ordered by: r v s() r is a prefix of s:

We have, for example,01 v 011 and01 k 00 (we usek to denote non-comparability).
The null string is denoted by�; it constitutes the bottom of��: � v s for all stringss.
Definition 4.1 N is the set of all finite antichains in��, ordered by:n1 v n2 () 8r 2 n1:9s 2 n2: r v s:

For example,f0; 01g is not a valid element ofN because0 v 01, and we havef00; 011g v f000; 011; 1g andf00; 10g 6v f000; 011; 1g as well.
As the order defined onN is the classic order in lower powerdomains [16], at first

sight looks like we are in the presence of a pre-order. However,N was defined in a way
so that it is a partial order and not merely a pre-order. More specifically:

Proposition 4.2 N is a partial order; moreover it is a join semillatice with join given by:n1 t n2 := fs 2 n1 [ n2 j (s v r 2 n1 [ n2) ) s = rg:
(That is the join of two names is the set of all maximal elements in their union.)
Proof. N is isomorphic toO(��) (the down-sets of strings) ordered by inclusion, which
is a complete lattice. 2

Informally, the antichains inN can be seen to represent the maximal elements of
down-sets, the order defined corresponds to inclusion of down-sets and the join corre-
sponds to union of down-sets. For example,f00; 011g t f000; 01; 1g = f000; 011; 1g.

We now proceed with the definition of the first model of version stamps, in which
we do not include simplification after joins. For presentation purposes, we describe the
operations on version stamps using configurations that map elements to version stamps.
This facilitates relating causal histories to version stamps. It is important to emphasize
that this does not, however, imply that operations require a global view: the operations
manipulate the version stamps of the operated upon elements, which themselves require
no global view (contrary to the what happens in causal histories, where an update operation
makes use of globally unique update events). The order derived from stamps only makes
use of local stamp information as well.

Definition 4.3 An initial configuration can be captured byfa 7! (f�g; f�g)g and repre-
sents a system with one data element. From any reachable configuration, the following
transformations can occur:
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� fV ; a 7! (u; i)g update(a)�! fV ; a0 7! (i; i)g,� fV ; a 7! (u; i)g fork(a)�! fV ; a0 7! (u; i0); a00 7! (u; i1)g with nx := fsx j s 2ng; x 2 f0; 1g being the concatenation of a digit lifted to sets of strings,� fV ; a 7! (ua; ia); b 7! (ub; ib)g join(a;b)�! fV ;  7! (ua t ub; ia t ib)g.
The update component simply copies theid into update; fork maintains theupdate

component and appends either a 0 or a 1 to each string in theid component; the join oper-
ation performs joins of names for each component. It is easy to see that under the above
definitions, the components in the resulting stamps are well-formed names (antichains of
strings).

We now define the pre-order on the elements of a configurationV obtained from the
version stamps inV , that will be used to make the correspondence with causal histories.
Given a configurationV , for any two elementsa; b in the domain ofV , we have:a ��V b() fst(V (a)) v fst(V (b)):

Towards proving a proposition that relates causal histories with version stamps we
establish now some auxiliary properties of configurations of version stamps.

Invariant 4.4 (I1) In any reachable configurationV : 8(a; (u; i)) 2 V: u v i:
Proof. See Appendix. 2

This invariant states that in a version stamp theupdateis always dominated byid.
This property will ensure, on reducible version stamps models, that there is no obsolete
information onupdatewhen replicas converge andid simplifications are possible.

Invariant 4.5 (I2) In any reachable configurationV : 8fx 7! (ux; ix); y 7! (uy; iy)g �V: 8r 2 ix; s 2 iy: r k s:
Proof. See Appendix. 2

This second invariant brings attention to some structural properties of theid’s that are
present in a configuration. In a given frontier of elements each string that is present in
a givenid will be non-comparable to all other strings in the same or anotherid. Conse-
quently, allid’s in a frontier are non-comparable.

Invariant 4.6 (I3) In any reachable configurationV : 8fx 7! (ux; ix); y 7! (uy; iy)g �V: 8r 2 ux: frg v iy ) frg v uy:
Proof. See Appendix. 2

This invariant implies a weaker one:8fx 7! (ux; ix); y 7! (uy; iy)g � V: ux v iy )ux v uy. The pertinence of this last invariant can be illustrated by an example. Suppose
two non-comparable elementsa k b with version stamps(ua; ia), (ub; ib). If an update
occurs on one of them, for instanceupdate(a), we must be sure thata (a0 after update)
remains non-comparable tob, andb v a0 does not happen (recall that causal histories
ensure this by usingfreshevent names on updates). Sinceupdate(a) produces version
stamp(ia; ia) then our propertyub v ia ) ub v ua means that in order forb v a0 to
occur, thenb v a must also occur in the first place.
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5 Correspondence between causal histories and version
stamps

We now show that version stamps as defined above can be used to derive the pre-order
between elements according to inclusion of causal histories. As we described above, com-
paring elements in a configurationC of causal histories can be done according to:a ��C b() C(a) � C(b):
If we have a configurationV of version stamps that corresponds toC (whose version
stamps are derived from the same system execution asC), being the order between ele-
ments obtained fromV : a ��V b() fst(V (a)) v fst(V (b));
we want to prove that bothC andV induce the same pre-order, i.e.��C = ��V . This
means we want to show that:C(a) � C(b) , fst(V (a)) v fst(V (b)):

It can be seen that a direct proof by induction of this equivalence fails. This failure is in
itself an interesting result and can be briefly explained by the following insight: knowing
how elements compare according to causal history inclusion in a given configuration is
not enough to know how they will compare in the configuration obtained after performing
a given operation. In other words, even though we are not interested in knowing the exact
update events in causal histories, we need to know something more than just how they
compare even if comparison is all we are interested in.

Technically, we need to prove a stronger equivalence, which will be used as a stronger
induction hypothesis in the proof. We show then, the following stronger proposition. (We
use fst and snd for the projections on the first and second components of a pair. We also
use the notationf [A℄ for the direct image ofA underf , that isf [A℄ = ff(x) j x 2 Ag.)
Proposition 5.1 Given any distributed execution with causal historiesC0 �! C1 �!: : : �! Ck and with version stampsV0 �! V1 �! : : : �! Vk, it is true thatdom(Ck) =
dom(Vk) andCk(x) � SCk[S℄ , fst(Vk(x)) v F fst[Vk[S℄℄, for all x 2 dom(Ck) and; � S � dom(Ck).
Proof. See Appendix. 2

From the previous proposition, the result we want to show follows, as stated by:

Corollary 5.2 Given any distributed execution with causal historiesC0 �! C1 �!: : : �! Ck and with version stampsV0 �! V1 �! : : : �! Vk, it is true thatdom(Ck) =
dom(Vk) andCk(x) � Ck(y) , fst(Vk(x)) v fst(Vk(y)), for all x; y in dom(Ck).
Proof. SubstituteS by fyg in the previous proposition. 2
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6 Simplifying version stamps upon joins

We now describe a rewriting rule that can be applied to a version stamp and perform the
simplifications that have been informally introduced in Figure 4. Such simplifications re-
flect, as already discussed, the dynamic adaptation ofid’s to the ‘shape’ of the frontier.
This simplification is essential towards obtaining a realistic implementation, by minimiz-
ing the space requirements of version stamps.

The simplification of a version stamp that results from a join is attempted by repeatedly
applying the following rewriting rule until it is no longer possible to apply it:(u; fi; s0; s1g) ��!(u0; fi; sg);
with u0 = � u n fs0; s1g [ fsg if s0 2 u or s1 2 u;u otherwise.

One property of a rewriting(u; i) ��!(u0; i0) that follows trivially from the order on
names is thatu0 v u and i0 v i. As the order on names is well-founded (there are no
infinite descending chains of names), only a finite number of rewritings can be applied to
a stamp. It is also easy to see that the rewriting is confluent. Therefore, a stamp can be
rewritten into a unique normal form.

We omit the proof of confluence as it is intuitive and concentrate on the correctness of
the transformation. For that we need to show that applying a rewriting(u; fi; s0; s1g) ��!(u0; fi; sg) to a version stamp in a configurationV results in a configurationV0 where: the
rewritten version stamp consists of two wellformed names (antichains), the invariantsI1,I2, I3 are maintained, and the relation from dom(V ) to P(dom(V )) expressed byR(V ) := f(x; S) j fst(V (x)) vG fst[V [S℄℄g
is the same inV 0, i.e.R(V ) = R(V 0).
Wellformedness ofu0 and fi; sg. Regardingfi; sg, asfi; s0; s1g is an antichain, we
have for everyr 2 i that r k s0 andr k s1; thereforer k s, which means thatfi; sg is
also an antichain. Regardingu0, if neithers0 nor s1 belong tou, thenu0 = u. Otherwise,
we have for everyr 2 unfs0; s1g that:s0 6v r ands1 6v r (becauseu v fi; s0; s1g), andr 6v s (becauseu is an antichain); therefore,r k s, which means thatu n fs0; s1g [ fsg is
an antichain.

Invariant I1. This is a local invariant on each stamp; it suffices to show thatu0 v fi; sg.
If neithers0 nor s1 belong tou, thenu0 = u v fi; sg (asu v fi; s0; s1g). Otherwise, it
is also trivial thatu0 = u n fso; s1g [ fsg v fi; sg, for the same reason.

Invariant I2. This invariant involves pairs of stamps; it suffices to consider the cases
where the rewritten stamp is involved. For any other stamp(ux; ix) in V and stringr 2 ix,
due to InvariantI2 on V we have:r k s0, r k s1, thereforer k s; and alsor k t for allt 2 i; thereforer k v for all stringsv 2 fi; sg.
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Invariant I3. The invariant involves expressions of the formfrg v iy ) frg v uy, for
stamps(ux; ix), (uy; iy), andr 2 ux. As for the previous invariant, it suffices to consider
the cases where the rewritten stamp is involved:(u0; fi; sg) = (uy; iy). Supposefrg v fi; sg; then, frg v fi; s0; s1g and by I3 on

configurationV frg v u. If neither s0 nor s1 belong tou, thenu0 = u andfrg v u0. Otherwise, asfrg v fi; sg, we haver 6= s0 andr 6= s1; therefore,frg v u n fso; s1g [ fsg = u0.(u0; fi; sg) = (ux; ix). Supposefrg v iy with r 2 u0. If neithers0 nor s1 belong tou,
thenu0 = u, r 2 u; therefore, byI3 onV , we havefrg v uy. Otherwise, in which
caseu0 = u n fso; s1g [fsg, we haver 6= s0 andr 6= s1; alsor 6= s, otherwise we
would havefsg v iy, impossible byI2 on V ; thereforer 2 u and byI3 onV we
havefrg v uy.

Preservation ofR. We prove that applying a rewriting(u; fi; s0; s1g) ��!(u0; fi; sg) to
a version stamp in a configurationV results in a configurationV0 so thatR(V ) = R(V 0).
First we show thatx R(V ) S ) x R(V 0) S. Supposex R(V ) S, i.e. fst(V (x)) vF

fst[V [S℄℄. We must consider two cases:

rewriting of V (x). If x 2 S thenx R(V 0) S holds trivially; if x 62 S, asu0 v u, we haveu0 v u v F fst[V [S℄℄ = F fst[V 0[S℄℄.
rewriting of V (y) with y 2 S. The casex = y is trivial (and already covered above).

Otherwisex 6= y; let Z = S n fyg; we haveV jZ = V 0jZ and alsoV (x) = V 0(x);
therefore fst(V 0(x)) v F fst[V 0[Z℄℄ t u. If s0 62 u ands1 62 u we haveu0 = u andx R(V 0) S holds trivially. Otherwise, in which caseu0 = u n fs0; s1g[fsg, due toI1 andI2 (andx 6= y) we have thats0 ands1 do not belong to fst(V (x)); therefore
the inequality above still holds replacingu by u0, and thus we havex R(V 0) S.

Now we show thatx R(V 0) S ) x R(V ) S. Supposex R(V 0) S, i.e. fst(V 0(x)) vF
fst[V 0[S℄℄. We must consider two cases:

rewriting of V (y) with y 2 S. The casex = y is trivial; if x 6= y, given thatu0 v u, we
have fst(V (x)) = fst(V 0(x)) v F fst[V 0[S℄℄ v F fst[V [S℄℄.

rewriting of V (x). The casex 2 S is trivial; in the casex 62 S, we have that no string
in fst[V 0[S℄℄ is greater than or equal tos, otherwise, due toI1 there would exist a
stringr in snd[V 0[S℄℄ such thats v r, something impossible because, due toI2, no
string in snd[V 0[S℄℄ can be comparable tos Therefore,s 62 u0 which means we are
in the case whereu0 = u and so we have also fst(V (x)) vF fst[V [S℄℄.

7 Conclusions

Both version vectors and vector clocks rely on the availability of identifiers that can sup-
port their ordering technique. We have argued that operation under partitioned operation
and mobility prevents the use of traditional techniques for unique identifier generation, and
that these operation modes are already common and call for appropriate solutions. Ad-
ditionally, data management under these operation modes is mostly based on optimistic
techniques and therefore requires robust dependency tracking solutions.
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In this article we addressed the identification problem in the context of data depen-
dency tracking. In order to achieve this goal we had to distinguish the ordering of elements
in a frontier from the ordering of any two elements in a system run, thus contributing to
the clarification of the role of version vectors. This distinction, together with the presence
of the identification problem, raises a set of research lines, one of which was developed in
the article. The other lines concern the design of decentralized vector clocks, by exploring
autonomous identifiers on overall ordering, and the search for a more compact (possibly
bound) form of version vectors on settings with fixed identifiers and frontier ordering.

We have developed a model of causal histories that is adapted to dynamic settings
exhibiting autonomous interaction. We presented a version stamping mechanism that only
relies on information that is locally available, overcoming the need for a global view.
Finally, we established and proved a correspondence which states that the relation between
any two given elements in a frontier, according to inclusion of causal histories, can be
computed by their version stamps.

Version stamps, having solved the autonomous identification problem while address-
ing frontier ordering, provide an adequate dependency tracking mechanism that operates
in scenarios where this functionality was not available.

The presented version stamp mechanism has been implemented in the PANASYNC

project2 [1]. This project is an application of version stamps to file replication, providing
a set of tools for dependency tracking on single file copies. The project provides a C++
STL based library implementing version stamps.
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A Proof of Invariants and Main Proposition

Invariant 4.4. (I1) In any reachable configurationV : 8a 7! (u; i) 2 V: u v i:
Proof. The proof is by induction. In the base case we haveV0 = fa 7! (f�g; f�g)g. The
invariant holds since� v �. The inductive step will suppose that our invariantI1 holds on
a given environmentV and check for its validity underV0 that results from applying any
of the operations update, fork, join.

update(a). From the definition of the operation we have a new elementa0 with V 0(a0) =(i; i). Sincei v i the invariant holds.

fork (a). From the definition we haveV (a) = (u; i) andu v i by induction hypothesis.
In V 0 we haveV 0(a0) = (u; i0) andV 0(a00) = (u; i1). We verify thatu v i0 holds by
checking the definition of name concatenation together with hypothesisu v i. The same
applies tou v i1.

join (a; b). From the definition and by induction hypothesis we have inV , ua v ia andub v ib. We must infer inV 0 thatua t ub v ia t ib. This proposition can be directly
deduced from the above two hypothesis due to the properties of the join semi-lattice.2
Invariant 4.5. (I2) In any reachable configurationV : 8fx 7! (ux; ix); y 7! (uy; iy)g �V: 8r 2 ix; s 2 iy: r k s:
Proof. The proof is again by induction using the same structure as above. In the base
case there are no distinctix; iy so the invariant holds trivially.

update(a). Under this operation knowing thatV (a) = (u; i) holds,V 0(a0) = (i; i) will
hold inV 0. Since bothid’s arei the invariant, true inV by hypothesis, is preserved.

fork (a). From the definition we haveV (a) = (u; i) and from induction hypothesis, allix 6= i in V exhibit 8r 2 ix; s 2 i: r k s. In V 0 we haveV 0(a0) = (u; i0); V 0(a00) =(u; i1). From iterated concatenation, on fork definition, we infert k v ) t0 k v (as well
ast1 k v) for anyt; v 2 S. This and the induction hypothesis proves8r 2 ix; s 2 i0 r k s,
with identical reasoning fori1. Consideringi0 andi1, 8r 2 i1; s 2 i0: r k s results from
iterated concatenation.

join (a; b). From the definition we haveV (a) = (ua; ia); V (b) = (ub; ib) and from
induction hypothesis, allix 6= ia 6= ib exhibit8r 2 ix; t 2 ia; v 2 ib: r k t^ r k v ^ t k v.
Consequently8r 2 ix; s 2 (ia [ ib): r k s. In V 0 we haveV 0() = (ua t ub; ia t ib).
Sinceiat ib � ia[ ib (in fact, hereiat ib = ia[ ib) we reach8r 2 ix; s 2 (iat ib): r k s.2
Invariant 4.6. (I3) In any reachable configurationV : 8fx 7! (ux; ix); y 7! (uy; iy)g �V: 8r 2 ux: frg v iy ) frg v uy:
Proof. This proof is by induction, and for each operation the invariant validity is inferred.
In this proof, notation of the forma = b v  signifiesa = b andb v . The invariantfrg v iy ) frg v uy is checked by verifying that eitherfrg 6v iy or frg v iy^frg v uy
holds. In the base case, there is only one element and the invariant holds trivially.

14



update(a). From V (a) = (u; i) we haveV 0(a0) = (i; i). Suppose any two stamps(u0x; i0x); (u0y; i0y) in V 0 and 8r0 2 u0x. If (u0x; i0x) 6= (i; i) and (u0y; i0y) 6= (i; i) then(ux; ix); (uy; iy) occur inV and the invariant holds fromV by induction hypothesis. Oth-
erwise we must consider two cases:(0x; i0x) = (i; i) in which casefr0g 6v i0y since0x = i 6= i0y and (I2).(0y ; i0y) = (i; i) in which case(uy; iy) = (u; i) and either:frg 6v iy held inV , leading

in V 0 to fr0g 6v i0y; or frg v iy ^ frg v uy held in V and becomes induction
hypothesis. InV 0, fr0g v i0y still holds sincei0y = iy, andfr0g v 0y can be
inferred, sinceu0x = ux andfrg v uy = u v i = u0y.

fork (a). FromV (a) = (u; i) we haveV 0(a0) = (u; i0); V 0(a00) = (u; i1). Suppose any
two stamps(u0x; i0x); (u0y; i0y) in V 0 and8r0 2 u0x. If (u0x; i0x) 6= (u; i0); (u0y ; i0y) 6= (u; i1)
identical (ux; ix); (uy ; iy) occurred inV and the invariant is kept. Otherwise consider
three cases (the other cases are obtained by swapping 0 and 1):(u0x; i0x) = (u; i0); (u0y ; i0y) 6= (u; i1) in which case there was inV an identical(uy; iy)

and for(ux; ix) = (; i) we had either:frg 6v iy and consequentlyfr0g 6v i0y sinceu0x = u = ux; or we hadfrg v iy ^ frg v uy, becoming induction hypothesis.
In V 0, fr0g v i0y still holds, andfr0g v u0y can be inferred, sinceu0x = ux andfrg v uy = u0y.(u0x; i0x) 6= (u; i0); (u0y ; i0y) = (u; i1) in which case there was inV an identical(ux; ix)
and for (uy; iy) = (u; i) we had either:frg 6v iy = i and consequentlyfr0g 6vi0y = i1 since iterated concatenation cannot revert the6v relation; or we hadfrg viy ^ frg v uy, now becoming induction hypothesis. Again, inV 0, fr0g v i0y will
hold sinceu0x = ux andfrg v iy = i v i1 = i0y. fr0g v u0y also holds, fromu0x = ux andfrg v uy = u = u0y.(u0x; i0x) = (u; i0); (u0y ; i0y) = (u; i1) in which case we known thatfr0g v i0y holds, sinceu0x = u v i v i1 = i0y. fr0g v u0y also holds trivially sinceu0x = u = u0y.

join (a; b). FromV (a) = (ua; ia); V (b) = (ub; ib) we haveV 0() = (ua t ub; ia t ib).
Suppose any two stamps(u0x; i0x); (u0y ; i0y) in V 0 and8r0 2 u0x. If none of these stamps
matches(ua t ub; ia t ib), identical(ux; ix); (uy ; iy) occurred inV and the invariant is
kept. Otherwise consider two cases:(u0x; i0x) = (uatub; iat ib) in which casefr0g 6v i0y will hold in V 0 if there is av = r0 in

eitherua or ub such thatfvg 6v iy = i0y. Otherwise,fvg v iy ^ fug v uy become
induction hypothesis, and bothfr0g v i0y = iy andfr0g v u0y = uy hold inV 0.(u0y; i0y) = (ua t ub; ia t ib) in which casefr0g 6v i0y = ia t ib will hold in V 0 if inV frg 6v ia andfrg 6v ib. Otherwise, one or both offrg v ia ^ frg v ua andfrg v ib ^ frg v ub hold in V and become induction hypothesis. In such case,fr0g v i0y = ia t ib can be inferred, sincefrg v ia (or ib) and ia v ia t ib.
Similarly, fr0g v u0y = ua t ub is inferred under this hypothesis. 2

Proposition 5.1 Given any distributed execution with causal historiesC0 �! C1 �!: : : �! Ck and with version stampsV0 �! V1 �! : : : �! Vk, it is true thatdom(Ck) =
15



dom(Vk) andCk(x) � SCk[S℄ , fst(Vk(x)) v F fst[Vk[S℄℄, for all x 2 dom(Ck) and; � S � dom(Ck).
Proof. The proof is by induction. In the base case we haveC0 = fa 7!g for somea
andV0 = fa 7! (f�g; f�g)g; both domains are equal (fag); and the equivalence holds
trivially.

The inductive step for domain equality is trivial, given the definition of each opera-
tion, which transforms each domain in the same way (e.g. compare Definitions 2.1 and
4.3 regarding the update operation). The inductive step for the family of equivalences
consists of, assuming that the equivalencesC(x) �SC[S℄ , fst(V (x)) v F fst[V [S℄℄
hold for two given environmentsC andV , they will hold for the environmentsC0, V 0
that result from applying any of the operationsupdate, fork , join to C and V , i.e.C 0(x) � SC 0[S℄ , fst(V 0(x)) v F fst[V 0[S℄℄ will hold. For each operation we prove
the equivalence by showing implication in both directions.

update(a). From the definition of the operation, we haveC0(b) = C(a)[ feg for someb; e; V (a) = (u; i) for some(u; i); V 0(b) = (i; i). First we prove ()). AssumeC0(x) �SC 0[S℄. We must consider two cases:b 62 S in which casee 62 SC 0[S℄ and alsox 6= b (otherwise we would havee 2 C0(x)
which would contradict the assumptionC0(x) � SC 0[S℄); thereforeC0(x) =C(x). As alsoC 0jS = CjS (asb 62 S), we haveC(x) �SC[S℄, and by the induc-
tion hypothesis fst(V (x)) vF fst[V [S℄℄. As alsoV 0(x) = V (x) andV 0jS = V jS,
it follows trivially that fst(V 0(x)) v F fst[V 0[S℄℄.b 2 S The casex = b is trivial. In the casex 6= b, we haveC0(x) = C(x). LetT = S n fbg; we haveC0jT = CjT . As C 0(b) = C(a) [ feg, the assumption
becomesC0(x) � SC 0[T ℄ [ C(a) [ feg; thereforeC(x) � SC[T ℄ [ C(a) (ase 62 C 0(x)). By the induction hypothesis, fst(V (x)) vF fst[V [T ℄℄ t fst(V (a)). AsV (a) = (u; i), V 0(b) = (i; i) andu v i from InvariantI1, and alsoV (x) = V 0(x)
andV 0jT = V jT , we obtain fst(V 0(x)) v F fst[V 0[S℄℄.

Now we prove ((). Assume fst(V 0(x)) v F fst[V 0[S℄℄. Again we must consider two
cases:b 62 S in which case we have alsox 6= b; otherwise we would haveV 0(x) = V 0(b) =(i; i), and there is noy = (uy; iy) 2 S such thatV (b) v V 0(y) (by Invariant I2iy ki and by I1uy v iy, thusuy k i), which would contradict the induction hypothesis.

ThereforeC0(x) = C(x), C 0jS = CjS, V 0(x) = V (x) andV 0jS = V jS and by
the induction hypothesis it follows trivially thatC0(x) � SC 0[S℄.b 2 S The casex = b is trivial. Consideringx 6= b, let T = S n fbg. We have
fst(V 0(x)) v F fst[V 0[S℄℄ = F fst[V 0[T ℄℄t fst(V 0(b)), andV (x) = V 0(x), V 0jT =V jT . It follows fst(V (x)) v F fst[V [T ℄℄ t fst(V (a)); otherwise we would haves 2 fst(V (x)) such thatfsg v i, fsg 6v  in which case Invariant I3 would
not hold. By induction hypothesis,C0(x) = C(x) � SC[T ℄ [ C(a) and sinceC 0(b) = C(a) [ feg, it follows C0(x) � SC 0[T ℄ [ C 0(b) = SC 0[S℄.

fork (a). This case is trivial as from the definitions we have that both causal histories and
update components are preserved in this operation.
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join (a; b). From the definition of the operation, we haveC0() = C(a)[C(b), for some. First we prove ()). AssumeC0(x) � SC 0[S℄. We must consider two cases: 62 S in which caseC0jS = CjS, andV 0jS = V jS. If x 6= , we have alsoC0(x) =C(x) andV 0(x) = V (x); using the induction hypothesis, fst(V 0(x)) v F fst[V 0[S℄℄
follows trivially. If x = , thenC0(x) = C(a) [ C(b) � SC 0[S℄ = SC[S℄. From
the induction hypothesis, we have both fst(V (a)) vF fst[V [S℄℄ and fst(V (b)) vF

fst[V [S℄℄. Therefore, fst(V ()) = fst(V (a)) t fst(V (b)) vF fst[V [S℄℄. 2 S The casex =  is trivial. In the casex 6= , letT = Snfg. We haveC0(x) = C(x)
andC 0jT = CjT . From the assumption, asC0() = C(a)[C(b), we obtainC(x) �SC[T ℄ [ C(a) [ C(b); By the induction hypothesis: fst(V (x)) v F fst[V [T ℄℄ t
fst(V (a)) t fst(V (b)). As alsoV (x) = V 0(x), V 0jT = V jT , and fst(V 0()) =
fst(V (a)) t fst(V (b)), it follows that fst(V 0()) v F fst[V 0[S℄℄.

Now we prove ((). Assume fst(V 0(x)) v F fst[V 0[S℄℄. Again we must consider two
cases: 62 S in which caseV 0jS = V jS andC 0jS = CjS. If x 6= , we haveV 0(x) = V (x) andC 0(x) = C(x); using the induction hypothesis,C0(x) v SC 0[S℄ follows trivially.

If x =  we have fst(V 0(x)) = fst(V (a))tfst(V (b)) v F fst[V 0[S℄℄ = F fst[V [S℄℄.
From the induction hypothesis, we have bothC(a) �SC[S℄ andC(b) � SC[S℄.
Therefore,C0() = C(a) [C(b) � SC[S℄ = SC 0[S℄. 2 S The casex =  is trivial. In the casex 6= , letT = S nfg. We have fst(V 0(x)) vF

fst[V 0[S℄℄ = F
fst[V 0[T ℄℄ t fst(V 0()), andV (x) = V 0(x), V 0jT = V jT . It

follows fst(V (x)) v F fst[V [T ℄℄ t fst(V (a)) t fst(V (b)), and by the induction
hypothesis,C0(x) = C(x) � SC[T ℄[C(a)[C(b) = SC[T ℄[C 0() = SC 0[S℄.2
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