
A Lightweight Approach to NFS ReplicationRaquel Menezes� Carlos BaqueroyFrancisco MourazUniversidade do Minho/INESC,Departamento de Inform�atica,Campus de Gualtar,4700 Braga,PORTUGALfmesram,mescbm,fsmg@di.uminho.ptJune 17, 1994AbstractUnder normal circumstances, NFS provides transparent access toremote �le systems. Nevertheless, a failure on a single �le servercompromises the operation of all clients, and thus various replicationschemes have been devised to increase �le system availability.The approach described in this paper is lightweight in the sense thatit strives to make no changes to the NFS protocol nor to the standardNFS client and server code. Rather, a thin layer is introduced be-tween the clients and the original server daemons, which intercepts allNFS requests and propagates the updates to the replicas. Replicationis hidden under a primary-secondary update policy and an improvedautomounter. If the primary server fails, the automounters elect anew primary and remount the relevant �le systems. Secondary serverfailures remain unnoticed by the clients.A prototype version is operational and preliminary results underthe Andrew benchmark are presented. The �gures obtained show thatwhile read overhead is negligible, the performanceof updates is severelyimpaired by the naive synchronous multi-server write operation.�Financed by JNICT grant BM / 2646 / 92-IAyFinanced by JNICT grant BM / 3556 / 92-IAzSupported in part by JNICT PMCT 163/901

1 IntroductionWith the introduction of personal computers, individual users achieved alarge independence from centralized host systems. However, the consequentpartitioning of a unique �le system resulted in a major waste of valuableresources. It was usual to �nd identical data on unshared �le systems. Onthe other hand, although NFS has been quite successful in supporting datasharing on local area networks, it does so at the expense of reintroducingdependencies, often centralized ones. Once again, the failure of a single �leserver can block several client machines.This problem motivated the introduction of replication schemes, whichincrease the availability of a remote �le service with a moderate increasein processor and �le system resources. This is the case of the repNFSsystem (replicated NFS) described in this paper. It is aimed at providingNFS-compatible �le services in the presence of occasional server failures, butwith almost no changes to the underlying system software | both client andserver.The goal here is simplicity (hence its lightweight approach). Reducingthe number of changes to the original software is likely to ease the switchfrom NFS to repNFS, especially in heterogeneous networks. In additionto enhancing portability, it also means fewer administrator and end-usersurprises, such as unfamiliar behavior or error messages. Finally, simplicitywill hopefully lead to small overheads.2 Previous ApproachesSome systems achieve high availability by using a tailored �le system, suchas in Coda [?, ?], Locus [?] and Echo [?, ?]. This approach requires a con-siderable commitment to a specialized system. Others use the traditionalNFS client and provide new server daemons that enforce data replicationpolicies, namely the RNFS system [?] and its follow-up Deceit [?]. Whileonly introducing special NFS server daemons and showing a small interfer-ence with the underlying Unix system, the server code must still suit thespeci�c Unix implementations.A smaller operating system dependency can be achieved by providingthe necessary replication capabilities in a special layer over the normal NFSserver daemons. This approach is used in the repNFS system.2

3 repNFS system overviewThe repNFS system o�ers a highly available �le service by coordinating�le replication among an arbitrary number of machines and applying �lecoherence politics. This is achieved by a small extension to the NFS system,in the user level processes, thereby avoiding kernel changes.On the client side, we use AMD[?], an improved automounter that en-ables run-time server switches between a group of servers. The traditionalSun automounter is able to choose a server among some alternatives, butonce chosen it is committed to that server. In case of failure it cannotselect a di�erent one. By contrast, the AMD automounter constantly mon-itors the known servers, and once one server is found to be unavailable anya�ected mounts are removed and an alternative server is chosen for its re-placement. At the moment, the sequence of election among available serversis pre-de�ned by assigning di�erent weights to each server.On the servers side, the server that is elected by the AMD automounterbecomes the primary server. In addition to providing normal �le systemservice to the remote clients, it propagates relevant calls to the secondaryservers. Under normal circumstances, all servers are therefore synchronized.The basic idea in repNFS is to intercept the client NFS calls before theyreach the original NFS server daemons. This is accomplished by changingthe NFS server daemons RPC registration numbers, and registering our rep-NFS daemons instead. Although this approach requires the modi�cation ofthe NFS daemons, it is very localized, as it just requires the change of twonumbers (associated with mountd and nfsd). In our case we used the sourcecode of the publicly available Linux NFS daemons; it compiled cleanly un-der SunOS 4.1.3 and successfully replaced SunOS NFS daemons.Replicated servers for a speci�c �le system are organized in groups. Thisinformation is stored in a single text �le distributed to all the machines.Upon a client mount request, the selected server is responsible for satisfyingall the read requests and replicating all the update requests. It also managesthe necessary translation of �le handles among the replicated servers. Thereplicated update commands originated in the primary server are deliveredto its own NFS daemons and to those in the other servers, using the changedRPC registration number. Fortunately, NFS statistics collected through a5-month period in our department's main Unix server revealed that onlyroughly 10% of all NFS operations are updates. The rest are read requestsor can be satis�ed from the local cache.In the event of failure of one server, a subsequent respawn of the repNFS3

and NFS daemons will put them in a recovery mode that prevents assumingserver functions upon a client mount request. Normal mode of operationis resumed once they are updated by another server in the same group.If the failing server was the primary server | the one that receives theclients mount requests | the AMD automount daemon on the clients willcommute to the next alternative server in the group. The primary serveris also responsible for detecting among his group of servers those requiringrecovery. Should it be necessary, a separate recovery process is launched,the servers are updated and then returned to the normal mode of operation.If all servers in a group fail at the same time, as in a local power down,the detection of the server with the most recent changes is made by queryingall servers in that group, as every server keeps track of other servers' status.Only when that server is up and available (or by external administrativeprocedures) can the system be synchronized to the most recent state, andother servers switched to the normal operation mode.4 ArchitectureFigure ?? shows how the repNFS (rep.*) daemons couple with the NFSdaemons (rpc.*). The standard NFS services RPC registration numbers are0x100003 (2049) and 0x100005, the numbers 0x100040 and 0x100041 are thenew registration numbers for the NFS daemons. We can also see how theoperations are redirected to the appropriate daemons.The repNFS layer maintains a list of tuples that associate �le handlesdenoting the same �le/directory across di�erent servers, the primary key tothis list is the �le handle of the primary server. The complete �le name isalso stored, as it will be necessary in the context of a recovery procedure.Incoming NFS request are validated and the forwarded requests will havetheir �le handles properly translated.If, in the course of a request, a server unavailability is detected (by theprimary server), this fact is registered in a black list on persistent storageon the remaining servers of the group. These marks will be cleared oncethe machine state is recovered by a primary server. The marks also havean associated timestamp that enables the determination of the most recentmarks in case of global failure.When a server is rebooted, the black list on persistent storage can berecovered. However, the server will try �rst to obtain an up-to-date blacklist from an available server. When this is not possible, again due to a global4

rep.mountd

rpc.mountd

rep.nfsd

rpc.nfsd

rep.mountd

rpc.mountd

rep.mountdrep.nfsd

rpc.nfsd

rep.nfsd

rpc.mountd rpc.nfsd

mnt

write readmnt

write
read

mnt

write

write

mnt

kernel

CLIENT

SECONDARY
 SERVER

SECONDARY
 SERVER

PRIMARY SERVER

0x1000030x100005

0x1000400x100041

(port 2049)

Figure 1: Client servers interaction, in the presence of the repNFS layer.failure, the timestamps are compared and the correct marks determined anddisseminated to all the available servers.The recovery process is initiated on a primary server that detects theavailability of a server marked down. When this process, by constantlymonitoring the unavailable server, learns that it was just rebooted, it asksthe repNFS daemon to start logging all the updates directed to the newserver. The recovery process then compares the �le systems of the primaryserver and the one being recovered. Based on the �les timestamps, it is-sues appropriate operations to get the two servers almost synchronized (i.e.except for the operations that were requested in the meantime, which arein log). Whole �les are transferred. After this synchronization and someupdates of the �le handles tuples in the list, the recovery process issues the5

update requests that were logged, and �nally the recovered server resumesnormal mode of operation.5 ConclusionsThe �rst version of the repNFS system is operational. It was tested with theAndrew benchmark [?, ?], also used elsewhere to measureCoda andDeceitperformance. This test showed the relatively small overhead introduced byour approach to replication.The benchmark involved operations on a subtree of 125 �les totaling670kbytes in size. Five distinct phases named MakeDir, Copy, ScanDir,ReadAll and Make were timed. As noted above, the large majority of thecommon tra�c corresponds to phases that do not require update operations.With 1 to 3 replicated servers, the overhead imposed by repNFS rangesfrom 2.5% to 2.8% over the time taken by the native Sun NFS system. Thisshows that the overhead introduced by the additional level of indirectionand book-keeping operations is minimal.The average of all phases (including updates) already shows overheadswith respect to SUN NFS of 18%, 86% and 110%, for 1 to 3 replicatedservers, respectively. These �gures clearly indicate that the repNFS per-formance is dominated by the update policy of the alternative servers: wesimply use a sequence of synchronous RPC calls. Since server updates canproceed in parallel (e.g. using a multi-threaded layer), we estimate thatrepNFS overhead can be reduced to the 18% value, as the wait time forreplication will be conditioned only by the time of the slowest update. If thisis con�rmed, the system will then be tested in a production environment.The repNFS system is intended to be lightweight both in the overheadsintroduced and in the interference with the underlying operating system.This, and the fact that we solely rely on the widely accepted NFS protocol,leads to greater portability and adaptability to changes.References[1] A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart. The echodistributed �le system. Technical Report 111, Digital, Systems ResearchCenter, 130 Lytton Avenue, Palo Alto, September 1993.6

[2] M. Satyanarayanan et al. Coda: A highly available �le system for a dis-tributed workstation environment. IEEE Trans. Computers, 39(4):447{459, April 1990.[3] J. Kistler and M. Satyanarayanan. Disconnected operation in the coda�le system. ACM Transactions on Computer Systems, 10(1):3{25, Febru-ary 1992.[4] K. Marzullo and F. Schmuck. Supplying high availability with a standardnetwork �le system. In Eighth Intl. Conf. on Distributed ComputingSystems, pages 447{453, May 1988.[5] J. Pendry and N. Williams. Amd, The 4.4 BSD Automounter. ImperialCollege and University of California, March 1991.[6] G. J. Popek and B. J. Walken. The Locus Distributed System Architec-ture. MIT Press, 1985.[7] Alexander Siegel. Deceit architecture. June 1991.[8] G. Swart, A. Birrel, A. Hisgen, and T. Man. Availability in the echo �lesystem. Technical Report 112, Digital, Systems Research Center, 130Lytton Avenue, Palo Alto, August 1993.

7

