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Abstract. One-size-fits-all protocols are hard to achieve in Byzantine
fault tolerance (BFT). As an alternative, BFT users, e.g., enterprises,
need an easy and efficient method to choose the most convenient pro-
tocol that matches their preferences best. The various BFT protocols
that have been proposed so far differ significantly in their characteristics
and performance which makes choosing the ‘preferred’ protocol hard. In
addition, if the state of the deployed system is too fluctuating, then per-
haps using multiple protocols at once is needed; this requires a dynamic
selection mechanism to move from one protocol to another. In this pa-
per, we present the first BFT selection model and algorithm that can
be used to choose the most convenient protocol according to user pref-
erences. The selection algorithm applies some mathematical formulas to
make the selection process easy and automatic. The algorithm operates in
three modes: Static, Dynamic, and Heuristic. The Static mode addresses
the cases where a single protocol is needed; the Dynamic mode assumes
that the system conditions are quite fluctuating and thus requires run-
time decisions, and the Heuristic mode is similar to the Dynamic mode
but it uses additional heuristics to improve user choices. We give some
examples to describe how selection occurs. We show that our approach
is automated, easy, and yields reasonable results that match reality. To
the best of our knowledge, this is the first work that addresses selection
in BFT.

1 Introduction

Byzantine fault tolerance [1–3] (BFT) is a replication-based approach used to
maintain the resiliency of services, often state-machines, against Byzantine (i.e.,
arbitrary) faults. A BFT protocol is used to manipulate the communication
among system replicas under partial synchrony [4, 2], mainly, using a majority
consensus. A typical BFT protocol requires at least 3f+1 replicas to ensure
consistency among system replicas, where up to f replicas can be Byzantine [1,
3, 5] 1.

PBFT [3, 2] is considered the bedrock of practical BFT protocols. It main-
tains fault tolerance in the presence of Byzantine failures. Unfortunately, the

1 Some protocols like Q/U [6] require at least 5f+1; others use trusted components
with certain synchrony assumptions to reduce the minimum number of replicas to
2f+1, e.g., in [7–9].



performance of PBFT is not high. Consequently, the major concern of research
community was to boost up the performance of PBFT even if robustness is a
bit compromised; thus, they used speculation [10, 6, 11, 12] for this sake. The
argument is that stable services are often reliable, but they mostly suffer from
transient failures or attacks. Indeed, the perseverance of researchers to improve
PBFT yielded many BFT protocols with better reliability and performance
(e.g., [3, 10, 6, 11–17], etc); however, this needed some sacrifice in other prop-
erties. An upcoming protocol used to resolve some issues of its predecessors and,
unfortunately, introduced other new ones. For instance, Q/U [6] and Quorum [12]
exhibit the lowest latency and are fault scalable; however, this does not hold true
under contention. Zyzzyva [10] and Chain [12] achieve a high throughput, but
rather they suffer from expensive recovery. Ring [13] scales to a high number of
clients under contention but, in general, it exhibits a low performance. Aard-
vark [17], Prime [18], and Spinning [16] provide more robustness and tolerance
to DoS attacks, but they either remain vulnerable to some attacks, or require
more complex infrastructure and resources, etc.

On the other hand, these protocols differ in many characteristics. Table 1
depicts a sample of some properties of existing BFT protocols. In this table, we
consider seven different properties (i.e., the rows). Though the choice of these
properties is not axial, it gives an intuition about the differences in the charac-
teristics of these protocols. In this table, a property of value ‘Yes’ (resp., ‘No’)
means that the protocol has (resp., lacks) the corresponding property. The ta-
ble demonstrates that none of the compared protocols comprises all properties.
Intuitively, considering further properties and more protocols yields greater dis-
crepancy among them, and it becomes harder to recommend a single protocol
that fits the demands of a BFT user 2.

Therefore, the various BFT protocols and their discrepancy, in terms of both
characteristics and performance, leverage important facts. First, designing one-
size-fits-all protocols in BFT is very hard, and thus recommending one of them,
given BFT users preferences, can be an alternative. Second, it is hard for BFT
users, e.g., enterprises, to choose the protocol that suites their demands best

2 A ‘BFT user’ in our context is an enterprise that demands a BFT protocol to leverage
the resiliency of its deployed services.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain

Non-speculative Yes No No No No No No No

Tolerates Byzantine clients Yes Yes Yes Yes Yes Yes No Yes

Tolerates contention Yes Yes No Yes No Yes Yes Yes

No IP multicast Yes Yes No Yes No Yes Yes Yes

Recovery phase Yes Yes Yes Yes No Yes Yes No

Obfuscated No No Yes No Yes No Yes No

Requires ≤ 3f+1 replicas Yes Yes No Yes Yes Yes No Yes

Table 1: Discrepancy in the properties of a sample state of the art BFT protocols.



(with such number of protocols and their discrepancy), especially, since it is
unpractical to expect from a BFT user to acquire knowledge about all (or many)
existing protocols; therefore, the selection process should be automated. Finally,
a system with fluctuating states (i.e., conditions) requires to move dynamically
from one protocol to another as the underlying conditions change. Guerraoui et
al. introduced abortable BFT in [19, 12] that allows switching between protocols
in a static predefined order; however, no switching model or dynamic switching
policy was proposed until now.

In this paper, we introduce the first BFT selection model and algorithm
that automate and simplify the election process of the ‘preferred’ BFT protocol
among a set of candidate ones. The ‘preferred protocol’ is the one that matches
user preferences the most. An evaluation process is in charge of matching the
user preferences against the profiles of the nominated BFT protocols considering
both: reliability and performance. The elected protocol is the one that achieves
the highest evaluation score. The mechanism is automated via mathematical
matrices, and produces selections that are reasonable and close to reality. The
selection mechanism operates in three modes: Static, Dynamic, and Heuristic.

The Static mode allows BFT users to choose a single BFT protocol only once.
This mode is basically designed for systems that do not have too fluctuating
states. A possible application for this mode is to use in clouds, where BFT
can be sold as a service (and signed in the SLA contract) along with other
services or cloud resources. Some systems, however, may experience fluttering
conditions like variable contention or message payloads, etc. In this case, the
Static mode will not be a good solution since a chosen protocol might not fit the
new conditions. The Dynamic mode solves this issue. It combines a collection
of BFT protocols and switches between them, thus, adapting to the changes
of the underlying system state. Consequently, the ‘preferred’ protocol is always
polled for each system state. This yields optimal reliability and performance
among competing protocols. The Heuristic mode is similar to the Dynamic mode;
however, using predefined heuristics, this mode alters/optimizes BFT user (e.g.,
an enterprise) preferences to improve the selection process. This is useful since
BFT users do not have to know about all BFT protocols and their behavior as
the underlying conditions change.

We explore in this paper the selection model and algorithm. We describe how
the selection mechanism works accompanied with examples. The explanation
shows that the model is automated, simple to use, and gives results that are
close to reality. We focus on discussing the Static mode, and we describe the
Dynamic and Heuristic modes in brief. The latter modes will be demonstrated
in more details in another publication due to lack of space (since prediction
mechanisms are required in these modes to assess the performance of protocols
at runtime).

The rest of the paper is organized as follows. We introduce the selection
model and the selection algorithm, mainly the Static mode, in Sections 2 and 3,
respectively. The Dynamic and Heuristic modes are described briefly in Sec-
tions 4 and 5. Finally, we conclude our paper in Section 6.



2 BFT Selection Model

2.1 Notations and Terms

Before diving into the presentation of the selection model, we introduce some
terms and notations that will be used in this model. First, we call any property
that specifies the quality of a BFT protocol by Key Quality Indicator (KQI). A
KQI is composed of two types of indicators: Key Characteristic indicators (KCI),
and Key Performance Indicators (KPI). KCIs are those properties (with boolean
values) of a protocol that indicate its behavior, properties, requirements, e.g.,
number of replicas needed, tolerates malicious clients, obfuscated, etc. The value
of this type of indicators can strictly decide whether an evaluated protocol could
be selected or not. The KPIs are the properties that evaluate the performance
of the protocol like throughput, latency, scalability, etc. These values are usually
real numbers. KPIs are usually used to recommend a protocol over the others
but, in general, it could not rule out a protocol. In addition, we define the system
state by S = {si = (f1, f2, ..., fj , ..., fm)} where fj represents the jth impact
factor of the system state and m is the number of considered impact factors
by the system. Number of clients, request size, response size are examples of 3
impact factors. The definition and the discussion of concrete measurements of
KCIs, KPIs, and impact factors is out of the scope of this paper.

2.2 Selection Model

Consider a service provider (e.g., a cloud vendor) that offers n different BFT
protocols along with its provided services (e.g., signed in SLA contract). We
define the set of protocols ψ = {pi; where 1 ≤ i ≤ n}; where pi is one of the
BFT protocols. On the other hand, consider a selection model represented by:

Σ = {PROTOCOL,USER,MODE} (1)

where PROTOCOL represents the profile of a BFT protocol, USER repre-
sents the preferences of the user, and MODE represents the selection mode of
the system. Selection occurs through matching the PROTOCOL profile with the
USER preferences according to the mapping: f : Σ 7−→ ψ; this yields the ‘pre-
ferred’ protocol among all competing protocols. Here we introduce the definition
of the ‘preferred’ protocol:

Definition 1. A protocol pi with profile PROTOCOLi is called the ‘preferred’
protocol among a set of available protocols ψ with respect to a specific user with
preferences USERj if and only if according to an evaluation function e : Σ 7−→
<, e(PROTOCOLi, USERj,φ) is maximal.

The interpretation of PROTOCOL, USER, and MODE is as follows:
PROTOCOL. Each protocol is described in a profile of KQIs and default

weights: PROTOCOL={AP , AU , BP , BV }, where AP is a vector of a KCIs:



AP = (α1, α2, ..., αa), and AU represents the vector of the corresponding de-
fault weights of these KCIs: AU = (u1, u2, ..., ua). BP , however, is a vector of b
KPIs: BP = (β1, β2, ..., βb), and BV represents the vector of the corresponding
default weights of these KPIs: BV = (v1, v2, ..., vb).

USER. Each user defines his preferences in USER={U, V,M}, where U
(resp., V) is a vector of user defined weights corresponding to the KCIs (resp.,
KPIs) of the PROTOCOL’s preference AP (resp., BP ). M defines the mode
required by the user, i.e, either Dynamic, Static, or Heuristic.

MODE. The selection can occur in three different modes: Static, Dynamic,
or Heuristic. In the former, the selection occurs only once, i.e., at the time the
user requires a service; afterwards, the user does not change his selection (i.e.,
the used protocol) until the system is halted/rebooted and, thus a new selection
is provoked. On the other hand, the Dynamic mode makes the system react dy-
namically to the changes of the system state. This mode allows the system to
adapt to the upcoming conditions at runtime and hence the user will be using
multiple protocols at once. The Heuristic mode is similar to the Dynamic mode
but, in addition, it uses some heuristics to adjust the preferences of the user, es-
pecially V , to improve his choices in some cases. The heuristics are represented in
a vector W similar to V, but its values are modified as the system state changes
according to some predefined heuristics. The default mode is Static.

In the Static mode, AP and BP are predefined. They are calculated before
selection occurs, and even before the advertisement of the protocol is done. How-
ever, in the Dynamic and Heuristic modes, the values of BP change dynamically
while the system is running (e.g., using runtime predictions). When the impact
factors of the system change, a new dynamic evaluation and selection phase is
needed to move, probably, to a new protocol that performs better than the cur-
rent one under the new conditions. Due to the size limitations of this paper, we
explain the Static mode in details, and we address the other modes in a future
paper.

3 Selection Mechanism

3.1 Overview

The selection mechanism of the most convenient protocol according to the user
preferences, i.e., the preferred protocol, is achieved through computing the eval-
uation score E of the competing protocols, and then electing the protocol that
corresponds to the maximum score.

Selection (and evaluation) occurs only once in the Static mode, i.e., at de-
ployment time. Otherwise, the deployed service should be stopped and restarted
again, probably, using another selected protocol if the user preferences have
changed. For any state s, and protocol pi ∈ ψ that has an evaluation score Ei,s;
a protocol ppref is chosen according to Equation 2:

ppref = pi, s.t. Ei,s = max
1≤j≤n

Ej,s. (2)



If the mode of the system is Dynamic or Heuristic, the evaluation process
of protocols can take place at any instant in a dynamic way. The KPIs are
computed at runtime, and the system chooses the protocol that has the highest
evaluation score E among all protocols to launch it in the next phase, only if it
is worthy to switch (see more details in [20]).

In addition, to make computations easier, we define a new operator, i.e., the
OR product ∨̇.

Definition 1 Consider two boolean matrices A ∈ {0, 1}n×l, B ∈ {0, 1}l×m with
entries aij, and bij, respectively. The OR product A∨̇B is a matrix C = A∨̇B ∈
Nn×m, where its elements are defined by: cij =

∑m
k=1 aik ∨ bkj. The operator ∨

is the logical OR operator.

3.2 Evaluation of Protocols

As mentioned above, the selection of the preferred protocol is represented by
the mapping: f : Σ 7−→ ψ; where, f = ppref in Equation 2 is an example of
such mapping. The evaluation score E is calculated according to the formulas
introduced in Equation 3. In the following, we interpret and discuss these formu-
las. To make the idea easier to understand, we conduct some concrete examples
along with the discussion.

E = C ◦ P

where C =

⌊
1

a
. (A ∨̇ (en − U))

⌋
and P = B±.(V ◦W ).

(3)

3.2.1 The Evaluation Matrix E
The evaluation matrix E is the Schur product of the KCI matrix C and the

KPI matrix P. C represents the part of the evaluation that deals with the KCIs
of the profiles of the protocols; whereas, P represents the evaluation part that
deals with the KPIs. E is calculated after computing the values of C and P. If
the mode of the system is Dynamic or Heuristic, then E may change at runtime
as P changes.

3.2.2 The KCI Matrix C
The KCI matrix C =

⌊
1
a . (A ∨̇ (en − U))

⌋
matches the user preferences against

the profiles of different protocols. a represents the number of KCIs considered.
The operator b c is the absolute value operator (it is sometimes indicated by [
] too). The operator ∨̇ was defined in Definition 1. The matrices A, U, and en
are explained next.

Matrix A. This matrix represents the profiles of the protocols. The dimen-
sion of A is n × a; where n is the number of candidate protocols and a is the
number of KCIs considered in the evaluation. Each row of the matrix represents



a KCI vector profile of a protocol. For instance, consider the KCIs of the BFT
protocols depicted in Table 1. If a protocol has a certain property, i.e., has the
value ‘Yes’, it takes the value 1; otherwise, it lacks that property and thus takes
the value 0. Example 1 presents a sample matrix A. Each column (i.e., protocol)
in Table 1 represents a row in the matrix A. Note that, the values in the table are
not necessarily 100% accurate, but they are acceptable to conduct our examples.
Deciding the values of KCIs is out of the scope of this paper.

Matrix U . This is a vector matrix that represents the preferences of the
user. According to this matrix, the protocols that satisfy all user requirements
will be considered for selection (i.e., will continue the competition). On the con-
trary, the protocol that lacks a single property among those demanded by the
user will be out of selection. If the user did not define his preferences in U, the
default replacement AU provided by the system will be used (see Section 2.2).
U is a 1-column matrix (of dimension a× 1). In Example 1, we present a sample
matrix U. The values of this matrix correspond to the KCIs (Non-speculative,
Byzantine clients, Tolerates, Contention, No IP Multicast, Self-Recovery, Ob-
fuscated, Requires ≤ 3f + 1). This matrix tells that the user needs a protocol
that tolerates Byzantine clients and requires less than 3f+1 replicas, and that
he does not care for the other properties.

Note that, if the user chooses the vector U = ea, then any discrete matrix
has no effect on the selection, and the protocols are only selected regarding the
KPI matrix P. On the contrary, if U = 0a, then no protocol will be selected
unless it satisfies every property. In our case, none of the protocols satisfy this
condition, and thus none will be selected.

Matrix en. This is a column matrix of dimension a× 1. We use this matrix
is to invert the values of the matrix U to −U .

Computing C. After defining the matrices A and U, the computation
of C becomes straightforward. Example 1 describes how computation occurs.
Through analyzing Example 1, important notes can be drawn. First, notice that
the computation is automated using these formulas. Imagine the time and effort
needed to achieve the result of the matrix C by hand, especially when larger
problem scale is considered. Second, the selection depends, strictly, on the user
preferences and, thus, important protocols (e.g., Q/U and OBFT) can be evicted
out of competition if the user preferences are not matched.

Example 1

A =



1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1



←− PBFT
←− Zlight
←− Q/U
←− HQ
←− Quorum
←− Ring
←− OBFT
←− Chain

; and U =



0
1
0
0
0
0
1



←− Non− speculative
←− ToleratesByzantineclients
←− Toleratescontention
←− NoIPmulticast
←− Recoveryphase
←− Obfuscated
←− Requires ≤ 3f + 1replicas



D =
⌊
1
a
. (A ∨̇ (ea − U))

⌋

=


1
7
.





1 1 1 1 1 0 1
0 1 1 1 1 0 1
0 1 0 0 1 1 0
0 1 1 1 1 0 1
0 1 0 0 0 1 1
0 1 1 1 1 0 1
0 0 1 1 1 1 0
0 1 1 1 0 0 1


∨̇



1
1
1
1
1
1
1


−



0
1
0
0
0
0
1






=


1
7
.



7
7
6
7
7
7
5
7




=





1
1

6/7
1
1
1

5/7
1




=



1
1
0
1
1
1
0
1



3.2.3 The KPI Matrix P
This matrix is used to complete the selection process by considering the KPIs

of the protocols, seeking better performance. The KPI matrix P is defined in
the formula: P = B±.(V ◦W ). The matrices B, V, and W are discussed in the
following.

Matrices B and B±. B represents the KPI profiles of each protocol. Each
profile is presented in one row. B± is a normalized version of B. B and B± have
the same dimension n×b where n is the number of protocols and b is the number
of KPIs considered. The entries of the matrix B± are denoted by β± and are
calculated from the entries of B that are denoted by β.

The notion of β± KPIs. The β± values of matrix B± can be either β+,
or β−; they are normalized values of the entries of B (i.e., they belong to the
interval [0,1]). We say that a KPI has the property Tendency=‘high’, if a higher
value means better evaluation score E, e.g., throughput; this KPI is denoted by
β+. On the contrary, a KPI of type β− has the property Tendency=‘low’, e.g.,
latency, and a higher KPI value means worst evaluation score E.

Suppose the number of β-KPIs is b, then the matrix B can be divided into b
column matrices (i.e., vectors): B1, B2, Bi, ..., and Bb. Let the maximum (resp.,
minimum) value of the entries of each vector Bi be maxi (resp., mini). Then,
the entries of the matrix B± can be calculated as follows:

β+
ji = 1− maxi − βji

maxi −mini
;

β−
ji = 1− βji −mini

maxi −mini
;

where i ≤ b and j ≤ n.

(4)

Table 2 conveys an analytic evaluation of the studied protocols. Based on this
table, we obtain the KPI values β of Table 3 considering three KPIs: Through-
put, Latency, and Capacity (i.e., the estimated number of clients that can be
tolerated). The values of Table 3 are calculated as follows: Throughput=10/C,
and Latency=D. We use 10/C (and not 1/C) in throughput to show the effect of
normalization in the next sections. As for Capacity, we estimate this value based
on the message patterns of the protocols and some experiments we conducted



PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain

A 4 4 6 4 4 4 4 4

B 10 5 6 6 2 ≈8 2 3

C 4 3 2 4 2 ≈9 4 5

D 3 2 1 3 1 2 1 1

Table 2: Analytic evaluation for the state of the art BFT protocols tolerating f faults
using MACs for authentication, and assuming preferred optimization (without batch-
ing): A represents the number of replicas needed to tolerate f Byzantine replicas; B
represents the number of MAC operations on the bottleneck replica; C is the number
of one-way latencies needed for each request; and D represents the number of send/to
kernel calls on the bottleneck replica. Bold entries denote protocols with the lowest
known cost.

PBFT Zyzzyva Q/U HQ Quorum Ring OBFT Chain

Throughput (β+) 1 2 1.67 1.67 5 1.25 5 3.33

Latency (β−) 4 3 2 4 2 9 4 5

Capacity (β+) 6 7 2 5 1 10 7 8

Table 3: Analytical values of β+ and β− for the state of the art BFT protocols.

for this sake. Note that the values of Table 3 can be inaccurate; however, our
experience shows that they give a good approximation that is enough to explain
our idea. Filling this table is out of the scope of this paper, we rather keep it for
future work.

Next, we explain the calculation of B± from B in Example 2. Example 3
presents the two matrices B and B±. Each column in Table 3 represents a row
in the matrix B.

Example 2 The matrix B can be divided into 3 column matrices B1, B2, and
B3. The corresponding maxima and minima of these column matrices are as fol-
lows: (max1=5,min1=1), (max2=9, min2=2), (max3=10,min3=1). The calcu-
lation of β± is done according to the formulas in Equation 4. For instance, the
β± KPIs of PBFT are as follows:

– the throughput KPI (β+) of PBFT is: β+
11=(1− 5−1

5−1)=0.

– the latency KPI (β−) of PBFT is: β−
12=(1− 4−2

9−2)=0.71.

– the capacity KPI (β+) of PBFT is: β+
13=(1− 10−6

10−1)=0.55.

The β± values of the other protocols (i.e., other rows) are calculated in a similar
way, and finally we obtain the matrix B± in Example 3.

Matrix V . This matrix represents the KPI user preferences used to rec-
ommend a protocol. V is a column matrix of dimension b × 1, where b is the
number of KPIs considered in the evaluation. The entries of this matrix follow
two constraints: (1) all entries ∈ [0,10], and (2) their sum

∑b
i=1 vi1 = 10. Notice

that, this differs from the preferences of the discrete matrix U , since the values



of U ∈ {0, 1}. As an example of V , we suppose that the requirements of the user
are default, i.e., a protocol with acceptable throughput, latency, and capacity
(i.e., tolerates a high number of clients); thus the matrix becomes V=(3,3,4) as
depicted in Example 3.

Matrix W . This matrix is a column matrix used in the Heuristic mode
only. W is important to adjust the user preferences given in V by considering
the system state to improve his choice. Thus, it can happen that the user chooses
a ‘low’ weight for some KPI in V; however, according to the heuristics of the
system, the weight is modified by the corresponding value in W to ‘high’. In
some cases, this improves the performance of the system significantly. W is a
column matrix with the same dimension as V and its entries follow the same
constraints. Since we assume that the default mode is Static, then the entries of
W are equal to 1, i.e., W=eb, and the matrix has no effect on the evaluation.
We leave the discussion of W to Section 5.

Computing P . After establishing the matrices B±, V, and W, the calcula-
tion of P becomes straightforward as described in Example 3. The results show
the evaluation of the performance of the protocols by considering the three KPIs
throughput, latency, and capacity together. The result is reasonable as it con-
veys that OBFT, Zyzzyva, and Chain achieve the best scores according to the
current user preferences in V (recall that OBFT does not tolerate Byzantine
clients). The final evaluation of E, however, yields a different result. The reason
is that the KCI preferences of the user have to be taken into consideration.

Example 3

B± =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.78


;B± =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


;V =

 3
3
4

 ←− Throughput
←− Latency
←− Capacity

P = B±.(V ◦W )

=



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 ◦
 1

1
1

 =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 =



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57



3.3 The Preferred Protocol

To achieve the preferred protocol, the evaluation scores of matrix E should be
computed. This represents the overall evaluation of KCIs and KPIs together.



After calculating E, the ‘preferred’ protocol with respect to the user can be se-
lected using the Equation 2. Example 4 shows the calculation of E. For the sys-
tem state s = Current, and considering the matrices C and P computed above,
E8,Current = max(E)=6.57, and then ppref=p1 =Chain. Therfore, Chain is cho-
sen as preferred protocol to this user. This is expected since Chain achieves the
a highest throughput among other protocols as it requires the minimal number
of MAC operations. The Dynamic mode shows that this selection is not always
true in reality.

Example 4 E = C ◦ P =



1
1
0
1
1
1
0
1


◦



4.33
6.01
3.95
4.4
6

4.18
8.25
6.57


=



4.33
6.01

0
4.4
6

4.18
0

6.57



4 Dynamic Mode

The Dynamic mode is designed for systems that exhibit fluctuating states, and
thus the system needs to adapt to the new state, dynamically. In this mode, eval-
uation and selection can occur more than once, i.e., during the normal operation
of the system. The motivation behind the Dynamic mode can be noticed clearly
through observing the values of KPIs in the matrix B in Examples 3 and 4, where
Chain has been chosen as a preferred protocol. Indeed, it is known that Chain
achieves low throughput with few clients due to its long messaging pattern [12].
Thus, in case the system is supposed to low contention for a reasonable period
of time, it is more efficient to switch to another protocol. In the Static mode,
Chain could not be replaced by another protocol according to matrix E that is
statically assessed using Table 2. However, in the Dynamic mode, the KPIs in
the matrix B are modified at runtime which may yield another protocol that
has a better performance.

Due to lack of space, we explain the Dynamic mode briefly in this paper,
and we conduct a complete study in a future paper. The idea is to assess the
values of B on the fly. Our method uses the famous Support Vector Machines
for Regression [21] (SVR), a technique often used in Machine Learning. This
mechanism allows the prediction of the KPIs of the protocols as the system is
running. This technique leads to very accurate (up to 98%) KPI values which
is not the case in our current examples (as shown in Table 3). For example, our
experiements show that the throughput of Zyzzyva is very close to Chain in real
systems; however in our examples, the β values of Zyzzyva in Table 3 (and in
matrix B) are lower than Chain.



5 Heuristic Mode

The Heuristic mode is an advanced Dynamic mode. This mode uses some heuris-
tics to adjust the user preferences of the KPIs. This is very useful in the cases
where the user has no big experience or the system state is too fluctuating.
Similar to the Dynamic mode, the evaluation of protocols is done at runtime
and, probably, a new protocol is selected as the system state changes. Thus, the
KPIs (i.e., the entries of matrix B) are calculated dynamically during the normal
operation of the system.

However, in the Dynamic mode, it can happen that according to the cho-
sen KPI weights of the user (i.e., the entries of matrix V), a certain protocol
is recommended; however, under some specific conditions, other protocols can
perform better (thus, the choice is not the best). For instance, if the system is
deprived from contention, the latency becomes more important than throughput
and capacity, even if the user has given higher weights for these values. Another
example is when the system is jammed with requests from numerous clients. In
this case, the system should run the protocol that tolerates more clients even if
the client haas given low weights to the capacity KPI. The role of the heuris-
tics is to adjust the user preferences through using the weights (in matrix W)
as the system state changes. These weights can modify the weights already de-
fined by the user in V, but just temporarily, according to the underlying system
conditions. To explain the idea, we consider the two heuristic rules:

– Heuristic 1: In contention-free cases, Latency is more important than Through-
put and Capacity.

– Heuristic 2: Under contention, Capacity is more important than Throughput
and Latency.

In the case where the system is deprived from contention, Heuristic 1 can be
used, and is expressed in matrix W1. Heuristic 2 can be used if high contention
is imposed on the system, and is expressed in W2. Example 5 explores the power
of the Heuristic mode. Notice that, though the user requirements are almost
equivalent for all KPIs (i.e., throughput, latency, and capacity), the heuristics
can modify the weights defined in V through multiplying it by W. Consequently,
the preferred protocol can change according to these heuristics. Example 5 shows
that the preferred protocol in contention-free cases is Quorum which is very
reasonable as it exhibits the shortest messaging pattern among all protocols [12].
However, the preferred protocol under high contention becomes Chain. This
makes sense as Chain is deprived from messages interference under contention
due to its chain-messaging fashion [12].

W1 =

1
8
1

 ; and W2 =

2
1
7





Example 5

P1 =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 ◦
 1

8
1

 =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
24
4

 =



19.24
24.07
24.95
19.31

27
4.18
22.72
18.98



P2 =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 3
3
4

 ◦
 2

1
7

 =



0 0.71 0.55
0.25 0.86 0.67
0.17 1 0.11
0.17 0.71 0.44

1 1 0
0.06 0 1

1 0.71 0.67
0.58 0.57 0.89


.

 6
3
28

 =



17.53
22.84
7.1

15.47
9

28.36
26.89
30.11



E1 = C ◦ P =



1
1
0
1
1
1
0
1


◦



19.24
24.07
24.95
19.31

27
4.18
22.72
18.98


=



19.24
24.07

0
19.31

27
4.18

0
18.98


;E2 =



1
1
0
1
1
1
0
1


◦



17.53
22.84
7.1

15.47
9

28.36
26.89
30.11


=



17.53
22.84

0
15.47

9
28.36

0
30.11


The above examples are conducted without changing the values of KPIs in

matrix B (i.e., as if no Dynamic mode is chosen). Indeed, this makes the result a
bit biased. For example, under high contention, Ring achieves a higher through-
put than other protocols. However, the matrix B uses the throughput 0.06 of
Ring, which is very different from reality. The issue arises here since we esti-
mated the throughput of Ring according to the number of MAC authentications
needed which could not be true as the system state changes. This indicates that
when the KPIs in B are calculated dynamically, the results can be more accurate
and reasonable. We address this issue in a future paper due to size limitations.

6 Conclusion

We presented a BFT selection model and algorithm to improve the quality of
BFT services. The mechanism helps the user to choose the ‘preferred’ BFT
protocol according his preferences. This is useful in large services that provide
BFT as a service. For instance, cloud vendors can sell BFT services along with
their IaaS, PaaS, and AaaS SLA contracts. This can be achieved by proposing
our selection mechanism for the BFT user (e.g., an enterprise), and this user is
in charge of choosing his preferred protocol using this mechanism. This can be
implemented as a Web service.

Our mechanism tries to match the user preferences with the profiles of each
protocol through a set of mathematical formulas based on matrices. The formulas



are automated to choose the preferred protocol with respect to the demanding
user. Our model considers three modes: (1) Static mode: this is the default
mode where the user chooses a protocol only once; he can only change it when
the service is rebooted. (2) Dynamic mode: which allows the user to use more
than one protocol at once, where a running protocol can be stopped and another
protocol is launched after performing the evaluation and selection process. The
intuition is that the performance of protocols differ as the underlying system
state changes, and thus adapting to the new state is required. In this mode, the
performance measures (i.e., the KPIs) are calculated at runtime. (3) Heuristic
mode: this mode is similar to the Dynamic mode; however, it allows to modify
the weights (i.e., preferences) chosen by the user as the system state changes
using some predefined heuristics. This mode is very useful since some KPIs
are important under some conditions, but they become less important in other
situations. For example, throughput is very important in normal cases, however,
it is not basic in contention-free cases (in contrast to latency); thus, adjusting
the weights of the KPIs will have great impact on the overall performance.

This work introduces many open problems for future work. First, defining
a set of the most significant KCIs would be interesting. Second, establishing
an evaluation method to evaluate the Static mode is required. Third, in the
Dynamic mode, a prediction mechanism to assess the performance of protocols
should be established. Fourth, defining the impact factors that affect the perfor-
mance of protocols is crucial. Fifth, developing an event system that monitors
the system and sends events to the prediction system upon potential changes in
the underlying system is needed. Finally, defining a set of heuristics to be used
in the Heuristic mode would be interesting.
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