
1

Obfuscated BFT
Technical Report
IRIT/RT–2012-8–FR

May-2012

Ali Shoker∗, Maysam Yabandeh†, Rachid Guerraoui†, and Jean-Paul Bahsoun∗
∗University of Toulouse III, IRIT Lab.

Toulouse, France
firstName.lastName@irit.fr

†EPFL, LPD Lab.
Lausanne, Switzerland

firstName.lastName@epfl.ch

Abstract—A major assumption underlies the correctness of
Byzantine fault tolerant (BFT) protocols: failure independence.
Yet, state-of-the-art protocols typically rely on inter-replica
communication in order to preserve consistency, and they even
implicitly require replicas to store access information about each
other. This jeopardizes the assumption of independent failures,
since intruders can sneak from one replica to another and
compromises the entire service.

In this paper, we explore the idea of obfuscation in the BFT
context. We present a BFT protocol called OBFT, where the
replicas remain unaware of each other. OBFT assumes honest,
but possibly crash-prone clients. Beyond obfuscation, the protocol
has interesting scalability features for it imposes equivalent load
on replicas and distributes multi-cast and cryptographic tasks
among clients. We evaluate OBFT on an Emulab cluster with a
wide area topology and convey its scalability with respect to state
of the art BFT protocols.

Index Terms—Distributed Systems, Fault Tolerance, Obfusca-
tion, Byzantine Failures.

I. INTRODUCTION

Byzantine fault tolerance [1] (simply BFT) is a replica-
tion technique with the aim of tolerating arbitrary failures.
State-machine based services [2] are deployed on replicas
in partially synchronous systems [3]. At most one third of
the replicas are assumed to be faulty and that faults are
independent [4], [5].

Classical BFT protocols rely on inter-replica communication
to ensure one-copy semantics. This makes the protocols fragile
since the replicas must share some access information about
each others. Consequently, an attacker that breaks the security
walls of one replica can equally compromise the other replicas.
A Distributed DoS attack is a typical example of such threats.

The competition to improve the performance of BFT proto-
cols, perhaps, made BFT researchers take for granted BFT
assumptions, and they mostly discarded the enhancements
regarding independence of faults. One exception is Q/U [6]
that avoids interaction between replicas in the normal regime;
however upon failure detection, the protocol uses inter-replica
synchronization to recover.

In this paper, we propose a new BFT protocol, called
OBFT (Obfuscated BFT), avoiding any direct inter-replica
communication. No replica knows anything about the others.
The client plays a crucial role in OBFT and we do assume

clients can not be malicious; though they can fail by crashing.
In fact, if replicas do not communicate, a malicious client can
violate consistency. The client sends two different requests to
two distinct subsets of the replicas and behaves against each
subset as if there was a single request.

Despite the fact that clients are trusted, many challenges
make the protocol non-trivial. First, clients can still crash. To
ensure obfuscation, OBFT must tolerate a crashed client (with-
out inter-replica communication) otherwise unique request
ordering among replicas can be compromised by the other
clients. Second, upon failure detection, recovery is needed. In
OBFT, faulty replicas will be replaced by correct ones (this
might change the primary replica also). Thus, correct replicas
should preserve a unique configuration; and the clients should
be kept updated with these information too. Third, OBFT
handles contending clients that can force the copies of an
object on different replicas to skew.

We argue that this assumption makes sense for applications
where the customers are trusted members of the same orga-
nization; e.g., airline ticketing services that provide access to
different agencies. In an airline ticketing system, the com-
pany hosts its service on a replicas that belong to distinct
private/public cloud. It allows access for the ticketing agencies
around the globe. The ticketing agencies access the airline
service via their secured and trusted servers, which are viewed
as trusted clients by the BFT airline service.

Being mainly designed for WANs, OBFT looks like a good
candidate to be deployed on clouds of different vendors and
locations. Figure 1 conveys the idea behind our approach over
clouds: the clouds are oblivious to the replication procedure,
driven by the trusted client. An attacker hosted in one of
the clouds cannot obtain the address of other replicas by
compromising the replica inside that cloud or by monitoring
its traffic. In fact, an attacker will not even know about the
replication factor used by the client. The failure of a replica,
hence, remains independent from the failure of other replicas,
since the attacker could not locate the other replicas after
compromising one of them.

OBFT requires 3f+1 replicas in order to tolerate f Byzan-
tine faults. The client in OBFT communicates with 2f+1
Active replicas in its Speculative phase. The client sends a
request to a primary replica that executes it, assigns it a

2

Fig. 1. Obfuscated BFT Scheme.

sequence number, and sends it back to the client. The client
forwards the request to the other replicas that reply again to
the client after executing the request command. The client
accepts the operation if all responses match. Otherwise it
launches a Recovery phase on the 3f+1 replicas to exclude the
Suspicious replicas (either faulty or slow); and then resumes to
the Speculative phase acting on the new 2f+1 Active replicas
in the current view.

OBFT exhibits further interesting characteristics; namely,
it achieves a good scalability as compared to state of the art
protocols: (1) It reduces the load on replicas by pushing multi-
cast and expensive cryptographic operations off the clients, and
(2) it imposes almost identical load on the replicas.

We experimented OBFT on Emulab [7]. We setup 64-bit
Xeon machines with 2 GB of memory in a star topology: each
machine hosting a Debian OS. On such system, OBFT scales
to hundreds of clients, and its peak throughput significantly
exceeds that of state-of-the-art client-based protocols Q/U, and
Quorum 1. Also, we conduct some experiments to compare
OBFT with other primary-based protocols to convey the ob-
fuscation cost by using OBFT. TODO: Obfuscation overhead.

The rest of the paper is organized as follows. The back-
ground is recalled in Section II. Section III presents OBFT.
After presenting the evaluation results in Section IV, we
discuss some related work in Section V, and then we conclude
the paper in Section VI.

II. BACKGROUND

We recall here some basic BFT concepts and protocols.
Also we show that to ensure consistency, etiher replicas
communicate directly with each other or the client needs to
be trusted.

A. State-of-the-Art BFT Protocols

BFT protocols are replication-based solutions to the prob-
lem of tolerating arbitrary failures of software and hardware
components. A BFT protocol can ensure safety and progress
up to a subset of one third of faulty replicas. Some BFT
protocols, like Q/U [6], require more replicas.

1We do not count other BFT protocols here since they are not client-based,
and hence this hampers obfuscation.

(a) PBFT

(b) Zyzyyva

(c) Chain

(d) Quorum

Fig. 2. BFT protocols message patterns for f = 1.

Most BFT protocols (PBFT [5], Zyzzyva [8], and Chain [9])
rely on a special primary replica to order the requests of
the clients to ensure one-copy semantics. Other protocols,
like Q/U [6] and Quorum [9], have no such primary replica,
and avoid interactions among system replicas (unless for
some recovery phases). The different message patterns of the
protocols (for one faulty replica f) are depicted in Figure 2.
The message pattern of Q/U is similar to that of Quorum, with
5f + 1 replicas instead of 3f + 1.

In PBFT [5], the client sends the request to the primary
replica. The primary assigns a sequence number (an order) to
the request and forwards it to other replicas (Figure 2;(a)).
The replicas broadcast the received ordered request among
each other to ensure that the primary is correct (i.e., it sent
the same ordered request to all replicas). The client accepts
the replies if they match. In Zyzzyva [8], the client sends the
request only to the primary. However, as the other replicas
receive the request as well as its sequence number from the
primary, they immediately (i.e., speculatively) execute it and
send the reply to the client (Figure 2;(b)). The client accepts
the replies if they all match. Otherwise, either the primary or
some of the replicas are faulty. In this case, the first correct
client can detect that and demand changing the primary.

Chain [9] is a speculative protocol that is implemented
on the the Abstract platform [10]. Chain uses a primary to
avoid contention. All other replicas are ordered in a chain
fashion, and each one forwards the request to its successor.
The last replica in the chain, i.e., the tail, sends the reply back
to the client (Figure 2;(c)). Although this technique increases

3

the end-to-end delay, the throughput improves as the number
of MAC operations by each replica is close to one, i.e. the
theoretical lower bound. After detecting the failure, the whole
protocol aborts and the abort history is used to initialize
another instance of BFT protocol. Chain is designed for LAN
settings where the latencies between replicas are small. In
WANs, the protocol loses its good performance.

Quorum-based BFT protocols such as Q/U [6] do not use a
primary and the clients directly communicate with the replicas.
Q/U requires 5f + 1 replicas to tolerate f Byzantine faults.
Nevertheless, clients can only contact a preferred quorum (of
size 4f+1) for optimum performance. This could result in
outdated histories in some replicas, which induce the cost
of a synchronization phase to the protocol. In this phase, the
outdated replica requests the up-to-date history from f+1 other
replicas (to ensure that the history is not manipulated by some
faulty replicas). Thus, although Q/U avoids direct inter-replica
communication, it relies on replica interactions to repair from
failures whenever the same copies on different replicas skew.
Q/U has the advantage of optimal communication rounds in
non-contention cases. However, it becomes very complex, as
well as expensive, in the case of client request contention. As
a result, the protocol is not scalable to large number of clients,
where the probability of contention is very high.

Quorum [10] is another client-based BFT protocol built on
top of the Abstract platform [10] also. Similar to Q/U, Quorum
has the minimum latency among different protocols under no
contention. The protocol has the same message pattern as
Q/U in its trivial phase (Figure 2;(d)), however it requires
only 3f + 1 replicas to tolerate f Byzantine replicas (whereas
Q/U requires 5f + 1). Although the Abstract platform has
significantly simplified the design of Quorum, it suffers from
the same contention problem as Q/U. In the case of contention
or a Byzantine behavior, Quorum aborts and recovers to a
Backup Abstract [10].

Therefore, based on what have preceded, and as depicted in
Figure 2, we highlight some of the points that are interesting
to our work. First, most of the protocols are built on inter-
replica communication which can be dangerous in case one of
the replicas got attacked by an adversary (since other replicas
will be equally compromised). Second, most of the state of
the art protocols rely on a primary replica to order clients
requests, this is a simple way to ensure consistency, however, it
might cause a bottleneck on the primary replica that performs
a lot of cryptographic operations and multi-cast tasks. Third,
the majority of the protocols are optimized to work on LANs,
and they use multi-cast that is not yet supported in WANs, and
hence using unicast instead, drops down the good performance
of the protocol. In the paper, we show how can our approach
resolve these issues.

B. Independence of Failures

As mentioned above, independence of failures is a major
assumption for the correctness of the BFT protocols. However,
little works addressed this issue.

Diversity of System Components. [11] discussed how to
make intrusion fault systems by using BFT technology; and

tried to maintain some diversity in system components to
leverage the levels of independence. The authors defined two
concepts:

- Axis of diversity: a component of a system that may be
diversified (for example, the operating system).

- Degree of diversity: the number of choices available for a
specific axis of diversity (for example: Linux, Windows,...).

Therefore, the report [11] proposes to use different hard-
ware, platforms, operating systems, libraries... for different
replicas. The authors also suggest using multiple physical
facilities to avoid natural disasters and other localized physical
threats.

Fault Independence on Clouds. Another study in [12],
categorizes the different levels of failure independence on dif-
ferent setups in the cloud. The study shows that the protocols
that are sensitive to the replica-client delay, and loss, do not
perform well since the clients are typically connected via a
WAN. For availability zones, where the latency between the
replicas is higher, PBFT offers the best performance. How-
ever, Q/U performs the best when replicas are geographically
distributed, because of the absence of communication between
the replicas.

The authors conclude that: in order to achieve the highest
failure independence in the oblivious clouds setting, inter-
replica interaction should be avoided, and thus, the only
available options are: Q/U and Quorum.

III. DESIGN OF OBFT

A. Infrastructure

OBFT is designed to be deployed on WANs; preferably,
clouds of distinct providers, different platforms, and located
in geographically distinct locations around the universe. Server
farms like public/private clusters and Grids can also be
considered. Different clouds are connected via the Internet,
and they are not required to identify each other. System
replicas can be chosen from distinct cloud vendors seeking
high independence. Such an environment is crucial for OBFT
to maintain the BFT assumptions for independence of failures.

B. Model

Our system model complies with the traditional BFT model
(e.g., PBFT [5]). We assume a message-passing distributed
system using a fully connected network among nodes: clients
and servers. The network may (not infinitely) fail to deliver,
corrupt, delay, or reorder messages. Faulty replicas may either
behave arbitrarily, i.e., in a different way to their designed
purposes, or they just crash (benign faults). A strong adversary
coordinates faulty replicas to compromise the replicated ser-
vice. However, we assume the adversary cannot break crypto-
graphic techniques like: collision-resistant hashes, encryption,
and signatures.

Clients might fail by crashing, but we assume they do
not behave maliciously (they are typically part of the same
organization that delegates its IT to the cloud). Liveness,
however, is guaranteed only whenever the system is eventually
synchronous; i.e., during intervals in which messages reach
their correct destinations within some fixed worst case delay.

4

Fig. 3. Message diagram of OBFT running on three Active replicas and one
Passive.

C. Algorithm

OBFT is a BFT protocol that avoids fault dependency
among replicas and exhibits high performance in WANs.
It avoids any inter-replica interaction; replicas communicate
through the client instead. The protocol obtains a good perfor-
mance using speculation: requests are executed speculatively
on replicas. Cryptographic loads and requests multi-cast are
pushed towards the clients to reduce the overload on replicas
seeking better performance. OBFT uses Abstract platform [10]
(also known by Abortability) techniques to recover upon
failures.

OBFT, like most resilient BFT protocols, requires 3f+1
replicas to tolerate Byzantine replicas, where no more than
f replicas can be Byzantine. However, using 2f + 1 replicas
only at a time, it can sustain faults, but cannot ensure progress.
Thus, OBFT launches the speculative phase on 2f + 1 Active
replicas. Upon failure detection, it recovers by replacing the
Suspicious replicas (i.e., either faulty or slow) with correct
replicas from the f Passive ones; and then, resumes to the
speculative phase on a new Active set (in a new view). The
2f + 1 replicas are enough to collect a correct abort history.
At any time, the protocol distributes the replicas over three
sets:

- Active set: composed of 2f + 1 replicas (we call them
Active replicas); these replicas are used in the speculative
phase, speculatively.

- Passive set: composed of f idle replicas that are used as
recovery backups.

- Suspicious set: This is a virtual set, composed of f replicas
that are either faulty, or slow. In practice, it comprises the
Passive replicas during the speculative phase, and possibly, a
mixture of Active and Passive replicas during the recovery
phase.

Particularly, upon failure detection, i.e., in recovery phase,
the client identifies f Suspicious replicas, and replaces them
with another f replicas (possibly from the Passive set or from
the entire 3f + 1 replicas). Then, the new Active set becomes
correct again in the new view, and the process continues as
designed by launching the speculative phase.

Thus, OBFT algorithm consists of two main phases: a spec-
ulative phase, and a recovery phase. The messaging pattern of
the speculative phase is depicted in Figure 3. In this section,
we present the phases briefly (details are in later sections).

Speculative Phase. The communication pattern of OBFT
in a failure-free scenario is simple, and it is concerned with
the Active set only (2f + 1 replicas):

1) The client first sends its request to the primary.
2) The primary assigns a sequence number to the request,

executes it, and sends a reply back to the client along
with the assigned sequence number.

3) The client then sends the request together with the
assigned order (previously done by the primary) to the
remaining 2f replicas in the Active set.

4) Each non-primary replica executes the received requests
by order, and returns the replies to the client.

5) The client commits the request only if all the responses
of the Active replicas match; otherwise, the recovery
phase is launched.

Recovery Phase. This phase takes place using both: Passive
and Active sets (3f+1 replicas).

1) Once the timer of the client expires waiting for 2f + 1
matching replies, the client panics by sending a Panic
message to the Active replicas.

2) Replicas, upon receiving the Panic messages, stop exe-
cuting new requests and send an Abort message back to
client with their signed local histories.

3) The client constructs an Abort history collected from the
f + 1 matching replies (more details later), and sends
an INIT request to all replicas (3f + 1) along with the
abort history.

4) The replicas execute the INIT request (they append
it to their local histories), and reply to the client with
ACKinit.

5) As the client receives 2f+1 matching ACKinit replies,
it considers their corresponding replicas as Active, and
the remaining f replicas as Passive (those are Suspicious
replicas). The updated Active set becomes correct again
(in the next view), and the speculative phase is launched.

D. Algorithm Details

We describe here the algorithm. For simplicity, we assume
no contention on replicas, i.e., a single client is accessing the
service. Contention is addressed in later sections. (Because of
space limitations, some details, pseudo-code, and proofs are
given in the companion technical report [13]).

Client Role. To mitigate fault dependencies; OBFT clients
enroll important tasks. First, the client issues the request to-
wards the primary that assigns a unique sequence number. This
is crucial to maintain consistency among different replicas.
When the client receives the assigned reply from the primary,
it validates its contents by verifying the MAC. The client
takes the grip again to resend the signed request to the other
2f Active replicas, however this time, accompanied with the
sequence number. At that instant the client starts a timer,
waiting for the replies.

The final decision is also taken by the client. Upon receiving
2f + 1 replies from the replicas before the timer expires;
the client verifies their MACs and makes sure the replies
are matching. If so, the client considers the request complete.
Otherwise, the client launches a recovery phase by collecting
an abort history, cleaning the Active set from Suspicious
replicas, and switching to a new Active set in another view.

The additional load on the clients in OBFT is tolerable. In
fact, we are moving the load from one single machine (the
primary) towards a plenty of machines (the clients), and thus,

5

Fig. 4. An example of OBFT while aborting, where f = 1.

all clients share slices of the task, that is usually assigned to
the primary in other BFT protocols.

A Light Primary. OBFT pushes multi-cast and MAC
overload towards its clients. In contrast to traditional BFT
protocols, the primary in OBFT has almost the same load
as other replicas. The only additional task is assigning an
order to the requests which requires very simple computations.
On the other hand, the primary is deprived from any multi-
casting duties that can transform the primary to a bottleneck,
especially that individual MACs should be computed to every
replica. Instead, multi-cast is done by the client that orches-
trates communication among replicas as mentioned before.

Ordering. Excluding the primary, all replicas validate the
order of clients requests upon their receipt. They must verify
requests with MACs and sequence numbers, and then execute
them. The primary verifies MACs only. Replicas discard a
request rnew in case o(rlast) > o(rnew); where rnew and
rlast are the assigned orders of the current request and that
of the last executed request in the local history of the replica,
respectively. Each replica executes the request rnew if it has
already executed all requests rj where o(rj) < o(rnew).
Otherwise, request rnew is en-queued in a buffer, waiting
for the missing requests that fill the gap. Final replies are
authenticated via MACs and are sent by all replicas directly
to the client.

Independent Replicas. To maintain independence of faults
assumptions, obfuscation aspects requires the replicas to be
unknown and unaware of each other. Replicas usually, need to
communicate for two purposes: to ensure a total order (atomic)
request execution, and to validate the response correctness
(usually done by the primary). Thus, replicas in OBFT com-
municate with each other, however blindly, but guided by a
mediator, the client. As depicted in previous sections, OBFT
makes a unique total ordering possible through the client (that
delivers the sequence number from the primary to the other
replicas), though replicas cannot directly communicate. The
other issue, i.e., validating a response, is also performed by
the client upon checking whether all responses of the replicas
are matching. Notice that assuming no malicious clients is
essential for this fault independence to hold.

E. Recovery Phase

The Recovery phase is composed of three major steps:
aborting, collecting abort history, and cleaning Active set from
any Suspicious replicas.

Aborting. The client in OBFT considers a request as
complete if the received 2f+1 responses of the Active replicas

are matching, before the expiry of the timer. Otherwise, the
client stops sending requests and sends a Panic message to
all Active replicas. Each replica, upon receiving the Panic
message, stops receiving/executing requests, appends its local
history of committed requests to an Abort message, and sends
it to the client. The latter waits until it receives a sufficient
number of signed Abort messages, i.e., the first f + 1 non-
conflicting ones. The intuition is that it is necessary and
sufficient for the number of received correct commit histories
to exceed the number of faulty ones (since no more f replicas
can be Byzantine); knowing that faulty replicas might not
respond at all. Aborting is achieved as follows:

1) The client waits for the first f+1 local commit histories
to be received.

2) If no conflicting entries among the f + 1 received local
histories are found by the client, it stops receiving new
histories, and collects the f+1 messages in a ProofAH
set, that is used to form the abort history AH later.

3) Otherwise, if the client identified some commit histories
with conflicting entries it waits for new local histories
(since definitely there are correct clients that did not
respond yet). The loop continues from step 1 again.

Figure 4 presents an example where the first two histories
returned from replicas R1 and R2 are conflicting, consequently
the client has to wait for the history from replica R3. Thus, the
phase continues till f+1 non-conflicting local commit histories
are received by the client.

Building Abort History. A correct abort history is crucial
for safety. It preserves total ordering and consistency across
different switching phases (i.e., views). The abort history is
collected from the current Active set, to initialize the local
histories of the replicas on a new correct Active set. Building
the abort history AH is done by the client after the receipt of
f + 1 non-conflicting signed abort messages from different
replicas, collected in the ProofAH structure (as revealed
before). The steps can be summarized as follows:

1) The client generates a history h such that: h[j] equals
the value that appears at position j ≥ 1 of f+1 different
local histories (LHj), that appear in ProofAH .

2) If such a value does not exist for some position x, then
x is the last index of h.

3) Finally, AH is the longest prefix of h in which no request
appears twice (i.e., exclude duplicate entries).

The resulting abort history AH thus includes all the globally
committed client requests as well as some partially committed
ones in the previous view; for example, if the request is
received by at least f+1 replicas but not all of them (however

6

this does not harm correctness). AH is used, then, to initialize
the local histories of the new Active replicas (more details
later).

Eliminating Faulty Replicas. The client in OBFT attempts
to replace the faulty replicas in the Active set with correct ones
from the Passive set; this is done by detecting the Suspicious
replicas (faulty and slow ones) among the 3f+1 replicas. This
occurs as follows:

1) After collecting the abort history AH, the client sends
an INIT request (with AH appended) to the 3f + 1
replicas.

2) The replicas execute the INIT request, and append AH
to their local history (if it is not already done through
a previous view). Then, they reply to the client with
ACKinit.

3) The client verifies the received ACKinit messages, and
waits until it receives 2f + 1 matching ones.

4) The corresponding replicas to the first 2f + 1 matching
messages constitute the new Active set, and the remain-
ing f form the Passive set.

This process ensures eliminating the Suspicious replicas
from the Active set, and having a correct one in the next view.
Note that, all the exchanged messages among the replicas and
the clients are authenticated/verified with MACs.

F. Dynamic Switching

Dynamic switching requires 3f + 1 physical replicas where
only 2f + 1 of them are used at once as Active replicas. The
other Passive replicas, however, are used to replace the Active
replicas whenever failure occurs. This requires, sometimes,
changing the primary replica also.

Initializing control information on clients. Upon launch-
ing the system, default Active set and primary replica are
chosen. And since these are changing among the same physical
replicas across different views, it is crucial for the client
to know this control information before issuing its requests.
The control information is collected on replicas and clients
in the CONTROL structure, that is composed of: (1) The
Active set ACTIV E, (2) the primary P , and (3) the current
view number V IEWcurr. Hence, some control messages are
needed to deliver this information to any new coming client.
The client gets informed as follows:

1) The client sends a GETinfo message to all (3f + 1)
replicas.

2) Active replicas send an INFO message to the client
containing the control information: (1) The Active set
ACTIV E, (2) the primary P , and (3) the current view
number V IEWcurr.

3) The client waits until it receives f +1 matching INFO
messages from the replicas. Once done, it saves the
information of the INFO messages, updates its CON-
TROL, and starts sending its requests according to the
protocol. Otherwise, it starts again from step 1.

Control information after recovery. However, when re-
covery occurs, and some client c succeeds in aborting, sending
the INIT request, and identifying the Suspicious replicas,
the control structure CONTROL should change to exclude

faulty replicas. Thus, the replicas refuse to execute any request
until: a SETinfo control message (see later) is received from
c, or the timer expires. Instead, the replicas respond on any
request type with an INFO message (possibly with some
empty fields).

In the case where the timer of a replica expires, it releases
the lock, and accepts PANIC messages in the current view
to allow other clients to perform a successful recovery 2.
SETinfo is important after recovery by which replicas get
assigned a new CONTROL. To fill the SETinfo message, the
client determines the Active set, selects the first replica to be
the primary, and increments the view number.

If CONTROL on the replicas is already updated by the
SETinfo message, the INFO reply message will be complete
and informative enough for the clients (upon receiving f + 1
matching such messages). Otherwise, if the replicas are still
waiting the SETinfo message from c, the ACTIVE and
the primary replica P fields in the INFO message will be
empty, in contrast to the V IEWcurr field that allows the
clients to retry sending Panic messages in the current view
successfully; since replicas do not accept any requests from
other views. OBFT handles SETinfo messages according to
the usual communication pattern in Figure 3 (the receiving
replica knows from the SETinfo message itself, whether it
is included in the Active set, it is a new primary, or it is a
Passive replica).

G. Handling Contention

Views Perspective. Requests of any type are required to
comprise the current view number V IEWcurr. In addition,
any request received by the replicas is validated by verifying
its MACs and the V IEWcurr field, before being executed.
Any request that belongs to a different view, gets rejected.

Panicking. The speculative phase in OBFT is deprived from
contention problems as long as all requests that belong to
the current view are ordered by the primary. However, upon
failure, the clients launch the recovery phase. The recovery
phase allows any client to panic, and to collect the abort
history. Clients keep retransmitting PANIC messages until
they receive an enough number (i.e., f + 1) of matching local
histories, or a filled INFO messages from the replicas.

Initializing. When any client (one or more) creates the abort
history, it sends INIT message to all the replicas (3f + 1) to
initialize their local histories and to update their view number
V IEWcurr. Under contention, different replicas might receive
different INIT requests from different clients, and hence none
will be completed since no client will be able to collect enough
ACKinit from 2f + 1 replicas. Thus the clients follow an
exponential back-off scheme that offers more chance that all
replicas execute the same INIT requests sent by some client
c. This ends up by replicas, having consistent local histories
in the new view.

Control Information. Afterwords, the replicas will be
waiting for the SETinfo request from the same client c.
During this period, and to maintain non-conflicting messages
from contending clients, any request will be discarded by the

2Recall that clients in OBFT can not be Byzantine, but they may crash.

7

replicas, that reply instead, by an INFO message (where its
Active set and primary replica fields are still empty) containing
the V IEWcurr that is needed by the clients while retrying
their future request attempts. The step ends with a unique
Active set and a primary replica across different views once
the replicas receive the SETinfo message from the client c.
After this stage, any request from the clients will be handled as
designed if it belongs to this view, otherwise, replicas respond
with an INFO message (where no fields are empty this time)
to update those clients with the new control information. By
this way, the clients can send requests as usual in the new
view.

IV. EVALUATION

In this section, we evaluate OBFT experimentally, and we
provide some analytical evaluation as compared with state of
the art protocols. Then, we focus on comparing OBFT with
the obfuscated protocols Q/U and Quorum, being the main
objective of the paper.

A. Experimental Setting

Our experiments are performed on 43 64-bit Xeon machines
with 2 GB of memory employed on Emulab [7] cluster. No
virtualization is used, thus simulating WAN environment on
real machines. Each replica runs on a separate machine, and
the clients are scattered over 40 machines (at least 3 client
processes per machine). All machines are connected via a star
topology. The maximum bandwidth of the network is set to
100Mb 3. The end-to-end (E2E) delay is set to 20 ms and
60 ms depending on the setup (these represents a fast and an
ordinary WAN speed, respectively).

For each setting, we have run four a/b benchmark4 (same
benchmark used in PBFT [5]) experiments using different
payload sizes: 0/0, 0/1, 1/0, and 1/1. Without a payload, the
size of the request and the reply messages are less than 100
bytes. The fault factor, f , is equal to one.

Multi-cast in PBFT, Zyzzyva, and Quorum is disabled (since
they are deployed on WAN). Q/U experiments include a single
difference where we needed six replicas (5f+1; for f = 1)
instead of 3f + 1, as this is the number required by Q/U [6]
to operate.

B. Analytical Evaluation

Before proceeding with the experimental evaluation, we pro-
vide an analytical evaluation for OBFT as compared with the
state of the art BFT protocols. The comparison is summarized
in Table I. The results convey the interesting characteristics
of OBFT as it achieves the lowest cost among BFT protocols
in most cases (the bold entries in Table I). In the table, we
consider most protocols optimizations (as in [8]), however,
we exclude batching.

Row A in Table I shows that the number of replicas needed
by OBFT to tolerate f Byzantine faults is minimal among

3The actual bandwidth that a client can use over a WAN is far below this
limit.

4In a/b benchmarks, a and b correspond to request size, and response size
in KB, respectively.

PBFT Zyzzyva Q/U Quorum OBFT
A 3f+1 3f+1 5f+1 3f+1 3f+1
B 2f+1 2f+1 5f+1 3f+1 2f+1
C 2+8f 2+3f 2+4f 2 2
D 4 3 2 2 4
E 3 2 1 1 1

TABLE I
Analytic evaluation for the state of the art BFT protocols tolerating f faults,

using MACs for authentication, and assuming preferred optimization
(without batching): A represents the number of replicas needed to tolerate f

Byzantine replicas; B is similar to A but excluding witness and backup
replicas. C represents the number of MAC operations on the bottleneck

replica. D is the number of one-way latencies needed for each request. E
represents the number of send/to kernel calls on the bottleneck replica. Bold

entries denote protocols with the lowest known cost.

 50

 100

 150

 200

 250

 300

 350

 400

 10 100 1000 10000

L
at

en
cy

 (
m

s)

Throughput (op/s)

OBFT
PBFT

Zyzzyva
Quorum

Q/U

Fig. 5. Clients scalability of state of the art protocols for 0/0 benchmark in
WAN setting, E2E=20ms.

the protocols. Similarly, the cost is minimal for OBFT in the
speculative phase, since it communicates with only 2f + 1
replicas out of 3f + 1 (Row B in Table I). Moreover, Row C
shows the number of MAC operations performed by the CPU
of the bottleneck replica. The table points out that OBFT again
has the minimal value 2, since any replica verifies the request
only once, and authenticates the reply once.

Latency in OBFT (Row D of Table I) is not optimal as
compared to other protocols; in fact, OBFT sacrifices this
latency to maintain obfuscation. Finally, the number of send
(or sendto) calls to the system kernel is minimal on the
bottleneck replica in OBFT. This is clear since every replica
in the protocol sends the reply only once (Figure 3).

Thus, this analytical study shows that despite the latency
cost that we sell to maintain independence of failures, OBFT
characteristics appear to be equal or superior to that of the
state of the art BFT protocols.

C. Obfuscation Cost

To leverage the fault tolerance of BFT protocols by main-
lining obfuscation, it is worthy to pay some additional costs.
The above analysis shows that the latency of OBFT is higher
(Zyzzyva, Q/U, and Quorum) or equal (PBFT) to state of the
art BFT protocols. Consequently, this impacts the throughput

8

 50

 100

 150

 200

 250

 300

 10 100 1000 10000

L
at

en
cy

 (
m

s)

Throughput (op/s)

OBFT
PBFT

Zyzzyva
Quorum

Q/U

Fig. 6. Clients scalability of state of the art protocols for 1/0 benchmark in
WAN setting, E2E=20ms.

of OBFT also. Despite this, OBFT maintains a good client
scalability. Figures 5 and 6 convey the client scalability of
OBFT with the state of the art protocols.

Figure 5 shows the scalability on the 0/0 benchmark, where
end-to-end latency (E2E) is 20ms (we use logarithmic scale
so that PBFT and Q/U can be observed). As the figure shows,
Zyzzyva achieves the best scalability. It scales up to 400 clients
reaching a peak throughput of 6365 op/s (for more than 400
clients, the protocol drops almost half of the packets), whereas,
OBFT scales to 280 clients with a peak throughput equals to
2193 op/s. This is reasonable because of the simple three-delay
message pattern of Zyzzyva (Figure 2). PBFT also, scales to
200 clients, however, its throughput is almost half that of
OBFT (980 op/s); perhaps this refers to the extensive load
of messaging on the replicas that PBFT imposes.

Q/U scales to 60 clients, scoring a throughput of 537 op/s.
Beyond this point, the protocol suffers from the recovery
phases due to contention. Note that, the latency of Q/U is
lower than what is shown on Figures 5 and 6; we got these
numbers, however, since we are running three client processes
per machine, which greatly impact Q/U. Quorum scales to 80
clients only. We expected this, since Quorum is designed to
work on LANs using multi-cast, which we disable in our WAN
setting.

On the 1/0 benchmark as plotted in Figure 6, the scalability
is quite similar for OBFT and Quorum (240 clients, and 60
clients, respectively), and no significant changes in throughput
are noticed. However, Zyzzyva’s scalability drops to 320
clients. Also, its throughput gets affected by the large payload
(1KB) of the requests, and its peak performance degrades to
3332 op/s. We explain this to be caused by the bottleneck on
the primary replica in Zyzzyva as requests get larger. OBFT
is less affected by this since the operations required from the
primary are negligible (multi-cast and cryptography).

Q/U and PBFT are the most affected protocols by increasing
the size of the requests. As shown in Figure 6, Q/U scales
to 30 clients only. The throughput, after that, starts to drop
dramatically; again because of the recovery overhead under
contention. However, PBFT scales to 120 clients in 1/0 bench-

mark. We refer this to the large number of messaging needed
by the protocol (Figure 2).

D. Obfuscated Protocols Comparison

Since this paper is concerned mainly with obfuscation; we
exclude PBFT and Zyzzyva in later sections, and we stick
with Q/U and Quorum being client-based and can maintain
obfuscation.

OBFT can be efficiently setup on WANs; preferably, on
cumulus clouds, scattered on distant locations, and maybe
from different vendors, to ensure higher levels of failure
independence. In addition, OBFT acquires a good performance
through various characteristics: (1) it needs only 3f+1 replicas
to tolerate f arbitrary faults (though speculative case commu-
nication is done on 2f + 1 Active replicas only at a time). (2)
It relies on the clients to multi-cast request and not on replicas.
(3) It pushes the cryptographic operations towards the client.

Assigning such jobs to the clients of OBFT does not impact
their performance greatly, as we are moving the load away
from the primary, i.e. a single machine, and distributing it on
the clients (multiple machines), and thus, the clients will share
small slices of additional work. OBFT design is important
since, in any replication service, the replicas are, basically,
the most critical part of the service.

Q/U [6], requires at least 5f+1 replicas to tolerate f
Byzantine faults. Additional fees shall be paid with larger
f . Despite the use of preferred quorums (of size 4f+1),
Q/U provides less throughput than OBFT. This also makes
Q/U more susceptible to failures under which its performance
drops dramatically. This becomes lucid when the number
of clients increases; partly because Q/U does not use a
primary to order requests as OBFT does. In addition, although
Q/U is client-based, it enforces inter-replica interaction upon
failures, which makes replica failures more dependent. Note
that, as mentioned above, Q/U can overcome this by not
using preferred quorums, and hence, reducing its performance
further. Regarding fault scalability, Q/U exhibited [6] great
performance over agreement-based protocols; we expect Q/U
to dominate OBFT in this sense, though we did not conduct
experiments for f > 1.

Quorum [9] also shares some aspects with Q/U; mostly
since it is client-based and involves only two communica-
tion phases. However, Quorum also suffers from interference
under contention; this makes it hard to deploy on reliable
contended services. In addition, Quorum is designed to multi-
cast requests to the replicas. Of course, multi-cast in not yet
supported on WANs, that is why we disable this feature (in
fact, this causes some drop in performance). Quorum operates
only in free-failure environment, and needs a recovery phase
upon failure that might violate obfuscation.

1) Recovery Cost: Similar to Quorum, OBFT is inherently
speculative and perform well only in best cases, i.e., when
there are no faults. Under failures the protocol should abort
to another Active set, and this imposes additional costs repre-
sented by switching delays. Switching delays are proportional
to the end-to-end latency (E2E) of the WAN (assuming the
execution time of the operation on the CPU is negligible

9

Protocol Q/U Quorum OBFT
Message delays 2 2 4

Switching Message delays - 4 4
Latency for E2E=20ms 41ms 40ms 80ms
Latency for E2E=60ms 121ms 120ms 240ms

TABLE II
Micro-benchmark latencies on WANs; where the end-to-end latency (E2E)

is 20ms, and 60ms.

as compared to E2E). Table II (second row) conveys the
number of message latencies needed to switch. The table
shows that Quorum and OBFT need, in best case, four message
delays to switch (i.e., the sum of PANIC, ABORT , INIT ,
and ACKinit latencies). The cost of switching can then be
approximated by 4 ∗ E2E. We do not measure recovery cost
for Q/U, since we assume using no preferred quorums (to
ensure obfuscation).

2) Micro-benchmark: We present here the results on a
benchmark, where only one client is accessing the replicated
service. Table II displays the latency results (using 0/0 bench-
mark) for OBFT, Quorum, and Q/U by setting the E2E to 20
ms, and 60 ms.

When the E2E latency is set to 20 ms, OBFT achieves
a latency of 80 ms; Q/U on the other hand reaches half
this latency as depicted in Table II. We roughly relate this
difference to the number of communication round-trips needed
to complete an operation (as shown in the same table). In fact,
OBFT needs a couple of round-trip messages; one message is
sent to the primary to establish request ordering, and another
is sent to communicate with other replicas. Q/U, however,
achieves this latency since it completes the operation in a
single round-trip instead of two.

Again, since Quorum (like Q/U) needs only two one-way
communication phases to commit a request in a speculative
way, they share same performance in a contention-free envi-
ronment, the results are shown clearly in Table II.

Similar results are obtained upon changing the E2E latency
to 60 ms. As shown on Table II, the latency of OBFT becomes
240 ms. This was expected because the large E2E latency
becomes the main impacting factor in the service. The table
also conveys the fact that Q/U again achieves half this latency.
As mentioned above, this can be demonstrated by the number
of round-trip messages in the protocols.

Analyzing the above numbers, we notice that the latency
can be, roughly, obtained by the number of round-trips needed
for one request multiplied by the E2E latency. This means
that the system delay is the major factor overhead in the
communication; the operation execution and MAC handling
times are almost negligible as compared to the E2E latency.
Notice that, although Q/U client needs to contact at least 5
replicas (i.e., the preferred quorum [6]), this does not impact
the latency as one might expect, and hence keeps Q/U leading
OBFT in such experiments.

3) Peak Throughput: To experiment the peak throughput,
we used up to 300 concurrent clients on WAN setting with
E2E=20ms. Since the results are close, we do not mention the
results for E2E=60ms. The throughput achieved by OBFT is

 0

 500

 1000

 1500

 2000

 2500

0/0 0/1 1/0 1/1

T
h
ro

u
g
h
p
u
t

(o
p
/s

)

Benchmark

OBFT

Quorum
Q/U

Fig. 7. Peak throughput for WAN setting with E2E=20ms.

 0

 50

 100

 150

 200

 250

 300

0/0 0/1 1/0 1/1

N
u
m

b
e
r

o
f

C
li

e
n
ts

Benchmark

OBFT
Quorum

Q/U

Fig. 8. Client scalability for WAN setting where E2E=20ms.

very interesting and inverts the leadership with Q/U which it
exhibits in contention-free cases. As depicted in Figure 7, our
protocol achieves a peak throughput of 2230 op/s for the 0/0
benchmark, the peak throughput of the other benchmarks (0/1,
1/0, and 1/1) are quite near as shown on the figure.

On the other hand, Q/U could not exceed 828 op/s through-
put on the 0/0 benchmark (Figure 7). This peak throughput
drops further as the request size gets larger. The benchmarks
1/0 and 1/1 of Q/U score no more 176 op/s and 127 op/s,
respectively. These results can be justified since Q/U is not
resilient to a high number of clients, and this forces the
protocol to load excessive Repair and Sync phases, and the
client backoff scheme. On the contrary to OBFT, that relies
on the primary to order requests, and thus, avoids request
collisions while accessing replicas, and pushes multi-cast and
encryption overhead towards clients.

Quorum also gets affected by the request size more than
OBFT. Figure 7 shows that the peak throughput of Quorum
drops to a ratio of 1/2 whenever requests of 1KB are used (1/0
and 1/1 benchmarks). Despite this, in 0/0 benchmark, Quorum
achieves a peak throughput close to that of OBFT; i.e., 1970
op/s. This refers to the simple message pattern of Quorum,

10

 0

 400

 800

 1200

 1600

 2000

 10 100

T
h
ro

u
g
h
p
u
t

(o
p
/s

)

Number of Clients

OBFT

Q/U
Quorum

Fig. 9. Throughput of 0/0 benchmark, on WAN setting where E2E=20ms.

since it avoids the recovery phases needed by Q/U.
4) Scalability: Yet in another measure, i.e., client scala-

bility, OBFT dominates Q/U and Quorum (Figure 8). In the
experiments, the results of Q/U started to fluctuate for more
than 30 clients. The protocol ceased to work for a number of
clients greater than 30 or 80, depending on the experiment.
Again, larger request sizes have a significant impact on the
scalability of Q/U as the benchmarks 1/0 and 1/1 in Figure 8
show.

By observing Figure 8, we notice that Quorum also could
not scale for more than 80 clients for the 0/0 benchmark, and
60 clients whenever larger requests are used. In fact, we do
not expect more from Quorum, since it is designed to work on
LAN and uses multi-cast that we disable in our WAN setting.

However, OBFT experiments finished successfully up to 240
simultaneous clients in all benchmarks (Figure 8). OBFT can
handle this high number of clients since it avoids collisions
among requests by having a primary replica to assign sequence
numbers, and to distribute the load of multi-cast among the
clients to avoid replica bottlenecks.

5) Throughput: Figure 9 plots the throughput results of
OBFT for E2E=20ms (we use a logarithmic scale to better
observe Q/U results). The x and y axes represent the number
of clients and the throughput, respectively. The number of
clients vary between 0 and 300 (starting with 3 client threads
per machine). As depicted in the figure, the increase in the
number of clients raises up the throughput of OBFT to 2230
op/s (for 240 clients). Then, as the number of clients increases,
the throughput starts to degrade gradually.

As depicted in Figure 9, Quorum exhibits a better through-
put than OBFT up to 80 clients. This is reasonable due
to its simple message pattern. However, Quorum can not
operate beyond that point because of the contention, since
we use unicast instead of multi-cast in WANs. However, the
throughput of Q/U remains below that of OBFT as shown in
Figure 9, we refer this to high contention on Q/U as we use
three client threads per machine.

Figure 10 conveys the results of 1/0 benchmark when setting
the E2E latency to 20ms. The results are similar to 0/0
benchmark in Figure 9 for OBFT. However the throughput

 0

 400

 800

 1200

 1600

 2000

 10 100

T
h
ro

u
g
h
p
u
t

(o
p
/s

)

Number of Clients

OBFT

Q/U
Quorum

Fig. 10. Throughput of 1/0 benchmark, on WAN setting where E2E=20ms.

of Quorum and Q/U almost drops to a ratio of 1/2. We might
explain this by the short message pattern of Q/U and Quorum
(Figure 2) as compared to OBFT (Figure 3), where the delays
in OBFT reduce the load on the replicas in WAN setting since
the clients send requests through two phases; rather than Q/U
and Quorum, that multi-cast the request directly to all replicas,
in a single phase.

11

V. RELATED WORK

Lamport introduced the problem of Byzantine generals
in [1]. Then, he introduced the state machine replication
approach using consensus in [2]. Liskov et al. [5] developed
the first BFT protocol (PBFT) that can handle faults in asyn-
chronous systems. The idea was similar to Paxos [14] (with
benign faults) that uses views with a primary and backups to
tolerate benign faults in an asynchronous system. However,
PBFT had more complex message pattern and cryptographic
authentication. In addition, PBFT required 3f + 1 replicas to
tolerate f Byzantine faults ([4], [5]).

In the same work, i.e. in [5], the authors defined the model
basics of BFT. In addition to asynchrony, they assumed inde-
pendent node failures. They proposed that this can be achieved
by using different operating systems, implementation (N-
version programming), configuration, etc. Later works ([6],
[15], [8], [9],...) then appeared to enhance the performance of
PBFT. However, they all assumed the same proposition, i.e.,
independence of failures, and they did not work to enhance
the protocols in such directions.

Few client-based protocols, such as Q/U [6] and Quo-
rum [10] are then developed. These can maintain independence
of failure via obfuscation (discarding the recovery phases need
by Q/U). However, these notoriously do not scale with the
number of clients. This is mainly because they are vulnerable
to contention between multiple client requests, which makes
the state of the replicas inconsistent. Upon detecting an incon-
sistency, the protocol has to call a recovery procedure to syn-
chronize the replica states. Our tool OBFT has the same client-
based design to ensure obfuscation among replicas; however,
it benefits from a primary replica to handle contention, and
hence, it is scalable to hundreds of clients.

Admitting that a single BFT protocol cannot fit all require-
ments, the notion of abortability [9] has recently been pro-
posed to enable switching between BFT protocols whenever
one could perform better, e.g., because of a change in the
operating environment. Thus the authors develop an Abstract
platform to make use of this abortability notion and to switch
between protocols, when the load on the system changes.
OBFT utilizes abortability by switching between Active sets:
after a failure is detected, the protocol replaces the suspicious
replicas by correct ones from the Passive set, and uses the
updated Active set again in the next view.

Thus, few are the works that addressed independence of
faults. [11] discussed how to make intrusion fault systems by
using BFT technology. The study discussed how to maintain
independence of faults by introducing diversity in system
components, i.e., different hardware, software, operating sys-
tems,... The authors in [12] then categorized the different levels
of failure independence on clouds, and proposed to deploy
BFT services on oblivious clouds of different vendors and
scattered in different geographical locations. In fact, OBFT
is designed to work under such environments to leverage the
levels of independence among replicas.

VI. CONCLUSION

This paper represents a step forward to leverage the reliabil-
ity aspects of BFT replication. To respect the BFT assumptions

of independence of failures, we introduce obfuscation among
replicas so that they remain completely unaware of each other.
We maintain obfuscation by using OBFT, a new client-based
protocol deprived from any inter-replica communication, and
designed mainly for WANs.

The design of OBFT allows to deploy BFT services on
WANs, and especially clouds, to benefit from the versatility
of the hardware, software, platforms... offered by different
cloud vendors. In addition, OBFT can exploit the geographical
distribution of the clouds around the globe to avoid natural
disasters, and regional power failures...

Moreover, OBFT achieves a good performance as compared
to state of the art client-based protocols (that can maintain
obfuscation). Two simple design decisions are behind OBFT
performance. First, we make use of a primary replica, avoid-
ing contention between multiple client requests, to assign a
sequence number to every request and thus ensuring one-copy
semantics among all replicas. Second, we push the load of
encrypting and multi-casting a request from the replicas, which
are the bottleneck of agreement, to the issuing clients. Our
experimental results show that OBFT scales to hundreds of
clients in a WAN, while the throughput of state of the art BFT
protocols quickly drops as the number of clients increases.

With few clients, the latency of OBFT, however, is higher
than that of client-based protocols such as Q/U and Quo-
rum [6], [9].

OBFT can be deployed on applications where customers are
trusted members of the same organization; like airline systems
with many agencies. This is needed since clients in OBFT
are assumed not to be malicious, but they can crash. Thus,
further work is needed to improve OBFT. We see that the
most important point is to find a way to make OBFT tolerate
malicious clients also.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, pp. 382–401, 1982.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[3] C. Dwork and N. Lynch, “Stockmeyer l: Consensus in the presence of
partial synchrony,” Journal of The ACM, 1988.

[4] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM (JACM), vol. 32, no. 4, pp. 824–840,
1985.

[5] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, 2002.

[6] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” SIGOPS Oper.
Syst. Rev., vol. 39, no. 5, pp. 59–74, 2005.

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 255–270, 2002.

[8] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, pp. 45–58, 2007.

[9] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next
700 bft protocols,” in EuroSys ’10: Proceedings of the 5th European
conference on Computer systems. New York, NY, USA: ACM, 2010,
pp. 363–376.

[10] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700
bft protocol,” EPFL, Tech. Rep. LPD-REPORT-2008-008, 2008.

12

[11] Obelheiro Rafael R., Bessani Alysson Neves, Lung Lau Cheuk,
Correia Miguel, “How practical are intrusion-tolerant distributed
systems?” Department of Informatics, University of Lisbon, Tech. Rep.
LPD-REPORT-2010-10, 2006. [Online]. Available: http://hdl.handle.
net/10455/2992

[12] R. Guerraoui and M. Yabandeh, “Independent faults in the cloud,” in
LADIS ’10: Proceedings of the 4th International Workshop on Large
Scale Distributed Systems and Middleware. New York, NY, USA:
ACM, 2010, pp. 12–17.

[13] R. Guerraoui, M. Yabandeh, A. Shoker, and J. Bahsoun, “Obfuscating
bft,” EPFL, Tech. Rep. LPD-REPORT-2011-5, 2011.

[14] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, pp. 133–169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[15] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: a hybrid quorum protocol for byzantine fault tolerance,”
in OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation. Berkeley, CA, USA: USENIX Association,
2006, pp. 177–190.

APPENDIX

In this Appendix, we explain OBFT further. We present a
pseudo-code for the main functions of the protocol describing
the two phases: speculative phase and the recovery phase; in
both client and server sides. Also, we provide some correctness
and progress proofs.

A. Notations

We denote the set of all (3f+1) replicas by Σ. At any time
2f+1 replicas are in the Active set, and the remaining f are in
the Passive set. In addition, we denote the set of suspicious
replicas (all faulty replicas, and possibly some correct ones)
by Suspicious.

A message m sent by process p to the process q and
authenticated with a MAC is denoted by 〈m〉µp,q . In addition,
we denote the digest of the message m by D(m). All processes
are assumed to own the public key of every other process.

Notations for message fields and client/replica local vari-
ables used in OBFT are shown in Figure 11. To help distin-
guish clients requests for the same operation o, we assume that
client c calls Invoke(req, c), where req = 〈o, tc, c, V 〉, tc is
a unique, monotonically increasing clients time-stamp, and V
is the view number. A replica r executes req by appending it
to LH .

c - client ID
P - the primary replica
me - the current replica
tc - local time-stamp at client c
tj [c] - the highest tc seen by replica j
o - operation invoked by the client
LHi - a local history at replica i
sn - sequence number at replicas
AH - abort history
V - view number

Fig. 11. Message fields and process local variables

B. OBFT Pseudo-code

The pseudo-code of OBFT is presented in Figure 12. It
includes the major functions of the client and the replicas.
Some retransmission code and minor details are sometimes
needed; however, we do not include this in the pseudo-code
for clarity.

13

Fig. 12. Pseudo-code of OBFT

Pseudo 1 Join(c)
1: {Sending to all}
2: m← 〈 GET-INFO 〉µc,Σ
3: Send(m,i) forall i ∈ Σ
4: R← φ
5: if Timer1() 6= φ then {Until Timer1 expires}
6: while Receive(INFO,i) do {∀ i ∈ Σ}
7: if vMAC(INFO) ∧ Match(INFO,R) then
8: R← R ∪{INFO}
9: end if

10: if ‖R‖= f+1 then
11: break
12: end if
13: end while
14: {Update CONTROL info}
15: CONTROL← INFO.control
16: else {Timer1 expiry}
17: Join(c)
18: end if

Pseudo 2 Invoke(req,c)
1: {Update Control Info.}
2: Join(c)
3: {Sending to Primary P}
4: m← 〈REQ, req, V 〉µc,P
5: Send(m,P)
6: if Timer1() 6= φ then {Until Timer1 expires}
7: Receive(REP,P) ∧ vMAC(REP)
8: if REP.sn=NULL then {empty sequence #}
9: Recover(req,c)

10: end if
11: else {Timer1 expiry}
12: Recover(req,c)
13: end if
14: {Sending to the rest Active replicas}
15: for i ∈ Active \ {P} do {Exclude P}
16: m← 〈REQ, req, sn, V 〉µc,i
17: Send(m, i)
18: end for
19: R← φ
20: R← R ∪{REP}
21: if Timer2() 6= φ then {Until Timer2 expires}
22: while Receive(REP,i) do {∀i ∈ Active \ {P}}
23: if vMAC(REP) ∧ Match(REP,R) then
24: R← R ∪{REP}
25: end if
26: if ‖R‖= 2f+1 then
27: break
28: end if
29: end while
30: commit(req)
31: else {Timer2 expiry}
32: Recover(req,c)
33: end if

Pseudo 3 Init(AH,c,V)
1: m← 〈INIT,AH, V 〉µc,Σ
2: send(m,i) forall i ∈ Σ
3: R← φ
4: if Timer1() 6= φ then {Until Timer1 expires}
5: while Receive(ACK,i) do {∀ i ∈ Σ}
6: if vMAC(ACK) ∧ Match(ACK,R) then
7: R← R ∪{ACK}
8: end if
9: if ‖R‖= 2f+1 then

10: break
11: end if
12: end while
13: {Eliminate Suspicious replicas and choose a primary}
14: CONTROL.P← head(R)
15: CONTROL.ACTIVE← {R}
16: CONTROL.PASSIVE← Σ\{R}
17: else {Timer1 expiry}
18: return False
19: end if

Pseudo 4 Recover(req,c)
1: Proof← Panic(req,c)
2: AH← AbortHistory(Proof)
3: CONTROL.VIEW← CONTROL.VIEW+1
4: init← Init(AH,c,CONTROL.VIEW)
5: if init!=TRUE then
6: Recover(req,c)
7: end if
8: SetInfo(CONTROL,c)
9: {Recovery success}

10: Invoke(req,c)

Pseudo 5 SetInfo(CONTROL,c)
1: m← 〈 SET-INFO,CONTROL,V 〉µc,Active
2: send(m,i) forall i ∈ Active
3: R← φ
4: if Timer1() 6= φ then {Until Timer1 expires}
5: while Receive(INFO,i) do {∀ i ∈ Active}
6: if vMAC(INFO) ∧ Match(INFO,R) ∧ full(INFO.control)

then
7: R← R ∪{INFO}
8: end if
9: if ‖R‖= 2f+1 then

10: break
11: end if
12: end while
13: {set CONTROL success}
14: else {Timer1 expiry}
15: Recover()
16: end if

Pseudo 6 AbortHistory(Proof)
1: {Build abort history}
2: tmp← head(Proof)
3: for all i: 1 to Proof.size do
4: for all LH ∈ Proof do
5: if ‖tmp[i] = LH[i]‖ ≥ f + 1 then
6: h[i]← tmp[i]
7: else
8: break
9: end if

10: end for
11: end for
12: {Remove duplicates}
13: for all i: 1 to h.size do
14: for all j: i to h.size do
15: if h[i] 6= h[j] then
16: AH ← h[i]
17: else
18: return AH
19: end if
20: end for
21: end for
22: return AH

Pseudo 7 Panic(req,c)
1: {Send PANIC to Active replicas}
2: m← 〈 PANIC,req,c,V 〉µc,Active
3: Send(m,i) ∀i ∈ Active
4: R← φ
5: if Timer1() 6= φ then {Until Timer1 expires}
6: while Receive(ABORT,i) do {∀ i ∈ Active}
7: if vMAC(ABORT) ∧ nonConflict(ABORT,R) then
8: R← R ∪{ABORT}
9: end if

10: if ‖R‖= f+1 then
11: break
12: end if
13: end while
14: {Collected f+1 non conflicting histories}
15: Proof← R
16: return Proof
17: else {Timer1 expiry}
18: return Panic(req,c)
19: end if

Pseudo 8 Server()
1: while True do
2: Receive(m,c)
3: Handle(m,c)
4: end while

Pseudo 9 Handle(m,c)
1: {Handling client requests}
2: if ¬ vMAC(m) ∨m.tc ≤ ti[c] then {request is not valid}
3: return False
4: end if
5: if m.V 6= CONTROL.VIEW then
6: r← 〈 INFO,CONTROL 〉µme,c
7: send(r,c)
8: end if
9: if m.type=REQ then {Request message}

10: if me is P then {if Primary}
11: sn← sn+1
12: Exec(m) execute request, append to LH
13: r← 〈 REP,rep,D(LH),sn,V 〉µme,c
14: Send(r,c)
15: else {not a Primary}
16: if m.sn= sn+1 then
17: sn← m.sn
18: Exec(m) execute request, append to LH
19: r← 〈 REP,rep,D(LH),sn,V 〉µme,c
20: Send(r,c)
21: end if
22: end if
23: else if m.type=PANIC then {Panic message}
24: r← 〈 ABORT,D(LH),V 〉µme,c
25: Send(r,c)
26: else if m.type=INIT then {Init message}
27: if LH = φ then {Empty local history}
28: Exec(m) ∀ m ∈ AH
29: LH← AH
30: C← c
31: lock ← True receive requests lock until timer expires or

receive SET-INFO from C
32: end if
33: r← 〈 ACK,D(LH),V 〉µme,c
34: Send(r,c)
35: else if m.type=SET-INFO then {Update CONTROL}
36: if c=C then {same client that sent INIT}
37: CONTROL← m.control
38: lock← False
39: r← 〈 INFO,CONTROL,V 〉µme,c
40: Send(r,c)
41: end if
42: else if m.type=GET-INFO then {Get CONTROL}
43: {CONTROL can be filled or not}
44: r← 〈 INFO,CONTROL,V 〉µme,c
45: Send(r,c)
46: end if
47: return True

C. Commit Certificate

Proposition. Any completed request by the client has been
committed by the Active replicas.

Proof. The client in OBFT completes a request only if it
has received 2f + 1 matching responses including the local
history digests D(LHi) of the Active replicas (Pseudo 2, lines:
23 to 26), among which f + 1 replicas are correct. Recall
that, local histories (LHi) are uniquely defined sequences
of requests, which represent the replica state at any time.
Then, since a correct replica appends the new request (upon

execution) to its local history before sending the LH digest
(Exec method in Pseudo 9), then these digests represent an
indication for the client certifying that its request has been
committed successfully.

D. Validity

Proposition. Any request that is found in the commit/abort
history must have been sent by some client.

Proof. A client commits a request only if all the received
commit histories (LH) of the Active replicas are matching

14

(Pseudo 2, lines: 26 to 30). Thus, at least f+1 correct replicas
must have executed the request, and appended it to LH . On the
other hand, a replica executes (i.e., appends to LH) a request
message REQ (or INIT message) only after validating its
sender identity; that should be some client. In addition, to
avoid duplicates in LH , a replica always maintains and checks
the last client time-stamp ti[c] (Pseudo 9, line 2).

As for the abort history AH , since it is collected from
f + 1 matching LH (Pseudo 6); thus, all requests in the AH
are sent by some client in a previous view (follows from the
previous paragraph). As for AH duplicates, they are removed
by construction (Pseudo 6, lines: 13 to 21).

E. Termination

Proposition. Aborting from the Specultive phase eventu-
ally occurs.

Proof. OBFT runs the Speculative phase until: (1) the client
detects non matching responses from replicas or (2) its timer
expires. In both cases, the client should abort the Speculative
phase by sending a PANIC messages to all the Active
replicas (for progress, it keeps sending such messages until
receiving the needed ABORT messages). The replicas should
eventually receive the PANIC messages (according to our
assumption that sent messages are not infinitely delayed or
dropped by the network). Thus, at least f + 1 correct replicas
should send ABORT messages to the client (Pseudo 7, line
10). When the client (eventually) receives f + 1 matching
ABORT messages, it aborts the request (since OBFT clients
can not be malicious).

F. Lemma 1

Denote the state of the local history of replica ri upon
appending request req to LHi by LHreq

i . Then, for any
message m sent by ri upon appending to LHi with history
LHm

i , LHreq
i is a prefix of LHm

i . In other words, LHreq
i

remains a prefix of LHi forever.
Proof. Let the current state LHi of some replica ri be

LHreq
i . A correct replica ri modifies its local history LHi

by sequentially appending any new request m to LHi; in
particular, appending to its prefix LHreq

i (Exec function in
Pseudo 9). Hence, ∀ new request m, LHreq

i remains a prefix
of LHm

i forever.

G. Commit Ordering

Proposition. Commit histories can not contain requests in
conflicting orders.

Proof. Assume, by contradiction, that there are two com-
mitted requests req and req′ 6= req (sent by two clients c
and c′, respectively) with different commit histories hreq and
hreq′ , such that, neither is the prefix of the other. Since a
correct client commits a request only when it receives 2f + 1
identical LH digests from replicas (Pseudo 2; line 26); then,
there must be a correct replica rj that sent D(hreq) to c and
D(hreq′) to c′ such that hreq is not a prefix of hreq′ nor vice
versa. A contradiction with Lemma 1.

H. Abort Ordering

Proposition. For any committed request req, every commit
history hreq is a prefix of any abort history AH .

Proof. Considering a single replica ri; suppose that ∃ a
request req and ABORT message m such that hreq is not
a prefix of LHm

i . Since req is already committed, then it
must be included in 2f + 1 local histories from the Active
replicas including ri (Pseudo 2; line 26). But ri does not send
ABORT messages unless after it stops executing new requests
in the current view; thus ri executed req before m. Hence, by
Lemma 1, hreq is a prefix of LHm

i . On the other hand, since
an abort history is constructed from f+1 matching LH digests
sent by correct replicas (Pseudo 6), then hreq must be a prefix
to all these LH , i.e., to the abort history AH .

I. Init Ordering

Proposition. INIT history is a prefix for any commit/abort
history.

Proof. Every correct process must initialize its local history
with some valid Init history before sending any message
(Pseudo 9, lines: 26 to 34). Since any common prefix CP
of all valid Init histories is a prefix of every single Init
history I , thus CP is a prefix for every local history sent by a
correct replica. Init ordering for commit histories immediately
follows.

In the case of abort histories; f+1 correct ABORT mes-
sages are received by a client upon aborting a request. The
ABORT message contains the replicas LH (Pseudo 9, line 24)
that have CP as a prefix. Thus, CP is a prefix of any abort
history AH.

J. Getting Control Info.

Proposition. Any new client gets the correct CONTROL
information from replicas.

Proof. New clients get CONTROL information from repli-
cas to know the ACTIVE replicas, the primary P, and the
current view number. This is done through sending a GET-
INFO message to all replicas (Pseudo 1). The client accepts
the CONTROL information only if it got f+1 matching INFO
messages from replicas. This is enough since at most f replicas
can be Byzantine. Thus new clients always receive correct
CONTROL info.

K. Control Info. Uniqueness

Proposition. At any time, all correct replicas have a unique
CONTROL Info.

Proof. Upon launching the service, a pre-defined CON-
TROL information is set by default on all replicas (where at
least 2f+1 of them are correct). Then, during the Speculative
phase, the replicas discard any SET-INFO message from
clients, hence, preserving the uniqueness of the CONTROL
information.

Upon failure detection, at least one client c panics and
collects the abort history AH. The client c sends an INIT
message to all replicas (Pseudo 3). Any replica that receives
the INIT request executes it and refuses to accept any request,

15

except a SET-INFO request from the same client c containing
the new CONTROL information set by c 5 (Pseudo 9, lines:
26 to 41). The replicas reply back with an INFO message to
the client that approves the SET-INFO upon receiving 2f+1
matching INFO messages, or it panics again (Pseudo 5, lines:
5 to 15). Therefore, assuming clients can not be Byzantine, all
correct replicas will have the unique CONTROL information
sent by c.

L. Eliminating Byzantine Replicas

Proposition. Recovery phase ends with eliminating Byzan-
tine replicas and replacing them with correct ones.

Proof. Upon failure detection, and panic, at least on client c
sends INIT request to all replicas (Pseudo 7). Once the replicas
receive INIT request from the same client c, they respond
with an ACK message containing the digests of their local
histories. The client only accepts ACK if it receives 2f+1
matching such messages (Pseudo 3, lines: 9 to 16). Thus, at
that same moment, the replicas that correspond to these ACK
messages are correct (Active), and the remaining f replicas
are considered Suspicious (comprises all Byzantine replicas
and, probably, some correct ones).

M. Progress

Proposition. Clients eventually receive replies to their re-
quests.

Proof. Recall: we assume that the network can not delay
messages infinitely. Thus, we suppose any sent messages to
reach its destination within a maximum delay δ′. Since the
system is partially synchronous then we choose some unknown
δ ≥ δ′.

In the Speculative phase of OBFT, clients wait for re-
sponses from replicas twice: (1) waiting for the primary
(Timer1, Pseudo 2, line 6), and then (2) waiting for the
other Active replicas (Timer2, Pseudo 2, line 21). Adjusting
Timer1 and Timer2 for a duration of 2δ+t (i.e, the delay for
a complete request round trip + the expected execution time at
replicas) ensures that the client will eventually receive 2f+1
replies from the Active replicas. Otherwise, the Recovery
phase is invoked.

In the Recovery phase, the client sends a PANIC mes-
sage and waits for f+1 non-conflicting ABORT messages
(Pseudo 7). Again by setting the timer of the client to 2δ+t,
receiving the f+1 messages is ensured (the client keeps re-
transmitting PANIC messages until it receives the f+1 ABORT
messages). This must occur since at least f+1 Active replicas
must be correct. After that the client sends the INIT request
along with the abort history AH and waits for 2f+1 matching
ACK messages. A timer in this case can be adjusted to 2δ+ t
also to ensure progress. This represents the time for the INIT
messages to reach the replicas + handling time at replicas +
the delay of ACK messages from the replicas to the client
(however this is not shown in the pseudo-code).

As the client c receives 2f+1 matching ACK messages,
it sends the SET-INFO message and starts a timer waiting

5There is some back-off scheme here such that all replicas can receive INIT
request from the same client.

for INFO messages from replicas (set to 2δ+t) as above. The
replicas however, and after receiving the INIT requests, they
decline to accept any request unless the SET-INIT request from
the same client c. For that, they adjust a timer to 2δ+t, waiting
for a round-trip delay (corresponding to the delay of ACK
and SET-INFO messages) and some processing time t for the
client to define the new CONTROL information. By the time
the client receives 2f+1 INFO messages (acknowledgements
for SET-INFO) from the replicas, the new Speculative phase
starts in a new view.

