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Abstract—Notable Byzantine Fault Tolerant protocols have
been designed so far. These protocols are often evaluated
on simple benchmarks, and few times on NFS systems. On
the contrary, studies that addressed the behavior of BFT
on large back-ends, like Directories, are few. We believe that
studying such systems is crucial for practice community due
to their popularity. In this paper, we integrate BFT with
OpenLDAP Directory. We introduce the design of the integrated
system, that we call BFT-LDAP. Then, we study its behavior
accompanied with some useful observations. In addition, we
discuss the cost overhead of this integration. Our approach
ensures that OpenLDAP legacy code remains completely intact,
and that the integration with BFT is straightforward using
APIs. Moreover, we convey that the additional performance
cost of BFT-LDAP is negligible as compared to that of stand-
alone OpenLDAP. We conducted our experiments on Emulab.
The experiments indicate that the performance discrepancy
of BFT-LDAP is negligible whenever different state-of-the-art
BFT protocols are used. Other experiments demonstrate that a
little sacrifice in throughput (less than 10%) is needed in order
to leverage the resiliency of OpenLDAP against Byzantine faults
(i.e., through applying BFT).

Keywords-distributed systems; Byzantine fault tolerance;
directories; OpenLDAP;

I. INTRODUCTION

Byzantine fault tolerance [1] (BFT) is a replication ap-

proach used to leverage the resiliency of state-machines

against Byzantine (arbitrary) faults. A BFT protocol is used

to manipulate the communication among system replicas

under partial synchrony [2]. A BFT protocol requires at least

3f+1 replicas to ensure consistency among system replicas,

where at most f replicas can be Byzantine [1], [3], [4].

During the last decade, research community introduced

several BFT solutions [3], [5], [6], [7], [8], [9] that are

fairly convincing. Thus, we believe that BFT technology has

become mature enough to be deployed in prctice. Neverthe-

less, perhaps for comparison reasons, most of these protocols

were evaluated on simple increment-value benchmarks (or

on NFS systems, sometimes); and few studies analyzed the

behavior of BFT on larger back-end systems like Databases,

Directories, Web applications, etc.

Directories [10] are intended to store and organize data

in a repository fashion. They may hold critical information

such as governmental and organizational procedures like

citizenship, resource repositories, etc. This sensitive data de-

mands high reliability requirements, especially since Direc-

tory services are designed to be open. US DISA highlighted

the problem by stating in [11] that: if the confidentiality,

integrity, or availability of the related directory service is

compromised, it is likely that the security of a dependent

server or workstation is also compromised. In [12] and [13],

the authors studied six possible attacking threats on Active

and Virtual Directories, respectively (e.g., spoofing, tamper-

ing, repudiation, etc).

Therefore, we believe that applying BFT technology to

Directories is crucial to yield high resiliency against arbitrary

and malicious faults.

In this paper, we integrate BFT with OpenLDAP [14]

as a Directory application. We call the integrated system:

BFT-LDAP. Four BFT protocols are considered: PBFT [3],

Zyzzyva [5], Chain [8], and Quorum [8]. The paper presents

the architecture of BFT-LDAP and studies its performance.

Three main points we observed: (1) applying BFT tech-

nology on services that provide a well-defined API, like

OpenLDAP, is cheap and straightforward; (2) the perfor-

mance overhead of BFT-LDAP (due to replication) is fairly

small; and (3) the performance of distinct BFT protocols

is very close on applications that exhibit a high processing

time (like OpenLDAP).

BFT-LDAP is designed as follows: In addition to the

OpenLDAP server and the client application, three additional

modules are built to integrate the BFT library onto OpenL-

DAP: BFT Client Proxy, BFT Server Proxy, and LDAP

Access Unit. The BFT client and the client application form

the client tier, whereas, the other modules form the server

tier, and hence they are installed on each replica (i.e., on

the 3f+1 replicas). The client application sends the requests

to the BFT client proxy which forwards the request to

the BFT server proxies after performing necessary message

digests and encryptions. This communication phase takes

place according to the specific message patterns of each BFT

protocol. The BFT server proxy calls the LDAP Access Unit

that interfaces the OpenLDAP server. After executing the

operation on each OpenLDAP server, the reply is sent back

through the same modules, however in the opposite sense,

again considering the message patterns of the BFT protocol

being used.



Our experience showed that integrating BFT with OpenL-

DAP is straightforward through using its API. We integrated

our system using C/C++ code. The integration ensured that

OpenLDAP legacy code is kept completely intact. Only 120
lines were updated/added on the BFT side, and 245 lines

were added to implement the mediator between BFT and

OpenLDAP, i.e., the LDAP Access Unit. The integration took

less than one month to be accomplished by one engineer in-

cluding: understanding OpenLDAP business, system design,

implementation, configuration, and testing. We implemented

the main directory operations: search, add, modify, and

delete.

Moreover, in practice, replication induces additional costs

on deployed services. Our observation on BFT-LDAP in-

tegration shows that the performance cost overhead is

fairly small and tolerable. Our experiments indicate that

the throughput of OpenLDAP drops by, only, less than

10% upon applying BFT replication. Thus, service providers

would not have to sacrifice a lot while using BFT. Notice

that BFT-LDAP requires 3f+1 replicas (assuming f failed

replicas) instead of one replica in a stand-alone OpenLDAP

configuration, however, this is not a major issue since:

servers are cheap nowadays, and most service providers

recommend quality of service over cost.

Furthermore we show that the performance differences

among state-of-the-art BFT protocols are negligible in BFT-

LDAP, though it is not the case in previous studies like [5],

[8], etc. This is referred to the large execution time of Read-

/Update operations of OpenLDAP (more than 200µs). We

believe that other applications with large processing time,

like OpenLDAP, have the same impact on the performance

of BFT protocols.

We conducted our experiments on Emulab [15] using

Xeon machines with Ubuntu OS installed. The experiments

explore the throughput and latency of BFT-LDAP. We do not

study BFT-LDAP in presence of failures since Transactions

in OpenLDAP API library are designed [16], but not yet

implemented. Hence, we defer this to future work.

The rest of the paper is organized as follows. A back-

ground on BFT and OpenLDAP is presented in Section II.

Section III describes the design of BFT-LDAP. We present

an evaluation and some observations in Section V. Then,

we reveal related work in Section VI, and we conclude the

paper in Section VII.

II. BACKGROUND

A. Byzantine Fault Tolerance

1) Overview: Byzantine fault tolerant protocols are

replication-based solutions designed to provide resiliency

against Byzantine (or arbitrary) faults in state machine

systems [17]. BFT protocols ensure correct asynchronous

service facing human attacks and software misbehaviors;

whereas, traditional fail-stop systems could only resolve

crash faults.

(a) PBFT

(b) Zyzyyva

(c) Chain

(d) Quorum

Figure 1. Message patterns of the state-of-the-art BFT protocols; for
f = 1.

A BFT protocol uses consensus to ensure one-copy se-

mantics when up to one third of the replicas is Byzantine [4],

[1], [3]. Any BFT protocol should maintain two properties:

(1) requests are executed in the same order on all replicas,

hence preventing individual replica updates, and (2) correct

responses are eventually delivered to correct clients.

In BFT protocols, clients issue requests to be executed

on replicas; these requests are disseminated among repli-

cas (i.e., agreement) and are totally ordered, usually, by

a specific primary replica. Then, one or more replicas

send back the replies to the client. The client can send

another request only if its previous request is completed.

Replicas and clients maintain request histories to recover

under failure.Speculative protocols like [5], [6], [7], [8]

launch a recovery phase whenever failures are detected.

BFT protocols make use of cryptographic techniques such as

Public Key Cryptography (PKC) or Message Authentication

Code (MAC).

2) State-of-the-Art BFT Protocols: PBFT [3] is the

seminal BFT protocol. It is considered the most robust

protocol (i.e., it can operate under failure); however, in

most cases, it exhibits a lower performance than that of

the speculative protocols ([5], [6], [7], [8]). A normal

request operation is completed in three phases: pre-prepare,



where the primary proposes a value to all other replicas;

prepare phase, where the replicas agree on the value and

send the acknowledgment to all other replicas; and commit

phase, where replicas promise to commit the request by

broadcasting a COMMIT message. Upon receiving 2f+1

matching COMMIT messages, each replica executes the

request and replies to the client; this phase is necessary

to detect competing primaries, which might happen during

a view change. Figure 1(a) shows the message exchange

pattern of PBFT. View change is a recovery phase required

to replace a faulty primary. Measuring performance using

benchmarking was first appeared in PBFT [3].

In Zyzzyva [5], the client sends the request only to the

primary replica (figure 1(b)). However, after the remaining

replicas receive the request as well as its sequence number

from the primary, they immediately execute it (speculatively)

and send the reply back to the client. When a faulty replica is

detected, the client demands changing the primary. By using

speculation, Zyzzyva enhanced the throughput of PBFT

significantly in free-failure cases.

The notion of abortability [18] was introduced to reduce

the complexity of designing BFT protocols. An abortable

BFT protocol (i.e., an Abstract) can abort at any time upon

request; afterwards, no client request will be serviced by the

aborted protocol. A client can initiate abort if the currently

running instance of BFT cannot safely progress anymore

(e.g., because of contention or a failure), or the performance

is unsatisfactory (e.g., because of a change in the payloads).

The client then collects the abort history that is derived from

the local histories of replicas. Then, the client is in charge

of launching another backup protocol (called Backup), and

initializing it with the abort history. Among the well-known

Abstracts, we mention: Chain, and Quorum [8]. Re-Abstract

Family [9] is a 4f+1 version of Abstract where 3f+1 replicas

are Active, and f Passive replicas are used as backup

replicas. When failures occur, an Abstract recovers to itself,

however, after replacing the faulty replicas with correct ones

from the f Passive replicas.

Chain [8] is an abortable speculative protocol. It uses a

primary replica (called head) to receive and order requests

(figure 1(c)). All other replicas are ordered in a chain

fashion, and each one forwards the request to its successor.

The last replica in the chain, i.e., the tail, sends the reply

back to the client.Although this technique increases the end-

to-end delay, the throughput improves as the number of

MAC operations by each replica is close to one, i.e. the

theoretical lower bound.

Quorum [18] is also another abortable BFT protocol.

In contention-free environments, Quorum has the lowest

latency among state of the art protocols. The message com-

munication pattern of Quorum is depicted in (Figure 1(d)).

Quorum loses its performance under contention. In the case

of contention or a Byzantine behavior, Quorum aborts and

recovers to a Backup [18] protocol similar to PBFT.

ou=...

cn=entry1

cn=entry2

Object entry

dc=example
dc=com

ou=people

Object entry

Attr. Attr. ...

Type value ...value

Alias

Figure 2. The structure of the Directory Information Tree.

B. OpenLDAP

1) Overview: LDAP [19] (Lightweight Directory Access

Protocol) is a standard messaging protocol used to access

(Read/Write) Directory information; where a Directory is

a listing of information about objects arranged in some

order [20]. The Directory information are organized in

a hierarchical tree structure called Directory Information

Tree(DIT). Figure 2 presents an example of DIT. The entries

of a DIT are usually collections of attributes having values

of different types, each entry has a globally-unique Distin-

guished Name DN (e.g., entry1.people.example.com).

LDAP technology has grown up fast during the last decade

due to its platform-independence, flexibility, and simplicity;

especially, whenever a centralized/shared data service is

required. Among the real applications of LDAP in industry

we reveal: machine and user authentication, e-mail address

lookup, group system management, etc [21].

2) OpenLDAP Project: OpenLDAP [14] is an open

source project [22] that implements LDAP and provides

server and client tools with many features. It supports

various platforms, embedded databases, and transactional

databases. OpenLDAP provides an API that allows other

software to integrate with it smoothly, and hence access most

of its features.

OpenLDAP includes a stand-alone server, called slapd

server, which is a daemon implementation of LDAP com-

posed of: a front-end module and a back-end module. The

front-end implements the basic features like: simple SASL

authentication and data security, transport layer security

(TLS or SSL), access control, data schema, threading, and

replication [21]. On the other hand, the back-end includes

the storage interfaces and databases. The storage can be in

the form of plain text (back-ldif ), or in other embedded



databases like Oracle Berkeley DB or HDB (a hierarchical

variant of Berkeley databases) [21]. Other transactional DBs,

e.g., Mysql NDB, are also supported.

To achieve a good performance and availability, OpenL-

DAP supports many replication schemes; however, they rely

on real-time updates and, thus, could not ensure service

resiliency whenever synchronization fails or Byzantine faults

occur. We do not discuss this type of replication in our paper.

III. DESIGN OF BFT-LDAP

A. Model and Assumptions

We adopt the model of BFT protocols [3]. We assume

that faulty replicas and clients may behave arbitrarily. An

adversary coordinates faulty replicas to compromise the

replicated service. However, we assume that the adver-

sary cannot break cryptographic techniques like collision-

resistant hashes, encryption, and signatures. System nodes

are connected via a network that may fail to deliver, corrupt,

delay, or reorder messages. Safety properties hold in any

asynchronous environment. Liveness, however, is guaranteed

only whenever the system is eventually synchronous, i.e.,

during intervals in which messages reach their correct desti-

nations within some fixed (but potentially unknown) worst-

case delay.

B. System Architecture

1) Overview: As mentioned before, we integrate OpenL-

DAP with four BFT protocols: PBFT, Chain, Zyzzyva and

Quorum. The integration is similar in the four cases since

all our BFT libraries have a common interface that provides

two basic methods: issue request() that is called by clients,

and execute request() that is used by replicas to execute

application-based requests (e.g., LDAP Read/Update opera-

tions). The system was implemented in C/C++ code.

2) System Components: BFT-LDAP is composed of five

components (Fig. 3):

- Client application: a simple demo to construct random

LDAP requests, and then calls the BFT client proxy.

- BFT client proxy: receives requests from the client

application and delivers them to the BFT server proxies

according to the BFT protocol message pattern (Fig. 1).

- BFT server proxy: receives requests from the BFT

client proxy and invokes application-based operations via

the LDAP Access Unit.

- LDAP Access Unit: a mediator that receives the invoked

requests from BFT server proxy, and calls the OpenLDAP

API to execute the LDAP operations locally.

- OpenLDAP: the application server (also called slapd

server), executes the operations and returns them back to

LDAP Access Unit.

3) Detailed Design: In the following text, we explain the

system behavior by describing the path of a request through

the different components, starting from the client application

to the OpenLDAP slapd server, and then its way back.

Figure 3. System architecture of BFT-LDAP for f=1.

- First, requests are issued by the client application c. The

client that we use is too basic; it represents a function cre-

ate request command() that constructs request commands

(a number of LDAP entries and sizes).

- The client c forwards the request to the BFT client proxy

by calling the issue request() method through the BFT

interface. The proxy encapsulates the command in a special

BFT request message after adding the necessary encryption

techniques like MAC authenticators and digests (depending

on the BFT protocol used), and sends it to the BFT server

proxy on the replicas by calling invoke request() method,

according to the message pattern of the protocol Fig. 1.

- Upon receiving the request form the BFT client proxy,

the BFT server proxy validates the identity of the messages,

and then invokes the execute request() function on the

LDAP Access Unit (i.e., on the local machine).

- The LDAP Access Unit executes ldap query() lo-

cally on each replica by binding (i.e., opens a session)

to slapd server, performing the operation, and then un-

binding. The LDAP Access Unit is composed of the API

functions: ldap initialize(), ldap bind s(), ldap search s(),

ldap add s(), and ldap unbind s().

- After executing the request, the slapd server returns

the result back to the LDAP Access Unit. The latter sends

back the reply to the BFT server proxy which, in its turn,

forwards it to the BFT client proxy, again, according to the

message communication pattern in Fig. 1. When the BFT

client proxy validates the received replies from all replicas

to be correct and identical, it forwards the response to the



client c; otherwise, the request is considered failed.

Distinct protocols operate differently upon failure detec-

tion. PBFT can still commit requests even when less than

f+1 replicas are faulty. In case the faulty replica is primary,

a view change is launched. Chain and Quorum abort upon

failure after collecting the abort history to initialize a new

instance (this complies with the abortability approach [18]).

C. Scalability Issue

To support a higher number of clients, we used the ldapi

protocol to bind connections to the slapd server. In fact,

using ldap usually opens two connections per communica-

tion: one for sending, and another for receiving; this reduces

the number of maximum connections allowed (i.e., clients)

to less than 30000. ldapi is a variant of ldap, but less

secure, that allows the usage of UNIX sockets instead of TCP

sockets. This design choice overcomes the limitation of open

TCP sockets: 65536. Using ldapi is safe in our case since

accessing the slapd server occurs locally through the LDAP

Access Unit. The implementation of ldapi is straightforward

using the API ldap initialize() interface.

IV. EXPERIMENTAL SETTINGS

A. BFT-LDAP Installation

We conducted our experiments on 25 64 − bit Xeon
machines with 2GB of memory, employed on Emulab [15].

The number of replicas is four, and the fault factor f is

equal to one. Each replica runs on a separate machine and

the clients share 20 machines. All machines are connected

using a star topology into one LAN ; in addition, replica

machines are connected via another dedicated LAN (this is

optimal to get better performance for all protocols).

To evaluate BFT-LDAP, we use the a/b benchmark1 with

payload sizes: 0/0, 1/1. This is the same benchmark used

in [3]. In the case of 0/0, the payload is actually 64 bytes

and not zero, this represents the smallest LDAP command

we could get. We do not use any LDAP-related benchmarks

since they are not much popular.

Our experiments consider only search operations. We do

not address Update operations for two reasons: first, search

operations are the most frequent in Directories (more than

99% of total operations). Second, Update operations may

lead to replica inconsistency, and thus the BFT recovery

phase is forced. This requires a Transaction mechanism (i.e.,

checkpoints) to retain one-copy semantics on all replicas.

Unfortunately, Transactions are not yet implemented in

OpenLDAP [16] APIs, hence we leave this issue for future

work.

1In a/b benchmarks, a, and b correspond to request size, and response
size in KB, respectively.

B. OpenLDAP Configuration

OpenLDAP (v.2.4) is installed on all replicas with the

Oracle Berkeley Database (BDB v.4). The databases are

identical on all replicas; and they are initialized with

100, 000 entries of 600 Bytes each. OpenLDAP and BDB

are configured to provide a maximum performance. Thus,

we allow any number of clients, any message size, indexing,

and large cashing size (i.e., we use an in-memory database

to avoid swapping).

V. EVALUATION AND OBSERVATIONS

A. Integration Cost

1) Integration Without APIs: Indeed, BFT protocols are

complex in nature [18]; any attempt to re-factor them,

through embedding in OpenLDAP (that has plenty of fea-

tures), would definitely add further complications. This con-

tradicts with LDAP design objectives, that address simplicity

and light-weigh. Moreover, testing such integrations are

quite difficult, and bugs are hard to track. Whereas, it is

easier to test each application module (BFT and OpenLDAP)

aside when APIs are used. Note that, integrating an already

installed service imposes additional complexity, and the

service providers might be reluctant to compromise their

system stability by taking these integration risks. For all

these reasons, we moved towards integrating BFT-LDAP

using APIs.

2) Integration Using APIs: BFT-LDAP integration can be

viewed as a connection of two black boxes: BFT and OpenL-

DAP. OpenLDAP encloses the business of the Directory; it

is made available to third party applications through a well

defined API. On the other hand, the BFT library encapsulates

the (complex) fault tolerance techniques, and connects to the

outer world through interfaces.

As shown in Section III, our code updates are not signifi-

cant; they represent the black-colored parts in Fig. 3. On the

OpenLDAP side, no changes were needed; thus, OpenLDAP

legacy code remained intact. However, some updates were

needed on the BFT side: we implemented the LDAP Access

Unit as a mediator to call the OpenLDAP API, and we

updated the BFT client and server proxies, accordingly.

We coded our updates using C/C++. In particular, 120
lines are added/updated to the BFT common library (80
lines in BFT client proxy, and 40 lines in the BFT server

proxy). In addition, the LDAP Access Unit required only 245
lines, supporting the basic OpenLDAP operations: search,

modify, add, and delete. To sum up, the needed updates to

accomplish the BFT-LDAP integration required, only, 365
lines of C/C + + code. The integration required a very

modest engineering effort. It took less than one month, and

was executed by one engineer (this includes understanding

OpenLDAP business, design, implementation, and testing).

Therefore, the integration using APIs is easy and fast. It is

convenient for pre-installed services since no need to update
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the service legacy code while plugging the new updates (i.e.,

BFT library in our case). In addition, testing the system

can be easy; in case the expected results are found to be

unsatisfactory, the integrated BFT plug-in can be simply

discarded with nil impact on the service.

B. Protocols are Equivalent in BFT-LDAP

We started by studying the behavior of BFT-LDAP with

the four BFT protocols: PBFT [3], Zyzzyva [5], Chain,

and Quorum [8]. However, our experiments showed that

the performance differences, more specifically throughput,

are negligible among these protocols. Fig. 1 conveys the

throughput of the different protocols (y-axis) as a function of

the number of clients (x-axis). With up to 5 clients, Quorum

(resp., Chain) achieved the best (resp., worst) throughput

among all protocols. However, as more concurrent clients

issue requests, the throughput of BFT-LDAP upon using the

distinct protocols becomes very close. The difference could

not be distinguished in Fig. 1 (even upon trying log. scale

on the y-axis too).

These results look astonishing for the first glance since

they contradict with previous results [5], [8]. However, a

closer look at the system indicates that the high processing

time (more than 200µs) of OpenLDAP operations is domi-

nating the performance overhead between the protocols. This

overhead is usually caused by the difference in the message

patterns of these protocols (Figure 1). We did not get similar

results in [5], [8] for instance, since operations of small

processing time (less than 20µs) were being used.

We conducted further experiments by changing message

sizes. The results looked very close to Fig. 4. Consequently,

we confine our study on PBFT and Zyzzyva in the following

sections, being the most popular protocols.
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C. BFT-LDAP Performance

1) Micro-benchmarks: Fig. 5 presents the 0/0 and 1/1

micro-benchmarks (i.e., with only one client) of the latency

and throughput of stand-alone OpenLDAP (i.e., without BFT

replication), and with applying PBFT and Zyzzyva. The left

histogram shows that the former achieves the lowest latency

as compared to PBFT and Zyzzyva, this sounds logical as

both protocols impose additional delays due to their message

patterns (Subfig. 1(a) and Subfig. 1(b)). The same figure

indicates that the latency of PBFT is less than that of

Zyzzyva. We refer this to the extra delay in Zyzzyva, since

the replicas in Zyzzyva execute the operations sequentially,

whereas, in PBFT requests are executed in a single commit

phase. This difference appears clearly in our case due to

the large processing time of OpenLDAP operations. In

addition, Fig. 5 demonstrates that the latencies in the 1/1

benchmark are larger than that of the 0/0 benchmark, this

is appears since using larger requests means more complex

search operations which impose additional processing costs

(i.e., 1.5ms). We mention that the latencies are roughly

proportional to the execution time (i.e., 0.2ms and 1.5ms
in 0KB and 1KB messages, respectively).

The right histogram of Fig. 5 conveys the throughput

when a single client is sending requests. The opposite logic

to the above can be applied here since throughput is the

reciprocal of latency in the case of one client 2; hence, the

throughput of stand-alone OpenLDAP is at least double that

of PBFT and Zyzzyva (3Kop/s and 0.45Kop/s in the 0/0

and 1/1 benchmarks, respectively). Since throughput is not

important in contention-free cases, thus, we do not analyze

it further in this case.

2) Maximum Nb. of Clients: Fig. 6 conveys the maximum

number of clients that the system can handle and the peak

2Clients in BFT do not send a new request until the reply of previous
request is received.
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throughput using the 0/0 and 1/1 benchmarks. The left side

histogram shows that stand-alone OpenLDAP scales up to

120 clients in the 0/0 benchmark, whereas, using PBFT

or Zyzzyva increases the tolerance to 200 clients. In fact,

OpenLDAP reaches the network bottleneck faster than PBFT

and Zyzzyva, since these protocols receive client requests

via the primary replica and send the replies back through

another replica; while in OpenLDAP stand-alone case, the

same NIC is used to receive requests and send replies.

Moreover, the same figure shows that using larger messages

sizes (e.g., in 1/1 benchmark) increases the traffic on the

network, and leads to packet collisions and loss with higher

number of clients in stand-alone OpenLDAP or with PBFT

cases (80 and 160 clients, respectively). PBFT is affected

more than Zyzzyva due to its extensive messaging pattern

(SubFig. 1(a)).

3) Peak Throughput: The right hand side histogram of

Fig. 6 presents the peak throughput of BFT-LDAP. Identical

to Section V-B, the graph shows that the discrepancy of

peak throughput (i.e., 5Kop/s) in the three cases is negli-

gible. This is referred again to the high processing time of

OpenLDAP operations. Notice that, since larger messages

(i.e., complex requests with more search filters) requires

additional processing time, the peak throughput decreases

significantly (almost 6 times) in the case of 1/1 benchmark.

4) Throughput: Fig. 7 and Fig. 8 plot (a logarithmic scale

on x-axis) of throughput using the 0/0 and 1/1 benchmarks

for stand-alone OpenLDAP or when PBFT or Zyzzyva are

applied. Stand-alone OpenLDAP achieves a higher through-

put than PBFT and Zyzzyva with up to 10 clients; this is due

to the extensive cryptography and the composite messages

used in BFT. Also with up to 10 clients, Zyzzyva dominates

PBFT because of the complex message pattern of the latter

(except for the case of one client which is explained in

the previous subsections). With more clients, the throughput
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Figure 7. Throughput of BFT-LDAP; 0/0 benchmark (log. scale on x).
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Figure 8. Throughput of BFT-LDAP; 1/1 benchmark (log. scale on x).

curves of BFT-LDAP become very close (diff. less than

10%) whatever BFT protocol is used. This occurs due to

the high processing time on replicas that dominates the

communication overhead. The behavior in the case of 1KB

messges (Fig. 8) is very similar, however, lower throughputs

are achieved due to the additional processing time imposed

by large messages. We do not have an explanation why

PBFT crashes as the number of clients increase (it could

be an bug in the code of PBFT [3].

5) Latency: Fig. 9 conveys the 0/0 benchmark curves

of the latency of BFT-LDAP (for clarity, a logarithmic

scale on x-axis and y-axis is used). With less than 10
concurrent clients, the figure indicates that the response

time of OpenLDAP without replication is lower than that

when PBFT and Zyzzyva are used; this sounds reasonable

since OpenLDAP with BFT replication induces additional

message delays due to the long message patterns. As the

number of clients increases, the latency becomes closer. In

fact, all the curves appear to be coinciding in the graph since
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Figure 9. BFT-LDAP response time with 0/0 benchmark (log. scale on x
and y).

the processing time of OpenLDAP operations dominates the

communication delays with a high number of clients (the

requests will be waiting in the OpenLDAP queue). The

latencies of PBFT and Zyzzyva increase slightly as the num-

ber of client exceeds 40. We explain this by the increasing

collisions of packets due to the high number of exchanged

messages in PBFT and Zyzzyva as compared to OpenLDAP

stand-alone server, this leads to request retransmissions. The

results of the 1/1 benchmark are very similar to Fig. 9, thus

we exclude it because of the limited size of the paper.

D. BFT-LDAP Replication Cost

Any replication scheme imposes additional costs on the

original service. One may claim that applying BFT replica-

tion on OpenLDAP (or any Directory Service) is expensive,

since it requires more equipment (e.g., at least 3f+1 replicas

to tolerate f faults) and it imposes additional performance

overhead. In fact, we believe that quality of service is rec-

ommended over cost in critical services. On the other hand,

BFT is designed to be deployed on commodity hardware

which are very cheap nowadays as compared to the budget

of modern (large and intermediate size) enterprises. Cloud

computing provides cheap and fast on-the-demand [23]

solutions too.

Regarding performance, the throughput overhead induced

through applying BFT on OpenLDAP is negligible. As

demonstrated in Section V-C, the throughput of stand-alone

OpenLDAP keeps dominating PBFT and Zyzzyva with

few clients. Beyond 10 clients, the throughput of BFT-

LDAP with PBFT or Zyzzyva becomes very close to that

of stand-alone OpenLDAP. Therefore, OpenLDAP without

BFT replication performs only 5% better than Zyzzyva

and 10% better than PBFT with small message sizes (see

Fig. 7). With larger messages, the throughput curves become

even closer (see Fig. 8). The right histogram of Fig. 6

too, conveys that the peak throughput of OpenLDAP is

equivalent whether BFT replication is used or not. On the

other hand, the left histogram of the same figure shows that

BFT replication can boust up the tolernce of OpenLDAP to a

higher number of clients; the histogram indicates that stand-

alone OpenLDAP crashes with more than 120 concurrent

clients, whereas, it scales to 200 clients when Zyzzyva and

PBFT are used (in the 0/0 benchmark).

VI. RELATED WORK

Lamport introduced the problem of Byzantine generals

in [1]. Liskov et al. [3] developed the first BFT protocol

(PBFT) that can handle faults under partial synchrony [2].

The idea was similar to Paxos [24], however with tolerat-

ing Byzantine faults instead. PBFT requires at least 3f+1

replicas to tolerate f Byzantine faults ( [4], [3]).

Later works like Q/U [6], HQ [7], Zyzzyva [5], Chain [8],

and Quorum [8] then appeared to enhance the performance

of PBFT by using speculation. Upon failure detection,

these protocols enter into a recovery phase that operates

under failure, but with paying an additional cost. In our

paper, we addressed various protocols that represent most

of BFT approaches (quorum-based, client-based, primary-

based, etc); nevertheless, due to the very comparable per-

formance, achieved between distinct protocols with OpenL-

DAP, we focused on PBFT and Zyzzyva being the most

popular and robust.

The performance of BFT protocols used to be measured

using some benchmarks [3], [5], [6], [7], [8], by performing

small operations, e.g., incrementing an integer value. Some

of them were experimented on NFS system [5], [6]; this

gave an intuition about the performance of BFT protocols.

This paper, however, tells another part of the truth through

studying the behavior of BFT on other application types;

e.g., applications with larger processing time like Directo-

ries.

On the other hand, Directory [10] technology proved,

recently, a notable growth. Directories can hold critical data

that require high reliability. The situation is dangerous since

if the confidentiality or availability of the directory service

is compromised, then it is likely that the hosting machine is

also compromised. This urged us to integrate OpenLDAP (as

a Directory) with BFT, seeking high resilience to arbitrary

and malicious faults. To the best of our knowledge, this is

the first study that addresses Byzantine resilient Directories.

An idea about BFT Directories using COTS components

was introduced in [25], however no practical work appeared

afterwards to explore the behavior of this system.

VII. CONCLUSION

In this paper, we introduced BFT-LDAP: an integration

of Byzantine Fault Tolerance technology with OpenLDAP,

the open-source LDAP-based Directory. We presented the

design of our integration and some technical details about

using the OpenLDAP API. Afterwards, we demonstrated



that the integration cost is tolerable and that the sacrifice

is fairly small. We conveyed that using OpenLDAP API to

implement BFT-LDAP was fairly straightforward. In addi-

tion, we ensured that the original legacy code of OpenLDAP

remained completely intact (this is crucial for services that

are already operational). We showed that the difference in

OpenLDAP’s performance before and after using BFT is

negligible. Furthermore, we conveyed the behavior of BFT

protocols with Directories; we explored the fact that BFT

protocols achieve almost equivalent performance when they

are deployed on applications that have high processing time

operations like OpenLDAP.

In the future, we are planing to experiment the system in

the presence of failures when we implement Transactions,

as the OpenLDAP API becomes available.
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