
BFT for Three Decades, Yet Not Enough!
Technical Report

IRIT/RR2012-7-FR

Ali Shoker and Jean-Paul Bahsoun
University of Toulouse III, IRIT Lab.,

Toulouse, France
firstName.lastName@irit.fr

November, 2009

Abstract
Distributed systems are established to maintain
safety and liveness while attending good perfor-
mance. Nowadays, Byzantine Failures are considered
the most critical threat for system’s safety. Various
BFT protocols were found through the history; how-
ever, none has been adopted yet. The reason perhaps
originates from the fact that Byzantine Fault Toler-
ance issue is hard by nature; add to this the compli-
cations underlying BFT protocols implementation.

This paper represents a general overview on Byzan-
tine Fault Tolerance, its evolution, and difficulties
disturbing its realization. First, we introduce the
subject by defining replication, its importance and
some problems; then we describe in brief the basic
BFT protocols reporting some comparisons. Then
we expose some problems that BFT protocols imple-
mentations are facing and we give a solution proposed
by Guerraoui in [8]; finally, we summarize our paper
and conclude.

1 Introduction

Software technologies must always be developed to
satisfy market desires; one of the main technologies
used in history is the server-client paradigm; usu-
ally a server delivers services requested by clients.
This approach faced a lot of problems where systems

are not able to afford the increasing demands of e-
commerce and e-Banking; the fact is that servers were
getting jammed with client’s requests which rendered
a faulty and very slow service.

Then, replication appeared as a solution where
data (or services) are saved with multiple copies (
or fragments) on different servers, this is managed
by the replication protocols. Many replication proto-
cols are then established to maintain availability and
fault tolerance. These protocols differ in their char-
acteristics; (a) they handle benign faults or Byzan-
tine faults, (b) they are active or passive, (c) or they
are pessimistic or optimistic... A lot of replication
protocols addressed benign faults (these are mostly
known by fail-stop faults). Transactional replication
protocols handled database replication in [1], while
ROWA [2] and other tree-based replication protocols
[3, 4, 5, 6] recently achieved a good level of availabil-
ity, fail-stop fault tolerance, and load. On the other
hand, Lamport handled benign faults by consensus
based protocols like Paxos [7]. Paxos proved its ro-
bustness and performance; Google developed Chubby
system based on Paxos and used it in some of its
applications; however, it is not being used widely in
practice.

The increasing number of the Web Services, the
diversity of programming languages; and software
technology complexity in the last decade, together
with hardware failures and human attacks, pushed

1

the Byzantine Fault Tolerance issue to the apex of
worries. This forced research community to focus
on the subject, probing for new protocols that can
resolve data inconsistency while maintaining good
performance despite the presence of arbitrary faulty
servers and clients.

2 Byzantine Fault Tolerance

Byzantine faults are the collection of arbitrary faults
where the system does not necessarily stop (in con-
trast with fail-stop faults). Distributed services may
have different behaviors; it can lie, collude, delay re-
sponses, respond erroneously, and even does not re-
spond at all; in short, these are the software that
does not follow their specifications as designed. Lam-
port in his ”The Byzantine Generals Problem” [9]
from where Byzantine faults take their name was the
first to address the BFT problem, and proved that
the minimum number of servers consensus needed
to solve the Byzantine Failures is 3f+1. After this
Schneider -theoretically- established the first Byzan-
tine fault tolerant protocol based on State Machine
replication [10], this SMR approach was then adopted
by all research community intending to ensure one-
copy semantics in a Byzantine faulty environments.

About ten years later, M. Castro and B. Liskov
established the Practical BFT protocol [11] that rep-
resents the base of BFT protocols and probably the
most famous one. They used consensus to achieve
agreement of servers in order to tolerate any Byzan-
tine client and 1/3 of the servers. The protocol used
three phase message communication delays: Pre-
prepare where the primary proposes a value, prepare
where other servers agree on the value, and com-
mit. PBFT protocol [11] relied on cryptography tech-
niques in authentication and signatures; which im-
posed a bad impact on its performance.
Q/U protocol [12] appeared then as a quorum

based protocol, it improved the performance of dis-
tributed systems by designating a set of servers to
form the preferred quorum which reply to client’s re-
quests optimistically using only one phase of message
communication; nevertheless 5f+1 servers are needed
to tolerate f faulty servers. The protocol significantly

improved the latency (when there is no contention)
and exhibited fault scalability on the system, in other
words, it imposed slow performance degradation as
compared to agreement based protocols like PBFT
[11].

Then the Hybrid Quorum protocol [13] (quorum-
agreement based) was developed to benefit from the
deficiencies of its ancestors in order to enhance the
performance; it used the Q/U approach in the phases
where there is no contention, and used PBFT ap-
proach as a recovery protocol in contention periods.
The protocol required only 3f+1 servers to maintain
fault tolerance when f servers can be Byzantine. In
spite of the good performance attained by HQ in
the presence of contention and the fault scalability it
achieves, some shortcomings appear in contrast to its
predecessors i.e. Q/U achieves lower latency than HQ
whenever 5f+1 servers usage is possible and there is
no contention, and PBFT performs better while us-
ing batching techniques of multiple sizes (since HQ
could not use batching).

R. Kotla and L. Alvisi then came up with Zyzzyva
[14] as a solution to the above problems. Zyzzyva
operates in two phases to achieve consensus, the first
is speculative (optimistic) where all servers execute
clients requests before making sure of servers agree-
ment, this phase is executed in two phase message de-
lays whenever there are no server failures. The other
phase is launched to recover from failures in the first
phase if some servers are Byzantine. Although this
protocol shares similar techniques with PBFT [11]
(consensus, 3f+1 servers, views, batches) however it
has proven the best performance known among other
protocols; Zyzzyva attained this by (1) following the
speculative optimistic agreement approach, (2) com-
municating through only two round-trips message in
cases deprived from failures, and (3) sometimes using
MAC authentications and message digests instead of
cryptographic signatures that usually impose a large
CPU overhead in signatures construction and valida-
tion.

Even though Zyzzyva [14] is considered the state of
the art of BFT protocols, it has not been yet adopted
to be used; perhaps practice community is not yet
convinced with what Zyzzyva (as well as its prede-
cessors) provided as a solution for the Byzantine fail-

2

ures problem. One can understand these worries af-
ter admitting that (1) risks should be always avoided
by practice community before moving to new tech-
nologies whenever dealing with critical services, and
(2) BFT protocols are really complicated and hard
to implement; we demonstrate this in detail in what
follows. Afterwards we study Guerraoui’s Aliph ap-
proach proposed to simplify BFT implementations
and always achieving good performance and robust-
ness.

3 BFT Protocols Realization
Obstructions

Despite the enormous growth of Web users and Web
services providers, and on the other hand the increas-
ing software complications, and human attacks, BFT
protocols are seldom adopted as replication fault tol-
erance protocols; of course this refers to many rea-
sons; some are related to the roots of BFT issue, and
others to the BFT protocol techniques used that con-
sequently imposed many implementation difficulties
and obstacles.

Working on BFT for three decades, and counting a
big number of researchers in the last decade without
delivering a ”convincing” solution to practice commu-
nity indicates the difficulty of BFT by nature. One
might suffer to construct a protocol that operates un-
der some pre-defined conditions, optimizing message
communication, authentication, agreement, and re-
covery. Also proving the correctness of the new pro-
tocol might require a PhD thesis [8].

Nevertheless BFT protocols are written in few
number of pseudo code pages, their implementations
require thousands of lines of code. Guerraoui states
in [8] ”All protocol implementations we looked at in-
volve around 20.000 lines of (non-trivial) C++ code,
e.g., PBFT and Zyzzyva”. Many reasons under-
lie these complications. First, some optimizations
should be used adapting to network architecture and
hardware used; essage collisions frequency, network
delays, and storage devices speed and robustness, are
all examples. Add to this the different software be-
haviors and bugs; operating systems process schedul-

ing, their communication protocols TCP/IP, UDP ...
All these differences have to be handled while imple-
mentation. We recall that the diversity of these hard-
ware and software comes from the fact that BFT are
built on commodity systems to reduce the cost re-
quired by large severs and infrastructures.

Again, various implementation complications are
related to the protocol itself. Most of the pro-
tocols optimized the trivial case (where there are
no server failures); however, it lunches recov-
ery phase whenever failures occur; these recovery
phases are usually more complicated and require a
greater number of message communications, cryp-
tographic authentications,clients-server communica-
tion, and clients history recovery and validation. Also
the concepts of views in BFT protocols imposed some
difficulties especially on view-change after detecting
current primary server failure. Add to this using re-
quests batching to improve performance. Zyzzyva
protocol [14], the state of the art of BFT protocols,
is a good example of the above. Other implemen-
tation optimizations were also appended to Zyzzyva
appeared in [14], we mention here: Separating Agree-
ment from Execution, Read-Only Optimization, Sin-
gle Execution Response, and Preferred Quorums.

BFT protocol’s testing is not easy too. First, the
notion of arbitrary-failures is not obvious and hard to
be simulated. Second, the multiple conditions under
which a protocol operates drives the tester to pre-
dict a huge number of scenarios and use-cases. Add
to this that testing follow-up under these BFT pro-
tocol’s numerous techniques and phases turns to be
a nightmare. In brief, no testing would be enough,
complete, or lead to satisfaction in such kind of BFT
protocols.

4 Aliph, might be the promis-
ing future

The difficulties - shown above - underling BFT
protocols realization promoted researchers to follow
other approaches that are easy to implement while
ensuring system’s robustness and at the same time
maintaining a good performance. R. Geurraoui

3

proposed in [8] Aliph as a new BFT approach (the
term Aliph was induced by the author in the new
version of the paper [8]). We describe briefly how
Aliph works, what its properties are, and then we
show its importance.

Aliph is a general abstraction where various BFT
protocols form a composition of instances of this
abstraction, each instance developed and analyzed
independently. Aliph can be viewed as a generic
super protocol managing sub-protocols in a modular
fashion; a module (i.e. instance or sub-protocol)
is composed of a single BFT protocol; each of
these instances operates under specific constraints
(non-triviality conditions) and provides the desired
performance under these circumstances; whenever
an instance aborts (by failing or forced to stop) it
constructs a request abort history corresponding
to that request. Upon this failure, Aliph launches
another predefined BFT instance called Backup,
including the unforgeable abort history collected (and
signed) by the previous failed abstract (i.e. instance)
as an INIT request to Backup to initialize its history.
Backup usually executes a certain number of client
requests according to a switching policy SP and then
tries to resume the previous Abstract to benefit
from its performance. Usually abstracts with week
non-triviality conditions -called aAbstract- are most
likely to be executed (incase non-triviality conditions
are satisfied) since it performs better than Backups
(that has strong non-triviality conditions). Of
course, a Backup has to collect request histories
before exiting, in order to construct an INIT request
again to be delivered to the designated aAbstract
(See Figure 1 and Figure 2 below).

As stated above, Aliph’s main component is
Abstract (i.e. either aAbstract or Backup); the most
these Abstracts are various the most that Aliph can
be feasible and effective. Thus, it is very important to
establish new instances with different non-triviality
conditions including synchronization (eventually),
contention, no server failures, connection delays, and
others. The author in [8] constructed two Abstract
instances Quorum and Chain:

Figure 1: If aAbstract aborts, clients use the abort history as init

history to switch to Backup. Backup is a powerful that guarantees

to commit a certain number of requests.

Figure 2: After a certain number of requests is delivered within

Backup, a client may be switched-back to try again (some) aAbstract.

Quorum has the following non-triviality property:
If a correct client c invokes request m, and (a)
there are no server failures, (b) the system is
synchronous and (c) there is no contention, then
client c commits m. Under these conditions
Quorum has the lowest latency among all BFT
”known” protocols.

4

Chain has the following non-triviality property: If a
correct client c invokes a request m, and (a) there
are no server failures and (b) the set of server
is synchronous, then client c commits m. Un-
der these conditions Chain has the highest peak
throughput among existing BFT protocols.

Here is an example on Aliph. We may implement
aAbstract using Quorum or Chain and we implement
Backup using PBFT; the protocol runs the aAbstract
instances (Quorum or Chain) if non-triviality proper-
ties are satisfied, else Backup (PBFT) is launched af-
ter initializing its history using the unforgeable abort
history request generated by the previous Abstract;
PBFT operates for a predefined number of runs K,
and then aAbstract is launched again to benefit from
its performance (latency or throughput).

Now we show the properties and importance of the
proposed approach. Aliph reconstructed the design
of BFT protocols in order to simplify its implemen-
tation. This could be easily noticed since no compli-
cated phases are needed anymore like recovery phases
or view change. Simply, whenever a BFT instance
fails, Aliph initiates a Backup BFT instance using
the preceding abort-history. For instance, Zyzzyva-
like Abstract was also established in [8]; this ab-
stract mimics Zyzzyva’s behavior in synchronous and
failure-free executions (i.e. the first phase); it also
proves that rebuilding Abstracts from existing BFT
protocols is possible and easy. It is important to re-
veal that Zyzzyva-like Abstract required only 5000
lines of C++ code (while Zyzzyva requires about
20000 lines). The other Abstracts Quorum and Chain
required 4000 and 5000 lines of C++ code respec-
tively.

Any change to a protocol, although algorithmically
intuitive, is extremely painful. In some cases, the
changes of the protocol needed to optimize for the
”normal” case have strong impacts on the part of
the protocol used in other cases (e.g., view-change
in Zyzzyva) [8]. Approving that No protocol fits all;
no existing protocol could adapt to many situations,
conditions, or periods. However, Aliph could accom-
modate to new circumstances by the variety of Ab-
stract components it has (Quorum, Chain, Zyzzyva-
like) and many others that can be appended. Of

course this is allowed by the modular nature of Aliph,
and the dynamic switching from one abstract to an-
other. Hence, this modularity gives Aliph superiority
on other protocols by (1) Implementation simplicity,
(2) adapting to new situations, and (3) extendibility.

Finally, we note that Abstract instances in Aliph
were constructed in an optimal way benefiting from
different message communication fashions, using mes-
sage digests to reduce payload, and lightweight au-
thentication vectors to diminish CPU overheads.

5 Conclusion

After explaining briefly BFT replication, visiting
the basic protocols found in history, and comparing
their features and conditions, we came up with the
conclusion that BFT protocols face many implemen-
tation obstacles. We have shown then how Aliph
simplifies this task, and we exposed its superiority
on its ancestors.

Aliph might need more enhancements to reach
maturity. Several directions can be interesting
to explore with Abstract in mind. It would be
interesting to devise Abstract implementations for
other meaningful definitions of the non-triviality
property. In particular, it might be interesting to
develop Abstract implementations that perform well
even under failures, by assuming for instance 5f
+ 1 replicas. There is also a room for optimizing
switching mechanism between Abstract instances;
it could for instance be improved by implementing
inter-replicas communications, rather than having
all communications going through the client. Finally,
we believe that an interesting research challenge is
to define and evaluate heuristics for dynamically
switching from an Abstract implementation to
another one in order to improve performance [8].

References
[1] J. Gray , P. Helland, P. ONeil, and D. Shasha; The
Dangers of Replication and a Solution; January 1996
[2] P. Bernstein and N. Goodman; An algorithm for
concurrency control and recovery in replicated distributed
databases. ACM Transactions on Distributed Systems, 9
(4), 1984.

5

[3]. D. Agrawal and A. E. Abbadi. The tree quorum
protocol: An efficient approach for managing replicated
data. Proceedings of the 16th VLDB Conference, pages
243254., 1990.
[4] S. Choi, H. Youn, and J. Choi. Symmetric tree
replication protocol for efficient distributed storage
system. ICCS, pages 474484, 2003.
[5] A. Kumar. Hierarchical quorum consensus: A
new algorithm for managing replicated data. IEEE
Transactions on Computers, pages 9961004, 1991.
[6] J-P. Bahsoun, R. Basmadjian, and R. Guerraoui; An
Arbitrary Tree-Structured Replica Control Protocol ;The
28th International Conference on Distributed Computing
Systems 2008
[7] L. Lamport; The Part-Time Parliament ;ACM
Transactions on Computer Systems; 133-169 (May 1998).
[8] R. Guerraoui, V. Quema, and M. Vukolic ;The Next
700 BFT Protocols; Technical Report LPD-REPORT-
2008-008
[9] L. Lamport, R. Shostak, and M. Pease; Byzantine
Generals Problem, ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 3, July 1982.
[10] F. B. Schneider; Implementing Fault-Tolerant
Services Using the State Machine Approach: A Tutorial ;
Department of Computer Science, Cornell University,
Ithaca, New York ; 1990
[11] M. Castro and B. Liskov. Practical Byzantine
fault tolerance. In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation, Feb.
1999.
[12] M. Abd-El-Malek, G. Ganger, G. Goodson, M.
Reiter, and J. Wylie. Fault-scalable Byzantine fault
tolerant services. In Proceedings of the 20th ACM
symposium on Operating systems principles, pages 5974,
Oct. 2005.
[13] J. Cowling, D. Myers, B. Liskov, R. Rodrigues,
and L. Shrira. HQ replication: A hybrid quorum
protocol for Byzantine fault tolerance. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementations, Nov. 2006.
[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E.
Wong. Zyzzyva: speculative Byzantine fault tolerance.
In Proceedings of 21st ACM symposium on Operating
systems principles, pages 4558, NewYork, NY, USA, 2007.

6

