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Abstract—Enabling anonymous communication over the In-
ternet is crucial. The first protocols that have been devised
for anonymous communication are subject to freeriding. Recent
protocols have thus been proposed to deal with this issue.
However, these protocols do not scale to large systems, and
some of them further assume the existence of trusted servers. In
this paper, we present RAC, the first anonymous communication
protocol that tolerates freeriders and that scales to large systems.
Scalability comes from the fact that the complexity of RAC in
terms of the number of message exchanges is independent from
the number of nodes in the system. Another important aspect
of RAC is that it does not rely on any trusted third party.
We theoretically prove, using game theory, that our protocol
is a Nash equilibrium, i.e, that freeriders have no interest in
deviating from the protocol. Further, we experimentally evaluate
RAC using simulations. Our evaluation shows that, whatever the
size of the system (up to 100.000 nodes), the nodes participating
in the system observe the same throughput.

I. INTRODUCTION

Anonymous communication protocols are important for they

allow the dissemination of sensitive content over the Internet.

The first protocols that have been proposed in the literature to

enable anonymous communication are DC-Net [1] and onion

routing [2]. These two protocols have focused on enabling the

strongest possible anonymity for the former, and on providing

practical performance for the latter.

An issue shared by the two above protocols, as well as by

other protocols devised using the same principles (e.g., [3],

[4]) is that they take the participation of nodes for granted.

This assumption is unrealistic in collaborative systems, which

are well-known to be perfect playgrounds for freeriders. A

freerider is a node that benefits from the system, while trying

to minimize its contribution to it, in order to save resources.

Research has thus moved towards the design of freerider-

resilient anonymous communication protocols.

The first protocol that has been devised to deal with

freeriders is called Dissent v1 [5]. This protocol forces nodes

to participate in the protocol. Specifically, for each message

sent anonymously, Dissent v1 forces each node in the system

to send messages to all the other nodes. As such, it is

easy to detect whether a node contributed its fair share to

the system. Unfortunately, this approach yields very poor

performance. Indeed, this protocol becomes unpractical for

systems involving as little as 40 or 50 nodes.

A second protocol, called Dissent v2 [6], has been very

recently proposed with the aim to improve the performance

achieved by Dissent v1. The key idea of this protocol is

to rely on a set of trusted nodes to avoid involving all the

nodes in the system for every anonymous communication. In

this protocol, each trusted node receives anonymous commu-

nication requests from untrusted nodes and runs a protocol

involving all-to-all communications between trusted nodes.

This considerably reduces the number of messages exchanged

for every anonymous communication, which allows Dissent

v2 to exhibit better performance than Dissent v1. However,

as we show in Section III, this protocol is still not scalable:

trusted nodes are involved in all communications and the

throughput achieved by the protocol drastically decreases

when the number of nodes in the system increases, until it

reaches zero (for a system with 100.000 nodes). Besides,

this protocol relies on trusted nodes, which is something that

people sending anonymous data usually prefer to avoid.

Our contribution in this article is RAC, a freerider-resilient

anonymous communication protocol that scales to large sys-

tems. Regarding the resilience to freeriders, we theoretically

prove, using game theory, that our protocol is a Nash equilib-

rium, i.e, that freeriders have no interest in deviating from the

protocol. Regarding scalability, both the number of broadcast

messages and the size of the groups in which the broadcast

messages need to be sent, are independent from the number

of nodes in the system. Specifically, in our protocol, these

parameters are exclusively dependent on constants that are as-

sociated with the degree of anonymity our system guarantees.

In other words, RAC is scalable and it exhibits a clear tradeoff

between anonymity and performance. Finally, RAC does not

assume any trusted server.

We experimentally evaluate RAC using simulations. Our

evaluation shows that RAC achieves a very good level of

anonymity. Moreover it shows that, contrary to Dissent v1 and

Dissent v2 that exhibit a drop of throughput when the number

of nodes grows, the throughput of RAC remains constant when

increasing the size of the system.

The remaining of the paper is structured as follows. We

first introduce some definitions and analyze the related work

in Section II. We then discuss the need of a new protocol

in Section III, before presenting our protocol in Section IV.

We further present the proofs of RAC freerider resiliency, as

well as the proofs of RAC anonymity guarantees in Section V.

We finally present the experimental evaluation of RAC in

Section VI, and our concluding remarks in Section VII.
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II. DEFINITIONS AND RELATED WORK

We start this section by the definition of anonymity proper-

ties guaranteed by anonymous communication protocols. We

then review existing anonymous communication protocols.

A. Definitions

We rely in this paper on the definitions introduced by

Pfitzmann and Hansen [7]. We consider a system composed of

nodes that communicate with each other via communication

channels. In such a system, a node is acting anonymously if

it is impossible for an observer to distinguish this node from

the other nodes present in the system. Specifically, researchers

distinguish the following three anonymity properties. The first

one is sender anonymity. This property holds if it is not

possible to identify the sender of any given message. The

second property is receiver anonymity. This property holds

if it is not possible to identify the destination of any given

message. The third property is unlinkability. This property

holds if an observer is not able to identify a pair of nodes

as communicating with each other.

The goal of an anonymous communication protocol is to

guarantee one or more (preferably all) of these anonymity

properties in presence of an opponent, i.e., a malicious entity

trying to break these properties. All existing protocols, as well

as the protocol we present in this paper, consider the strongest

possible opponent, called the global and active opponent.

Global means that the opponent can monitor and record the

traffic on all the network links. Active means that the opponent

can control some nodes in the system and make them deviate

from the protocol in order to reduce the anonymity of other

nodes. The higher the number of nodes that the opponent

must control to break a protocol, the stronger the anonymity

guaranteed by this protocol. The only limitation of the global

and active opponent is that it is not able to invert encryption.

B. Related work

The two pioneering protocols for anonymous communica-

tion are the DC-Net [1] and Onion routing [2] protocols.

The DC-Net protocol exhibits strong anonymity guarantees.

Specifically, it is not possible for an opponent to break

anonymity without controlling all the nodes executing the pro-

tocol. DC-Net reaches this objective by relying on the principle

of secret-sharing. Specifically, nodes in DC-Net proceed in

rounds. During one round, only one node is allowed to send a

message. If two nodes send a message during the same round,

there is a collision and none of the messages is correctly

delivered. To avoid collisions, there exist mechanisms for

reserving sending slots [8], [9]. To guarantee anonymity, DC-

Net organizes nodes in a structured network and requires nodes

to forward encrypted messages received from their neighbors.

Nodes then rely on a XOR-based mechanism (that they apply

on messages they receive from their different neighbors) to

decrypt messages. The major limitation of DC-Net is that it

yields a considerable overhead. Indeed, at every round, every

pair of nodes in the system needs to exchange messages.

This is why other protocols that aim at reducing the cost

of DC-Net have been devised. The Herbivore protocol [4]

is one such protocol. In this protocol, nodes are organized

in groups, which limits the exchange of messages inside the

groups. Despite this optimization, this protocol is considered

as unusable in practice as soon as the system grows to more

than (approximately) 50 nodes, as analyzed in [10].

The onion routing protocol guarantees a lower degree of

anonymity than DC-Net. It is nevertheless considered secure

enough to be widely used in practice [11]. Furthermore,

it exhibits way better performance. This protocol works as

follows. A node wanting to send a message randomly selects

a list of nodes (called relays) and encrypts the message into

multiple layers of encryption: one layer for every relay. The

resulting encrypted message is called an onion. The node then

sends the onion to the first relay that deciphers the first layer.

This layer contains the address of the second relay and an inner

onion, encrypted with the key of the second relay. The first

relay sends the inner onion to the second relay. This process

is repeated until the message reaches its destination. Note that

because of its onion structure, a forwarded message changes

at each relay. Various variants of this protocol have been

proposed in the literature, such as crowds [3], cashmere [12],

Tarzan [13], and TOR [11]. The three first protocols aim at

better tolerating churn. The last paper describes a popular

implementation of the onion routing protocol.

The major limitation of these protocols is that they assume

that nodes participating in the system are altruistic, i.e.,

they follow the protocol. However, anonymous communication

protocols are subject to nodes that freeride in order to benefit

from the system, without contributing their fair share to it.

This explains why a recent attention has been given to the

design of freerider-resilient protocols, in which all nodes are

obliged to participate, otherwise risking eviction.

The first protocol that follows this direction is the Dissent

v1 protocol [5]. This protocol relies on the principles of DC-

Net to which it adds a double encryption system. This system

allows stopping the execution of a round whenever a node

detects the misbehavior of another node (including freeriding).

It then allows exposing the misbehaving node without breaking

anonymity. While this protocol is resilient to freeriding, it

suffers from the same performance limitations as DC-Net,

as further analyzed in Section III. A second protocol, i.e.,

Dissent v2 [6], has very recently been proposed to address

this performance issue. The key idea behind this protocol is

to run Dissent v1 on a small number of trusted servers. These

servers are then used by a large number of nodes (called clients

in [6]) to enforce the anonymity of their communications.

To reach this objective, nodes need to trust the servers they

use to exchange messages, which is a strong assumption.

Performance wise, as analyzed in the following section, even

though Dissent v2 exhibits better performance that Dissent v1,

it still suffers from a scalability issue.

III. THE CASE FOR A NEW PROTOCOL

In this section, we motivate the need for a new anonymous

communication protocol. We show, using simulations, that
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Fig. 1. Throughput as a function of the number of nodes for Dissent v1 and
Dissent v2.

the two existing freerider-resilient anonymous communication

protocols achieve poor performance in large-scale systems.

We simulate (using the Omnet++ simulator), a network of

nodes connected via 1Gb/s links1. In our simulation, each

node chooses a random node to which it sends anonymous

messages of a fixed size equal to 10kB, at the highest possible

throughput it can sustain. We run this experiment several

times with an increasing number of nodes, and we measure

the average throughput at which nodes receive anonymous

messages.

We configure Dissent v2 with the optimal number of trusted

servers for each network size. Specifically, increasing the num-

ber of trusted servers allows reducing the number of messages

processed by each trusted server. However, it also increases

the number of broadcast messages exchanged between trusted

servers, and the size of these broadcasts. For each different

number of nodes in the system, there is thus an optimal number

of servers to be used, which maximizes the throughput of the

protocol. Moreover, in order to balance the load, we equally

distribute the number of nodes between trusted servers.

The throughput as a function of the number of nodes in

the system for both Dissent v1 and Dissent v2 is depicted

in Figure 1. From these results, we can first observe that the

throughput of nodes in Dissent v1 drops down to (almost) zero

when the number of nodes is higher than 50. The reason is

that for each anonymous communication, every node needs to

send a message to all the other nodes in the system. This

requires the sending of what is equivalent to N broadcast

messages involving all the nodes, where N is the number

of nodes in the system. Let us note the cost of Dissent v1

as N ∗ Bcast(N)2, which refers to the fact that for each

anonymous communication, N broadcast messages are sent

1This ideal network configuration allows us to measure the maximum
throughput each protocol can reach.

2In the remaining of the paper, we adopt the following notation: we write
“the protocol P has a cost of x ∗Bcast(y)” to refer to the fact that for each
anonymous communication done using P , x broadcast messages are sent in
a group of y nodes.

in a group of N nodes3. It becomes thus obvious why Dissent

v1 exhibits such poor performance when the number of nodes

in the system increases. Indeed, both the number of broadcast

messages sent in the network, and the size of the broadcast

groups depends on the system size.

We can also observe from Figure 1 that the throughput

reached by nodes in Dissent v2 is higher than the throughput

reached by nodes in Dissent v1, which was the key objective

of this protocol. Nevertheless, the throughput of Dissent v2

decreases when the number of nodes in the system increases.

The reason of this decrease is that, for each anonymous com-

munication, Dissent v2 requires the sending of S broadcasts

(where S is the number of trusted servers) in a group of size

S servers, plus one broadcast in a group of size N
S . Hence,

the cost of Dissent v2 is equal to Bcast(NS ) +S ∗Bcast(S),
which is also dependent on N .

We conclude from that study that existing freerider-resilient

anonymous communication protocols are not scalable. This

motivates the development of a new protocol that scales, i.e. a

protocol that has a cost independent from the number of nodes

in the system.

IV. THE RAC PROTOCOL

In this section, we present RAC, a freerider-resilient, anony-

mous communication protocol that scales to large systems.

Scalability stems from two key ideas: (1) the reduction of

the number of messages broadcast in the system, and (2)

the reduction of the size of the broadcast groups. We first

explain how we achieve these two key ideas. We then provide

a detailed description of the protocol.

A. Key idea #1: reducing the number of broadcasts

In order to be more efficient than Dissent v1 and Dissent

v2, we decided to start the design of our protocol from the

principle of the onion routing protocol. Indeed, this is the most

efficient available protocol existing today. As described earlier,

in onion routing, the sender of a message selects a subset

of nodes to act as relays. Although the anonymity of onion

routing, which is a function of the number of relays, is lower

than the one of protocols such as DC-Net, it is strong enough

to be widely used in practice. The problem with existing onion-

based protocols is that freeriders have no interest in acting as

relays; they will thus drop the messages they are supposed to

relay whenever they can (i.e. when it does not endanger their

anonymity). It is thus necessary to find a way to monitor the

behavior of relays. The only node that knows all the relays

on the path of an onion and that can identify all the layers

of the onion is the sender of the message. The question is:

how to make the sender monitor the relays without disclosing
its identity? Indeed, if a relay knows that a node is using it

as a relay, it can break the sender anonymity. Our solution is

to have senders and relays broadcast the messages they send

or relay. Broadcasting messages allows senders to receive the

messages broadcast by relays and to check that relays forward

3For the sake of simplicity we assume that all broadcast messages have
approximately the same size.
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correctly, without disclosing their identity (every node receives

the messages).

The broadcast exchanges must be reliable, despite the

presence of freeriders and opponent nodes. In order to force

nodes to forward messages, the broadcast protocol we propose

relies on a structured network similar to the one used in the

Fireflies group membership protocol [14]. Specifically, nodes

are placed on several virtual rings using a hash function. On

each ring, a node has a predecessor node and a successor node.

The broadcasting protocol works as follows: each time a node

receives a message from one of its predecessors, it forwards

it to all its successors. A node thus expects to receive each

given message from all its other predecessors. If a node does

not receive a given message from one of its predecessors,

it considers the latter as a freerider. This forces nodes to

forward all the messages they receive. Note that a node also

verifies that its predecessors are broadcasting at a constant rate,

because this is required to ensure anonymity, as explained in

the detailed protocol description.

Figure 2 illustrates the dissemination of a message in RAC.

A node A that wants to send a message to a node D builds an

onion (containing two relays B and C in that case). The node

then broadcasts the onion using the multiple ring structure.

Upon the reception of the onion, each node first forwards the

onion to its successors. Each node then tries to decipher the

onion. If a node manages to decipher the onion and it obtains

a new onion, this means that the node is a relay and it will

also broadcast the new onion (this is the case of node B and

then of node C). If a node obtains a clear message, this means

that it is the destination (this is the case of node D). If a node

does not manage to decipher the onion, it does not do anything

else than forwarding the onion to its successors.

The resulting protocol has a cost of: L ∗ R ∗ Bcast(N),
where L << N is the number of relays employed in the

onion path, and R << N is the number of rings used in the

broadcast protocol. In the experiments presented in Section V,

we use L = 5 and R = 7. As we show, these values

are enough to ensure a high level of anonymity: receiver

anonymity and unlinkability are optimal, and an opponent only

has a probability of 9.9∗10−7 to break the sender anonymity.

With the protocol presented in this section, we have reached

the first objective: making the number of messages that are

broadcast in the system independent of N . In the next section,

we explain how we reach our second objective: making the

size of groups in which messages are broadcast independent

of N .

B. Key idea #2: reducing the size of broadcast groups

In order to make the size of groups in which messages are

broadcast independent of N , we propose to cluster nodes into

groups of approximately the same size, say G4. The identifier

4Note that using smaller groups (size G instead of N ) gives an opponent
that captures a message more information about the possible senders and
receivers of this message. Specifically, the opponent knows that the sender
and the receiver of the given message is one among the G nodes of the group,
instead of one among the N nodes of the system. This is nevertheless not an
issue if G is big enough. In our experiments, we use G = 1000.

of the group to which a node should belong is computed

deterministically by the node when it first joins the system

(e.g., using a hash of its public key modulo the number of

groups). If two nodes that belong to the same group want to

communicate they use the protocol we saw in the previous

section, inside the group they belong to (of size G) instead

of running it in the whole system. The cost is thus reduced

to L ∗ R ∗ Bcast(G). The remaining question is: How do
we enable the communication between two nodes that do not
belong to the same group? A straightforward solution would

be to run the protocol presented in the previous section in

a supergroup composed of the union of the two groups to

which these nodes belong. The resulting cost would thus be

L∗R∗Bcast(2∗G). We adopt in our protocol a more optimized

solution described below.

The sender sends the anonymous message by running the

protocol in his group, as if the destination was part of the

same group. It nevertheless sets a marker in the innermost

onion for the last relay, to inform him about the group Id

of the destination node. This allows sending most broadcasts

inside a group of size G. Upon receiving the innermost onion,

the last relay needs to perform two actions. First, it needs to

forward the message to the destination node, which belongs

to another group. Second, it needs to inform the sender that

it effectively forwarded the message. To perform these two

actions at once, the last relay broadcasts the message in a super

group constituted of the union of the two groups, i.e., its group

and the group of the destination. This super group is what we

call a channel in the remaining of the paper. As such, the

overall cost of the protocol is equal to (L−1)∗R∗Bcast(G)
for the first part of the protocol, which executes inside the

sender’s group plus R ∗Bcast(2G) for the broadcast that the

last relay executes inside the channel. As Bcast(2G) = 2 ∗
Bcast(G), the overall cost of our protocol is equal to (L +
1) ∗ R ∗ Bcast(G), which is lower than the original L ∗ R ∗
Bcast(2 ∗G) because for the commonly chosen values of L,

L+ 1 < 2 ∗ L.

C. Detailed description

In this section, we provide a detailed description of the

protocol.

Joining the system. Each node in the system has an identifier

(ID), a view containing the list of the nodes present in the

system, and two private/public key pairs. The first pair of keys

is linked to the node ID. We call these keys the ID keys.

The second pair of keys is used to encrypt messages for their

destination (using the key of the destination). This pair of

keys cannot be linked to the node ID. We call these keys

the pseudonym keys. The way nodes learn about pseudonym

keys is application-dependent. For instance, in an anonymous

publish-subscribe system, nodes would subscribe to a given

topic using their public pseudonym key.

To join the system, a node n sends a JOIN request to a node

x that is already part of the system. This JOIN request contains

the ID public key of n, denoted by K, and ID, the identifier

472523523
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Fig. 2. Illustration of the RAC protocol.

of n, which determines the group that n will join. To compute

this identifier, we use a solution inspired by the Herbivore

system [4]. Specifically, let f and g be two one-way functions.

The new-coming node has to generate random vectors until it

finds a vector y �= K such that the least significant mk bits of

f(K) are equal to those of f(y). The value g(K, y) gives n the

value of its ID. An opponent node may want to circumvent

the system to join a particular group. The solution we use is

robust to this attack, because it is difficult for a node to obtain

the values of K and y that are necessary to join a given group,

provided that the functions g and f are one-way functions.

Once x has received the JOIN request from n, it computes

which group n should join (for example, the group containing

the node with the nearest ID). Then, x anonymously broadcasts

the JOIN request to this group. Upon receiving this request,

all nodes of the group verify that the ID of n is correct.

If the ID is not correct, the request is ignored; otherwise,

the nodes add n to their view and compute the positions of

n in the various rings used to broadcast messages. This is

done as in the Fireflies protocol [14]: the position of a node

on the ith ring is determined by the hash of the couple (ID,

i). The number of rings to create depends on the size of the

system, as well as of the percentage of opponent nodes that

is assumed in the system. More precisely, the successor set of

each node (which is, for a given node, a set comprising the

successor of this node on the various rings) should contain

a majority of non-opponent nodes, and this majority should

be large-enough to ensure reliable dissemination of broadcast

messages5. Concretely, in a system comprising 1000 nodes

and assuming that 10% of the nodes are opponent nodes, it

is enough to use 7 rings to ensure that the successor sets will

contain less than 3 opponent nodes with a probability 0, 999.

After a period T , which corresponds to the maximum time

necessary for a message to reach all nodes in the group,

x sends a READY message to n, signaling that all nodes

have been informed of its arrival in the system. When n
receives the READY message, it sends a message to its

followers and predecessor to indicate them that they can use

5To ensure reliable dissemination in a system with N nodes, each node
should have at least log(N) + c non-opponent nodes in its successor set,
where c is a constant [15].

it as their new follower or predecessor. Other nodes than n’s

predecessors and followers need to wait a period equal to 2T
from receiving n JOIN request before using n as a relay (to

make sure that n completed the join procedure). Once n has

joined a group, the nodes of this group broadcast the JOIN

messages in the channels they belong to. This way, all nodes

in the system are informed of n’s arrival and n can find its

position in each channel.

Managing groups. To guarantee a lower bound on anonymity

and an upper bound on the cost of the protocol, groups must

have a size bigger than smin, and smaller than smax, which

are system parameters. When the size of a group becomes

lower than smin, nodes belonging to the group broadcast a

message indicating that the group should be dissolved. They

then rejoin the system in order to be assigned to another

group. When nodes join the system and a group becomes

larger than smax, nodes of this group broadcast a message

indicating that the group should be split in two. Nodes then

compute which of the two new groups they should join.

Specifically, nodes with the lower IDs go in the first group,

and nodes with the higher IDs go in the second group.

Finally, each node computes its position in the various rings

of the group and connect to its new followers and predecessors.

Sending a message. To send a message, a node ciphers the

message with the public pseudonym key of the destination

node. It then randomly chooses L public ID keys of nodes

of its group and ciphers the message in successive layers

(called onions). Each layer contains a flag that allows a node

to know whether it successfully deciphered it. If the message

destination is in another group, the innermost layer also

contains a marker indicating the channel to which it should

be broadcast. Once the L layers have been created, the sender

pads the message to reach a defined size, and initiates a

broadcast by sending the message to its direct successors on

the different rings of its group. Messages are padded because

it makes it impossible for opponent nodes to use the size

of network packets to track the path followed by a given

message. Note that, similarly as in the onion routing protocol,

to preserve the anonymity of the sender, nodes must send or

forward messages at a constant rate, defined by the system.
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If a node does not have messages to send or forward, it must

create fake messages (called noise messages) and send them

in the system, following the above-described procedure.

Receiving a message. Upon reception of a message, a node

checks if it has already received the message. If that is

not the case, the node forwards the message to its direct

successors on the different rings of the group or channel

in which the message is broadcast. The node then checks

whether it can decipher the message using its private ID

key. In case of success (the node is able to read the flag

put by the sending node), this means that the node should

act as a relay for this message. Consequently, it checks

if there is a marker indicating that the message should

be broadcast in a channel. It then pads the deciphered

message and sends it to its direct successors on the different

rings of the appropriate group or channel. Otherwise, the

node checks whether the message is intended to it by

trying to decipher it using its private pseudonym key. If

that is the case, it delivers the message. Note that only

innermost layers are broadcast in the channels, so as when

they receive a message on a channel, nodes only have to

check if they can decipher it with their private pseudonym key.

Checking the misbehavior of nodes. In order to discourage

freeriding, nodes check that (1) the relays they use to send

their own messages correctly forward messages, (2) the nodes

that directly precede them in the different rings of channels

and group correctly forward messages (i.e. once and only

once), and (3) the nodes that directly precede them in the

different rings of their group send messages at a constant

rate. Every time a node discovers a misbehavior, it locally

blacklists the corresponding node. Each node maintains

several blacklists: a blacklist per channel for suspected

predecessors, a blacklist for their group for suspected

predecessors, and a blacklist for suspected relays. We explain

later how these blacklists are used to evict nodes from the

system.

The first check is performed as follows. When a node sends

one of its own messages, it keeps a copy of the various layers

of the message, together with the public ID keys they have

been ciphered with. It then expects to receive the messages

corresponding to the different layers before the expiration of

a timer (recall that all messages are broadcast in the system).

The first relay, if any, that does not correctly decipher and

forward the message, is suspected and added by the sender to

the relays blacklist and it is not used anymore by this node.

The second check is performed as follows. Provided that

messages are broadcast, for each message, a node expects

to receive a copy from each of its direct predecessors in the

channel or group in which the message is broadcast. If a

predecessor does not send a copy of a given message within

a bounded time6, of if it sends a given message twice7, it

6Our implementation uses TCP, which ensures reliable delivery between
pairs of nodes.

7The node could be performing a replay attack [16].

will be suspected by its successors, who will add it to the

appropriate predecessors blacklist.

The third check is performed as follows. Each node checks

that it receives messages from its direct predecessors on the

different rings of its group at a constant rate. Whenever a

node detects a misbehaving predecessor, it adds it to the

predecessors blacklist.

Evicting nodes. As described above, nodes maintain two kinds

of blacklists: a blacklist for suspected relays, and several

blacklists for suspected predecessors. Nodes disseminate these

blacklists as follows. The relays blacklist is disseminated

periodically to the node’s group. Because it can disclose

information about the identity of a message sender, this list

has to be disseminated anonymously. To avoid an attack

where malicious nodes send more than one blacklist at each

round, we use the shuffle protocol of Dissent v1 which allows

permuting a set of fixed-length messages and broadcasting the

set to all members with cryptographically strong anonymity.

The predecessors blacklists are disseminated as clear messages

in the channels or group to which they correspond.

A node A removes a node B from its view as soon as

it collects evidence that: (1) B belongs to the predecessors

blacklist of (t+ 1) of B’s followers in one channel or group,

with t the maximum number of opponent followers that node

B can have (as defined by Fireflies [14]), or (2) B belongs to

the relays blacklist of (f +1) nodes of B’s group, with f the

maximum number of opponent nodes in a group. Further, if

B is one of A’s predecessors or followers, it replaces it with a

new predecessor or successor deterministically computed from

the view updated after the eviction of B.

When a node is evicted from a group or a channel, the nodes

of its group must broadcast messages to all the channels it

belonged to. This message informs the nodes of the channels

that the node was evicted. Nodes that fail at sending this

message are suspected by the nodes of their group. Nodes

in the channels wait to received (f + 1) eviction notifications

to take this eviction into account.

V. PROOFS

In this section, we first prove that RAC ensures anonymity.

Then we prove that RAC is freerider-resilient.

A. Anonymity proof

We prove that RAC ensures sender anonymity, receiver

anonymity, and unlinkability. We use the following notations:

the network size is denoted by N , the groups size is denoted

by G, the fraction of opponent nodes is denoted by f , and the

number of relays used to disseminate each message is denoted

by L. We explained in section IV-B that dividing nodes into

groups reduce nodes anonymity from one among N to one

among G. We now show how this anonymity of one among G
is protected. We first assume that opponent nodes are passive,

which means that they follow the protocol and can only gather

information by monitoring the network. We then consider the

case of active opponents nodes that are willing to deviate from

the protocol in order to break anonymity.
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1) Passive opponent nodes:
a) Sender anonymity: As nodes in RAC broadcast mes-

sages at a constant rate, it is not possible to know if they

are forwarding messages, sending messages or sending noise.

Thus, an opponent node receiving a message can only discover

the sender of this message when it colludes with all the

relays of that message. This is quite hard to achieve. In

fact, the probability for a correct node to build a path only

containing opponent nodes is equal to
∏L

i=0
X−i
G−i , with X the

number of opponent nodes in its group. Thus, an opponent that

tries to break sender anonymity should control a number X
of nodes as large as possible in the targeted node’s group.

But, as nodes are randomly spread among the groups, the

probability that the opponent control X nodes in a given group

is equal to
∏X−1

i=0
fN−i
N−i . As a result, the probability that the

opponent break the sender anonymity of a given node is equal

to maxX(
∏L

i=0
X−i

G−i−1 ∗
∏X−1

i=0
fN−i
N−i ). With N = 100.000,

G = 1000, f = 5%, and L = 5 this probability is equal to

5.7 ∗ 10−25, which is extremely low.

b) Receiver anonymity: When a node sends a message

m to a destination node nD, it ciphers m using nD’s public

pseudonym key, and broadcasts it using a set of relays. Note

first that, as explained in Section IV, the public pseudonym

key of nD cannot be linked to nD. The only node that is

able to decipher the message m is node nD, using its private

pseudonym key. Nodes cannot distinguish nD from other

nodes (i.e. they have no way to know that it was able to

decipher the message). For an external observer, nD behaves

like every other nodes in the system: it forwards the message

m once and only once to all its direct successors in the

different rings. Consequently, no node is able to detect that

nD is the destination of message m. This is optimal: to break

receiver anonymity the opponent must control all the nodes of

the group but one.

c) Unlinkability: As we have seen before, RAC ensures

optimal receiver anonymity in the groups. Consequently, it

is impossible for a node to determine the destination of

a given message m within a group. It is thus impossible

for an external observer to know whether two nodes are

communicating or not. At best, an opponent can know that

two nodes are communicating using a channel. But it cannot

know which nodes are communicating. Hence, the protocol

ensures unlinkability.

2) Active opponent nodes:
a) Sender anonymity: An active opponent can try to

break sender anonymity: (1) by trying to force nodes to

build relay paths only containing opponent nodes, or (2) by

trying to evict some nodes from the system. Evicting nodes

can be used to reduce the number of non-malicious nodes

in the system, or to render the system prone to intersection

attacks [17] by comparing sent messages before and after the

eviction of some nodes.

Case 1: an opponent node acting as relay can drop the

messages it is supposed to broadcast. This forces the sending

node to build new paths and, thus, increases the probability

that the node build a path that is totally composed of opponent

nodes. Nevertheless, this is not an easy task since, if an

opponent node drops a message, it will be blacklisted by the

sender that will not use it as a relay anymore. Consequently,

provided there is a fraction f of opponent nodes, if they

coordinate their actions, and if each time a new path is

created, it contains an opponent node, then they will be able

to force at most fN new paths to be created. This makes the

probability of building a complete path of opponent nodes

very low. For instance, in a system with N = 100.000,

G = 1000, f = 5% and L = 5, the probability that opponent

nodes manage to force one single node to build a path only

composed of opponent nodes is at most 2.8 ∗ 10−23. This is

extremely low.

Case 2: an opponent node can try to break sender anonymity

by evicting nodes from the system (e.g. to allow intersection

attacks [17] to be run). In RAC, a node n is evicted if: (1)

fG+ 1 nodes notify their group that the node n misbehaves,

or (2) a majority of the direct successors of node n on

the different rings notify their group or channel that node

n misbehaves. Let us consider the first case. There are fG
opponent nodes in the network. Consequently, opponent nodes

alone cannot force the eviction of node n by sending a wrong

notification to the group. They need to behave in such a

way that at least one non-opponent node will also send a

notification regarding node n. The only thing they can do is to

try to stop the dissemination of some messages, so that node

n will not be reached and will possibly be blacklisted (e.g.

if n was a relay for that message). Nevertheless, as shown in

[14], it is possible to increase the reliability of the broadcast

by increasing the number of rings. It is thus possible to use a

number of rings guaranteeing that opponent nodes will have

an arbitrarily low probability to succeed in evicting node n
by making a non-opponent node send a notification against

it. Let us now consider the second case. As explained in

Section IV, the higher the number of rings, the lower the

probability that node n will have a majority of opponent nodes

in its set of direct successors. Consequently, it is possible to

use a number of rings guaranteeing that opponent nodes will

have an arbitrarily low probability to succeed in evicting node

n due to a majority of opponent nodes in its set of direct

successors. For exemple with f = 5%, a number of rings

equal to 7 guarantees that each node has a probability lower

than 6.0 ∗ 10−6 to have a majority of opponent nodes in its

set of direct successors.

b) Receiver anonymity: Opponent nodes can try to break

receiver anonymity using the same attacks as the ones de-

scribed in the proof of the “sender anonymity” property. As

we have seen, these attacks do not succeed. Consequently,

receiver anonymity is not impacted by the presence of active

opponent nodes.

c) Unlinkability: The proof is similar to the one made

for passive opponent nodes.
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B. Freerider-resiliency proof

In this section, we prove that RAC tolerates freeriders, i.e.

that freeriders do not have any interest in deviating from

the protocol. To prove this, we prove that RAC provides

a Nash equilibrium [18]. In a Nash equilibrium, no node

has an incentive to unilaterally deviate from the equilibrium,

assuming every other node follows the protocol. Note that the

proof presented in this paper makes similar assumptions as

those presented in previous works related to freeriders, e.g.,

[19], [20], [21].

1) Assumptions on freeriders: To reason about freeriders,

it is necessary to formalize their behavior. In the case of RAC,

the benefit of a node n depends of the following parameters:

• (A) reducing the risks of compromising its anonymity.

• (T) succeeding in sending its own messages.

• (R) receiving messages that are intended to it.

• (F) forwarding as few messages as possible.

• (C) ciphering as few messages as possible.

• (D) deciphering as few messages as possible.

We can define the overall benefit of a node n as B = αA+
βT +γR+ δF +ωC+φD, where α ≈ β ≈ γ � δ ≈ ω ≈ φ.

Intuitively, this means that nodes do not want to trade-off

their anonymity and the reliable transmission of their own

messages against a lower bandwidth and CPU consumption.

Moreover, freeriders are assumed not to collude; freeriders

expect opponent nodes to try to decrease their benefit as

much as possible; freeriders expect other nodes to follow the

protocol.

2) Nash equilibrium proof:

Theorem 1: The RAC protocol provides a Nash equilibrium.

We prove the above theorem following the approach adopted

by related work [19], [20]: we decompose the theorem into a

set of lemmas representing the protocol steps, and we explain

why it is in the best interest of a freerider to follow the protocol

at each given step. The proof of Theorem 1 directly follows

from the proofs of the different lemmas.

Lemma 1: A freerider always sends messages to all its

direct successors in the different rings of a channel or group.

Proof: A freerider knows that up to half of its direct

successors but one can be opponent nodes and can thus send

wrong notifications to the group or channel. Consequently, a

freerider knows that it risks eviction if at least one correct

successor sends a notification to the group or channel. Conse-

quently, a freerider sends messages to all its direct successors

in the different rings.

Lemma 2: A freerider always correctly forwards the mes-

sages it acts as a relay for.

Proof: A freerider n knows that the sender of a message

will notify the group if it does not receive the message that

node n was supposed to broadcast as a relay. Provided that

there are fG opponent nodes in the group that can send wrong

notifications to the group, node n knows that it is enough to

be suspected by one non-opponent node to be evicted from the

system. Consequently, node n correctly forwards the messages

it acts as a relay for.

Lemma 3: A freerider always checks that its predecessors

are sending every message once and only once.

Proof: A direct predecessor that does not send a given

message can be an opponent node trying to run an (N-
1)-attack [22] on the node. As a result, freeriders always

checks if all direct predecessors send them all messages they

are supposed to. A direct predecessor that sends a given

message twice can be an opponent node trying to run a replay
attack [16] on the node. As a result, freeriders always checks

that their direct predecessors do not send the same message

twice.

Lemma 4: A freerider sends the list of nodes it suspects

during the periodic anonymous blacklist broadcasting.

Proof: As shown in [5], the anonymous blacklist broad-

casting protocol we rely on is accountable. Consequently, a

freerider participates in it to avoid eviction by the network.

Moreover, messages sent in this protocol have a fixed-size.

Consequently, a freerider does not gain bandwidth or CPU by

sending a message containing wrong information. A freerider

thus sends the exact list of nodes that it suspects.

Lemma 5: A freerider broadcasts the join requests it re-

ceives from nodes that want to enter in the system.

Proof: A freerider has interest in helping nodes to enter

the system because that increases its anonymity. In fact, the

more nodes in the system, the more difficult for an opponent

to control a significant of the network. Moreover, helping

nodes to join the system ensures that opponent nodes are

not the only ones to control who can join the system. If

only opponent nodes control who can join the system, they

may only accept opponent nodes, and this way, increase

their chances of breaking anonymity. Finally, freeriders have

interest in helping nodes they want to communicate with to

join the system.

Lemma 6: A freerider always sends new messages (possi-

bly noise) at the rate required by the protocol.

Proof: A freerider n knows that if it omits to send new

messages (possibly noise) at the rate defined by the protocol

to some of its direct successors, the latter will accuse it.

Moreover, node n knows that up to half of its direct successors

but one can be opponent nodes and can thus produce wrong

accusations. Consequently, node n knows that it risks being

evicted if at least one correct successor sent a notification

to the group. Consequently, node n sends messages at the

required rate.

Lemma 7: A freerider always checks if its predecessors

send new messages at the rate defined by the protocol.

Proof: A freerider notifies the group or channel if one

of its direct predecessors sends a message at a higher rate

than that defined by the protocol. Indeed, such a behavior

increases its bandwidth and CPU consumption. Moreover, a

freerider notifies the group if one of its direct predecessors

sends messages at a lower rate than required as this can be

the sign of an opponent running an attack.
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VI. EVALUATION

In this section, we evaluate both the performance and the

anonymity of RAC. We evaluate the former using simulations

and the latter using the formulas presented in Section V. We

use simulations in order to be able to evaluate the performance

of our protocol in configurations comprising up to 100.000

nodes. The objective of this evaluation is to answer the

following two questions:

• What is the throughput achieved by RAC, Dissent v1, and

Dissent v2?

• What are the anonymity guarantees ensured by RAC,

Dissent v1, and Dissent v2?

We start by a presentation of the simulation settings and the

configuration parameters used for the various protocols. We

then reply to the two questions mentioned above.

A. Simulation settings

We performed simulations using Omnet++ [23], a discrete

event simulator written in C++. Using Omnet++, we simulate

a network of nodes interconnected by a router. Nodes are

connected to the router using 1Gb/s links. We use this ideal

network configuration as it allows evaluating the maximum

throughput that each protocol can achieve. We plan to evaluate

the complexity of RAC and its performance in a real setting

as part of our future work.

B. Protocol configuration parameters

In all the evaluations, we consider two configurations for

RAC: a configuration without group (i.e. all nodes actually

belong to a single group), and a configuration with groups

comprising 1000 nodes each. We refer to these two configu-

rations as RAC-NoGroup and RAC-1000, respectively. In both

configurations, we used seven rings for the broadcast protocol,

i.e., R = 7 and five relays for the onion paths, i.e., L = 5.

For each system size, we configure Dissent v2 with the

optimal number of trusted servers (as explained in Section III).

C. Throughput

In order to assess the throughput of the various protocols, we

run the following experiment. We consider a system compris-

ing N nodes. Each node randomly selects a destination node

and sends anonymous messages to this node at the maximum

throughput it can sustain. Messages have a fixed size of 10kB.

We measure, for each protocol, the average throughput at

which the N nodes receive anonymous messages. Figure 3

shows the throughput measured for RAC-NoGroup, RAC-1000,

Dissent v1, and Dissent v2 as a function of N . Note that in

this situation, with an onion path length of 5, the throughput

provided by onion routing is 200Mb/s.

We first observe that both RAC configurations achieve a

better throughput than the two versions of Dissent when there

are more than 1000 nodes in the system. For instance, when

the system contains 100.000 nodes, the throughput of RAC-

NoGroup (resp. RAC-1000) is 15 times (resp. 1300 times)

higher than that of Dissent v2. With this system size, Dissent
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Fig. 3. Throughput as a function of the number of nodes in the system for
Dissent v1, Dissent v2, RAC-NoGroup and RAC-1000.

v1 is so slow that we were not even able to observe a single

message delivery.

We also observe that RAC-1000 scales: in systems com-

prising more than 1000 nodes, its throughput is not impacted

by the size of the system. This was expected. Indeed, adding

nodes in the system does not increase the number of broadcasts

required for each message that is anonymously sent, nor the

size of the broadcast groups that are used.

Finally, we observe that when N is smaller than 1000, both

RAC configurations achieve the same throughput. This comes

from the fact that when N is smaller than 1000, RAC-1000

only uses one group, and does thus execute the exact same

protocol as RAC-NoGroup.

To summarize, unlike other protocols, RAC-1000 scales:

performance do not decrease when increasing the system size.

D. Anonymity guarantees

We compare in this section the anonymity guaranteed by the

two configurations of RAC against Dissent v1, Dissent v2 and

the onion routing protocol in the case of a passive opponent.

Results are depicted in Table I. The numbers depicted in this

table result from the instantiation of the formulas characteriz-

ing the anonymity guarantees of each protocol.

The first line of the table represents the size of the set to

which the sender or the receiver of a given message belong.

The higher the size, the better. This value should not be too

small as it can disclose a lot of information regarding the

identities of the sender and receiver of a message. For instance,

if this value is equal to 10, this means that the probability that

a given node be the sender or the receiver of a given message

is 1
10 . From the table, we can observe that this value is the

highest possible for all protocols but RAC-1000, for which it

is equal to 1000, i.e., the size of the groups. We believe that

1000 is a big enough value in most contexts. This value can be

increased if required by RAC users (using the smin parameter

presented in the detailed protocol description).

The table is then structured in three subparts, corresponding

to the proportion of nodes controlled by the opponent (P in

the table). We consider three values of P : 10%, 50%, and
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System with 100.000 nodes Dissent v1 Dissent v2 Onion RAC-NoGroup RAC-1000
Anonymity, the sender/receiver is one among 100.000 100.000 100.000 100.000 1000

% of opponent nodes (P) Anonymity type (T)

Sender 0 0 0.53 0.53 7.1 ∗ 10−11

90% Receiver 0 0 0.53 0 1.1 ∗ 10−46

Probability to Unlinkability 0 0 0.53 0 1.1 ∗ 10−46

break a given Sender 0 0 1.5 ∗ 10−2 1.5 ∗ 10−2 1.8 ∗ 10−16

node anonymity 50% Receiver 0 0 1.5 ∗ 10−2 0 1.2 ∗ 10−303

of type T Unlinkability 0 0 1.5 ∗ 10−2 0 1.2 ∗ 10−303

when controlling Sender 0 0 9.9 ∗ 10−7 9.9 ∗ 10−7 7.3 ∗ 10−22

P% of the nodes 10% Receiver 0 0 9.9 ∗ 10−7 0 5.8 ∗ 10−1020

Unlinkbility 0 0 9.9 ∗ 10−7 0 5.8 ∗ 10−1020

TABLE I
ANONYMITY GUARANTEES OF THE VARIOUS PROTOCOLS IN A SYSTEM OF 100.000 NODES.

90%. For each value of P , we compute the probability that

the opponent be able to disclose the identity of the sender,

the receiver or to link the sender and the receiver of a given

message. Results show that these probabilities are equal to zero

for both Dissent v1 and Dissent v2. Indeed, in these protocols,

the opponent must control all the nodes in the system (or all

the trusted servers in Dissent v2) to break anonymity. We also

observe that in both configurations of RAC, these probabilities,

although not (always) null, are extremely low, making RAC an

extremely robust protocol.

We also observe that, counter-intuitively, the probability

that an opponent break anonymity in RAC-1000 is lower

than in RAC-NoGroup. This is due to the fact that in RAC-

1000, a node cannot choose the group to which it belongs.

Consequently, an opponent needs to control almost all the

nodes in the system for having enough nodes in the same

group in order to break anonymity within that group.

Finally, we observe that RAC-1000 provides stronger

anonymity guarantees than onion routing in all cases. This

is due to two reasons. First, RAC-1000 has a better sender

anonymity than onion routing due to the fact that it uses

groups (see explanation above for RAC-NoGroup vs RAC-

1000). Second, to break the receiver anonymity in onion

routing, the opponent must only control the relays of the onion

path. Instead, in our protocol, the opponent must control all the

nodes of the destination group, which is less likely to happen.

Better unlinkability follows from better receiver anonymity.

VII. CONCLUSION

Two protocols for anonymous communication in the pres-

ence of freeriders have been recently proposed. Unfortunately,

they do not scale: their performance decrease when increasing

the number of nodes in the system. In this paper, we present

RAC, a freerider-resilient anonymous communication protocol

that scales, while providing strong anonymity guarantees.
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