
Aggregation Protocols in Light of Reliable Communication

Ziad Kassam∗, Ali Shoker∗, Paulo Sérgio Almeida† and Carlos Baquero†
HASLab, INESC TEC & Minho University, Portugal

∗{zakassam,ali.shoker}@inesctec.pt
†{psa,cbm}@di.uminho.pt

Abstract—Aggregation protocols allow for distributed
lightweight computations deployed on ad-hoc networks in a
peer-to-peer fashion. Due to reliance on wireless technology,
the communication medium is often hostile which makes
such protocols susceptible to correctness and performance
issues. In this paper, we study the behavior of aggregation
protocols when subject to communication failures: message
loss, duplication, and network partitions. We show that
resolving communication failures at the communication layer,
through a simple reliable communication layer, reduces the
overhead of using alternative fault tolerance techniques at
upper layers, and also preserves the original accuracy and
simplicity of protocols. The empirical study we drive shows
that tradeoffs exist across various aggregation protocols, and
there is no one-size-fits-all protocol.

Index Terms—Distributed Systems; aggregation protocols;
Push-Sum; Flow Updating; performance.

1. Introduction

With the prominence of the Internet of Things (IoT),
Mobile Computing (MC), and Wireless Sensor Networks
(WSN), data aggregation is becoming a de-facto tech-
nique to manipulate distributed data, control the network,
and perform lightweight computations (like max, sum,
count. . .) [4], [7], [11]. In such systems, resource con-
strained devices are usually deployed over ad-hoc networks,
mainly using wireless communication media (WIFI, Blue-
tooth, Zig-bee), in a Peer-to-Peer (P2P) fashion to avoid the
usual bottlenecks of centralized solutions and communica-
tion failures. Consequently, the underlying communication
layer is often hostile and can compromise the correctness
and performance of aggregation protocols; therefore, fault
tolerance techniques are still being advocated to make these
protocols more reliable and practical [2]–[4], [7], [8].

Specifically, convergence — to a common value across
nodes — is considered the prime challenging correctness
measure of aggregation protocols since it can easily be
adapted to abstract other computations (like sum, count,
max, etc.) [8], [11]. Convergence becomes more challenging

The second author is supported by SMILES track of TEC4Growth project
(NORTE-01-0145-FEDER-000020), and the third and forth authors are
supported by EU H2020 LightKone project (732505).

when subject to environmental impacting factors like the
number of nodes in the system, the topology of the net-
work, the reliability of communication medium, the avail-
able resources of devices, etc. This leads to several tradeoffs
between simplicity, correctness, and performance. Among
these protocols, gossip-based aggregation protocols are often
considered more robust under such factors [10], [13].

In particular, there are two categories of gossip-based
aggregation protocols in literature. The first, is simple, in
which an (mutable) estimate of the average value is com-
puted locally and then propagated to other nodes either in
a completely distributed way, e.g., Push-Sum [11], or in
a clustered way as in DRG [4]. This simplicity however
comes at the price of dedicated fault tolerance techniques,
required to handle message loss and duplication, whose
solutions are sometimes costly [5]. Another category, like
Flow-Updating (FU) [8], is immune to message loss and du-
plication by nature due to the concept of flows: idempotent
averaging estimates are locally computed based on average
flows received from other nodes in an immutable way. As
the authors show in [8], [9], FU is not prone to transient
communication failures, but as we show later, it exhibits
some instability under long-lived communication failure and
when the average degree (i.e., number of neighbors of a
node) is high. To take advantage of idempotency, several
“hybrid” protocols [6], [14] tried to integrate the idea of
flows and node backups with the Push-Sum protocol in an
attempt to introduce a simple and fault tolerant aggrega-
tion protocol; unfortunately, this yielded other accuracy and
performance issues [13]: (1) performance was significantly
impacted by communication issues, and (2) some accuracy
in convergence is detected.

In this paper, we present an empirical study that com-
pares the above variants of gossip-based protocols leading
to the following conclusion: once simple classical protocols,
like Push-Sum [11], are supported by a robust exactly-
once underlying communication layer, they may outperform
other protocols [6], [8], [14], and importantly, maintain the
original convergence accuracy.

The rest of the paper is organized as follows. Section 2
gives a quick background on the addressed categories of pro-
tocols, and Section 3 conveys the empirical results followed
by concluding remarks.

978-1-5386-1465-5/17/$31.00 © 2017 IEEE

2. Background and Related Works

In this section, we present a concise background on three
variants of aggregation protocols: Push-Sum (PS), Flow
Update (FU), and Distributed Random Grouping (DRG).
Despite the diverse data aggregation protocols introduced in
literature [4], [6], [12], [14], we opt for the aforementioned
protocols being well-known and most other protocols are
variants using their core concepts.

Push-sum protocol [11] is a simple gossip-based pro-
tocol where each node divides its local value by half and
propagates it to other peers until convergence is achieved. PS
protocol converges faster when degree increases, however
the algorithm correctness relies on “mass” conservation [11]
where any kind of system failure violates mass conserva-
tion. Consequently, several variants like [5], [6], [14] were
introduced to withstand network and node failures, which
resulted in accuracy and performance overheads [13].

Flow-Update (FU) [8], is based on the concept of idem-
potent computation through “flows”. The idea is that each
node calculates the average based on the all contributions
of the in/out flows along the edges of the neighbors and its
initial value. Since this depends on the direct flows (and the
initial intact value), there is no need to retain correspond-
ing mutable variables. This makes the algorithm natively
tolerant to message loss and duplication, but suffers some
instability period upon recovery from network partitions (as
flows are missing).

LiMoSense [5], Push-Flow [6] and Push-Cancel-Flow
[14] followed a hybrid model by using concepts from PS and
FU through using flows for data exchange and mutable local
histories to compute the estimates. However, these protocols
induced correctness problems as accuracy and division by
zero [10], [14].

DRG [4] is an aggregation protocol that essentially con-
sists in the continuous random creation of groups across the
network, in which messages are broadcast and aggregates
are successively computed (averaged). In DRG, message
loss between coordinators and neighbors may happen; and
thus, partial fixes to avoid deadlock of nodes waiting forever
may result in violating mass conservation [8].

3. Evaluation

3.1. Experimental Setup

To perform our experiments, we used a locally devel-
oped simulator that runs on a single machine, where mes-
sage loss/duplication, network partition, network topology,
number of nodes and the degree can be customized to
serve our purpose. To assess the protocols under reliable
communication, we tried to use an exactly-once protocol,
inspired from [1], whose messaging abstraction allows us to
experiment the system without using a real communication
layer (e.g., IP protocol). The experiments considered four
network topologies with random generation of links: Bus,
Ring, 2D Mesh, and random graph of several dimensions,
i.e., different degrees (from 3 to 20). However, the paper

only presents those of random graph since it allows for
a wide range of degrees, and more realistically represents
wireless settings.

We consider the protocols PS, FU and DRG protocols
being well-known or represent the state-of-the-art of gossip-
based aggregation protocols. FTPS and FTDRG refer to
the fault-tolerant versions of PS and FU where a reliable
communication layer is integrated.

Finally, the protocols are evaluated through two main
metrics: accuracy and speed, considering message loss and
duplication under different graph degrees. Accuracy is ex-
pressed by the normalized Root Mean Square Error (RMSE)
of the estimate in contrast to the target value, and the speed
expressed by the number of iterations to reach this accuracy.
An estimation of the messaging overhead with and without
the reliable communication plug-in is also presented at the
end. For the sake of completeness, we tried to implement
and experiment the Push-Flow protocol, and we noticed that
the accuracy is significantly lost with 1000 nodes. Indeed,
this result is consistent with those in [13] that shows the
accuracy problem starting with 60 nodes up.

3.2. Convergence speed in a fault-free network

Convergence speed is experimented as the degree in-
creases from 3 to 20, using random graph of 1000 nodes. We
present the number of iterations required by each protocol
to achieve convergence in a fault-free scenario, where con-
vergence is considered achieved once the RMSE = 10−11.

Figure 1 interestingly shows that the convergence speed
of FU improves until reaching degree 7, beyond which more
iterations are needed to converge. The results look surprising
for the first glance, however, they are consistent with the
results in the original paper of FU [8] for degree 10. This
behavior is referred to the direct dependence of FU on the
in/out flows of direct neighbors in calculating the estimate
of the average. As the degree increases, the number of
flows per node increases, thus significantly modifying the
estimate. Indeed, this conforms with the analysis in [8] that
shows FU under link failures converges faster than healthy
network as the number of links drops.

To the contrary, PS and DRG converge much faster (log-
scale is shown) with higher degrees and they significantly
outperform FU starting at degree 7 and 12, respectively.
(Notice that PS and DRG are confounded with FTPS and
FTDRG, respectively, given that no faults occur.) This be-
havior is expected as the estimate in DRG and PS is com-
puted and spread to neighboring nodes, thus as the network
is more connected, the information propagates faster.

Finally, the figure shows that PS converges faster than
DRG, especially, when the degree is low since DRG cannot
create large groups in this case, and this broadcast to all
system nodes takes longer, contrary to large groups (with
large degree).

0

200

400

600

800

1000

1200

4 8 12 16 20

Ite
ra

tio
ns

Degree (nodes)

PS
FTPS

FU
DRG

FTDRG

Figure 1. Convergence speed in fault-free scenario.

 0

 100

 200

 300

 400

 500

 600

 4 8 12 16 20

PS -No convergence
DRG -No convergence

It
e
ra

ti
o
n
s

Degree (nodes)

FU
FTPS

FTDRG

Figure 2. Estimated convergence speed under 20% message loss.

3.3. Convergence speed under loss and duplication

Under message loss, the above behavior changes as
shown in Fig 2. We performed experiments using different
percentages of message loss, i.e., from 10% to 50%, and
noticed that the patterns are very similar, and thus we only
convey the 20% results in Fig. 2. The convergence speed
of FU under message loss remains equivalent as in the
fault-free scenario (Fig. 1), or even better, which is also
demonstrated in [8], where the number of flows is small
and the computation of the estimate depends directly on it.
Thus, no need to integrate the reliable communication layer
with FU. In contrast, PS and DRG cannot converge at all
due to violating mass conservation.

Using the fault tolerant communication layer, the vari-
ants of PS and DRG, i.e., FTPS and FTDRG, are again
able to operate, however at an additional communication
overhead. Since the communication layer is transparent to
the protocols’ logic, this overhead does not manifest on
the number of iterations needed. Counting an additional
iteration per retransmitted message is unfair, since not the
entire system is actually delayed, whereas discarding the
retransmission time and overhead is biased to PS. To handle
this, we estimated the number of extra iterations needed
through dividing the extra messages propagated due to fail-
ures, by the average number of messages exchanged per
iteration in the fault-free case. This estimation turned out
to be a polynomial equation of the form: f(x) = Σ4

i=1x
i;

where x is the retransmission ratio. In the case of 20%,
f(0.2) ≈ 0.25. Using this estimation, the convergence speed

4e-06

0.002

1

500

1 10 100 1000

R
M

S
E

Iterations

PS

FU

DRG

Figure 3. Root Mean Square Error under 10% network partition size and
degree 10.

of FTPS and FTDRG is roughly 25% lower than that of
PS and DRG in the fault-free case (Fig. 1), respectively.
Therefore, FTPS only overtakes FU starting from degree 10
(instead of 7 in the fault-free case). The overhead is higher
for FTDRG which overtakes FU starting from degree 16 and
up, and thus we believe it is not worth using DRG instead
of FU in this case.

As for message duplication, FU and DRG are not af-
fected since computing the aggregate is idempotent; and
therefore, the convergence speed remains as shown in Fig. 1.
To the contrary, PS suffers from message duplication and
thus cannot converge at all — thus we do not plot the
corresponding curve. The use of the fault tolerant communi-
cation layer in FTPS overcomes the duplication problems as
expected without significant changes in convergence speed
to this presented in Fig 1.

3.4. The impact of network partitions

To experiment the protocols under network partitions,
we used a random network of 1000 nodes, and manually
identified some links that when broken can lead to network
partition. Following this process, we have studied the time
needed by the three protocols PS, FU, and DRG to converge
under different settings: changing the partition size (to 10%,
25%, and 50%) and time of partitioning occurs (i.e., 20-
200 iterations and 200-500 iterations) with degree ≈ 10. In
particular, we studied the time needed to converge to a very
small RMSE.

Due to size limits, we only convey the important part of
our results in Figure 3 which correspond to 10% partition
size and partition time 20-200 iterations. This graph is
chosen due to the following reasons. Changing the partition
size to 25% and 50% lead to very similar patterns to those
in Figure 3 with a slight difference that the impact of par-
titioning is a bit lower on the two partitions. This reason is
referred to the fact that initial values are quickly propagated
to most of the nodes in the two partitions, leading to faster
averaging before partitioning occurs. This very reason lead
us to omit the experiments of partitioning time 200-500
iterations. Indeed, the three protocols reached an almost
stable state after 200 iterations which absorbs the impact
of partitioning.

TABLE 1. ESTIMATED MESSAGE’S HEADER SIZE OF FU, DRG, PS,
AND TWO FAULT TOLERANT PIGGY-BACKING PATTERNS OF PS.

FU DRG PS FTPSPB1 FTPSPB2
76 36 (max) 74 32 92

Considering Figure 3, the first observation is that, at the
instant partitioning starts (i.e., 20 iterations), the two parti-
tions continue to converge through tens of iterations before
stabilizing almost at 100 iterations in all protocols. This was
expected as the three protocols are completely decentralized
and can operate as long as peers are reachable. The second
observation shows that FU shows some fluctuation when
the network heals from partition as shown by the spike at
the iteration 200 in Figure 3. To further understand this
behavior, we tried to compute the value that each partition
converged to before and after healing. Our experiments show
that FU tried to converge to different values on each partition
which is far from the optimal average. To the contrary, the
values of PS and DRG keep getting closer to the optimal
average, though slowly. This is referred to the high impact
of using immutable flows in FU, which is consistent with the
results in [14], and which is considered the major drawback
in flow based protocols.

3.5. The messaging overhead

As for message’s header size, Table 1 presents the
average size of the three protocols FU, PS, and DRG: 76,
74, and 36, respectively. Despite this slight difference among
protocols, it has no impact in a real network. In fact, given
that the payload in aggregation applications is often small
(e.g., few Bytes), the header and the payload can both fit in
a single UDP datagram. (TCP is not recommended in such
hostile settings.) To tolerate message loss and duplication,
FTPS should also be considered. According to the exactly-
once communication protocol we used [1], FTPS requires
four different message types, in two round-trip delays, to
deliver a single aggregation message and a corresponding
ACK. The size of each message header ranges between 16
and 74 Bytes. However, under congestion, messages can
be piggy-backed in two patterns depicted as FTPSPB1 and
FTPSPB2 in Table 1. Therefore, the messaging overhead of
the exactly-once layer is negligible as well.

4. Learned Lessons and Conclusions

Complementary to state-of-the-art studies on aggrega-
tion protocols, we focused in our study on taking failure
prone protocols as PS and DRG, and integrate a reliable
communication layer that can preserve the simplicity of the
classical protocols to overcome mass conservation risks.

Our conclusion is that Flow-Updating protocol [8] is
natively robust to loss and duplication but not to network
partitions which incur some temporary perturbation in the
values. Since network partitions are more likely to occur
once the degree is small (e.g., 3), it is recommended to avoid

using FU unless the perturbation in the values is tolerable by
the application; the alternative is to use other Flow-Updating
variants like [6], [14] only if high accuracy is not a matter.
On the other hand, PS and DRG are prone to communication
issues, and thus using a robust communication layer is
crucial for mass conservation. The experiments we conveyed
show that providing a reliable communication layer comes
at a cost, which is not worth it in the case of DRG. To the
contrary, PS protocol is more accurate and outperforms the
other protocols when the degree > 10 despite the overhead
of using a reliable communication layer.

In our simulations, and previous works as well, other
network problems like congestion and interference were not
considered, which we believe are worth considering if a real
experimentation environment is available.

References

[1] P. S. Almeida, A. Shoker, C. B. Moreno, A. Shoker, P. S. Almeida,
and C. B. Moreno. Exactly-once quantity transfer. 2015.

[2] C. Baquero, P. S. Almeida, and R. Menezes. Fast estimation of
aggregates in unstructured networks. In Autonomic and Autonomous
Systems, 2009. ICAS’09. Fifth International Conference on, pages
88–93. IEEE, 2009.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms:
Design, analysis and applications. In INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties. Proceedings IEEE, volume 3, pages 1653–1664. IEEE, 2005.

[4] J.-Y. Chen, G. Pandurangan, and D. Xu. Robust computation of aggre-
gates in wireless sensor networks: distributed randomized algorithms
and analysis. IEEE Transactions on Parallel and Distributed Systems,
17(9):987–1000, 2006.

[5] I. Eyal, I. Keidar, and R. Rom. Limosense: live monitoring in dynamic
sensor networks. Distributed computing, 27(5):313–328, 2014.

[6] W. N. Gansterer, G. Niederbrucker, H. Straková, and S. Schulze Grot-
thoff. Robust distributed orthogonalization based on randomized
aggregation. In Proceedings of the second workshop on Scalable
algorithms for large-scale systems, pages 7–10. ACM, 2011.

[7] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggre-
gation in large dynamic networks. ACM Transactions on Computer
Systems (TOCS), 23(3):219–252, 2005.

[8] P. Jesus, C. Baquero, and P. S. Almeida. Fault-tolerant aggregation
by flow updating. In DAIS, pages 73–86. Springer, 2009.

[9] P. Jesus, C. Baquero, and P. S. Almeida. Flow updating: Fault-
tolerant aggregation for dynamic networks. Journal of Parallel and
Distributed Computing, 78:53–64, 2015.

[10] P. Jesus, C. Baquero, and P. S. Almeida. A survey of distributed data
aggregation algorithms. IEEE Communications Surveys & Tutorials,
17(1):381–404, 2015.

[11] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation
of aggregate information. In Foundations of Computer Science,
2003. Proceedings. 44th Annual IEEE Symposium on, pages 482–
491. IEEE, 2003.

[12] D. Liu and M. Prabhakaran. On randomized broadcasting and
gossiping in radio networks. Computing and Combinatorics, pages
643–654, 2002.

[13] G. Niederbrucker and W. N. Gansterer. Robust gossip-based aggrega-
tion: A practical point of view. In 2013 Proceedings of the Fifteenth
Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 133–147. SIAM, 2013.

[14] G. Niederbrucker, H. Straková, and W. N. Gansterer. Improving fault
tolerance and accuracy of a distributed reduction algorithm. In High
Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 643–651. IEEE, 2012.

