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Abstract—Many state-machine Byzantine Fault Tolerant (BFT)
protocols have been introduced so far. Each protocol addressed
a different subset of conditions and use-cases. However, if the
underlying conditions of a service span different subsets, choosing
a single protocol will likely not be a best fit. This yields robustness
and performance issues which may be even worse in services that
exhibit fluctuating conditions and workloads.

In this paper, we reconcile existing state-machine BFT pro-
tocols in a single adaptive BFT system, called ADAPT, aiming
at covering a larger set of conditions and use-cases, probably
the union of individual subsets of these protocols. At anytime,
a launched protocol in ADAPT can be aborted and replaced by
another protocol according to a potential change (an event) in the
underlying system conditions. The launched protocol is chosen
according to an “evaluation process” that takes into considera-
tion both: protocol characteristics and its performance. This is
achieved by applying some mathematical formulas that match the
profiles of protocols to given user (e.g., service owner) preferences.
ADAPT can assess the profiles of protocols (e.g., throughput) at
run-time using Machine Learning prediction mechanisms to get
accurate evaluations. We compare ADAPT with well known BFT
protocols showing that it outperforms others as system conditions
change and under dynamic workloads.

Keywords-Byzantine fault tolerance; Adaptive BFT; dynamic
switching

I. INTRODUCTION

Fault tolerance is becoming more challenging due to the
leap of on-line services, the reliance on clouds, and the
software bugs introduced with new software technologies and
programming languages due to human imperfection. This can
cause unpredictable arbitrary service problems that are some-
times dreadful and can affect a large population; the outages
of Amazon AWS [1] and Google Mail [2] are recent examples.
Byzantine fault tolerance [3], [4] (BFT) is a replication-
based approach used to improve the resilience of systems to
Byzantine (arbitrary) faults. A typical state-machine [5] BFT
protocol ensures consistency among system replicas if at most
a fraction of replicas (e.g., one third) can be Byzantine [3],
[4]. Although BFT trades the cost of replication and agree-
ment for fault tolerance, this cost is nowadays acceptable as
commodity hardware are becoming cheap; and as the cost of
existing non-BFT fault tolerance mechanisms, e.g., the three-
way replication of storage in Google file system, is comparable
to BFT [6].

A fairly high number of BFT protocols ([4], [7], [8], [9],
[10], [11], etc.) have been introduced in literature. Due to the
complexity of the Byzantine generals problem [3] and the vari-

ations in system conditions, it is almost impossible to establish
one-size-fits-all BFT protocol. For instance, PBFT [4] oper-
ates in the presence of Byzantine nodes; however, it suffers
from low performance as compared to speculative protocols
(e.g., [8], [9]). Q/U [7] and Quorum [9] exhibit the lowest
latency and fault scalability, however, only in contention-free
cases. Zyzzyva [8] and Chain [9] achieve a high throughput,
but they rather suffer from expensive recovery, etc. Unfortu-
nately, this suggests that a service can only benefit from some
properties (those provided by the chosen protocol) and give
up other interesting ones. Although this can be acceptable in
some systems, it can have significant drawbacks on systems
that encounter different conditions and workloads. We show
in this paper that it is possible to get closer to one-size-fits-all
protocol through combining existing protocols together, and
using a smart dynamic switching mechanism between them
(without the burden of again introducing a new protocol).

The abortability approach of Aliph [9] proposed a modular
way to use some existing BFT protocols and switch from one
to another when failures occur. In spite of its performance im-
provements in some cases, our experiments show that Aliph’s
performance can be close to existing protocols, e.g., Zyzzyva,
or even worse under fluctuating conditions and workloads.
The reason is that Aliph runs a (1) predefined static order
of a (2) specific set of protocols, with PBFT as backup under
failures, and (3) uses a backoff scheme to switch back from
PBFT to a faster protocols to gain some performance when
failures heal. These very reasons cause Aliph to fall short as
an efficient adaptive protocol for systems that are prone to
variable conditions and dynamic workloads. We explain how
our dynamic switching approach resolves these drawbacks to
improve reliability and performance.

In this paper, we propose an adaptive abortable BFT
system, called ADAPT. ADAPT launches a BFT protocol from a
set of candidate ones (any existing protocol). Once the system
conditions change (i.e., an event), ADAPT aborts the running
protocol, and launches another one that is “more adequate”
to the new conditions. To decide when to launch which
protocol, ADAPT launches an evaluation process to make run-
time evaluations of protocols and matches their properties and
performance against user preferences 1. The evaluation process
executes some mathematical formulas we introduce, powered
using Machine Learning techniques to make accurate run-time

1We refer to the “user” as the service owner that is using a BFT protocol.



performance assessment.
To the best of our knowledge, this is the first adaptive

BFT approach that orchestrates multiple BFT protocols in
a dynamic way using Machine Learning techniques, namely
SVR [12]. (Theoretical analysis and simulation-based methods
like those in [13] and [14] only give a general inaccurate the-
oretical results that are not effective at run-time). In addition,
conducting run-time evaluations of protocols by considering
their characteristics, performance, and user preferences is also
novel to BFT.

The abortability in our system, i.e., ADAPT, is similar to
Aliph [9] by the fact that it runs a set of protocols and
switches between them; on the contrary, any existing BFT
protocol can be used in ADAPT; whereas, Aliph could not use
many protocols since it is not easy to define how and when
to efficiently switch from one to another. In addition, ADAPT
is adaptive since switching occurs using run-time evaluations
when “something happens”, thus relaxing the conditions of
Aliph that switches only when “something wrong happens”.
This brings three additional benefits over Aliph: (1) no order
or number of protocols has to be defined a priori, (2) switching
occurs not only upon failures but also when performance can
be gained, and (3) no backoff scheme is required since switch-
ing immediately occurs once a change in system conditions is
detected.

We implemented ADAPT in C/C++ code, and experimented
it on Emulab [15]) using Redis key-value store [16] as an
application. Our experiments convey that ADAPT outperforms
six well-known existing BFT protocols, including Aliph, under
any condition, and especially under dynamic workloads.

In the rest of the paper, we present a background about
the BFT protocols we consider in Section II. Section III
presents the architecture of ADAPT, and Section IV explains its
evaluation process. Experimentation results are then presented
in Section V. Finally, the paper discusses related works in
Section VI and concludes in Section VII.

II. BACKGROUND OF BFT PROTOCOLS

This section recalls the BFT fault model and selected
well-known BFT protocols that make our presentation easier,
following the criteria: these protocols are clearly different in
at least one important feature. In principle, any state-based
BFT protocol can be added to ADAPT, but we believe that the
protocols addressed here are enough to explain our idea. In
addition, we explain the BFT abortability approach [9] that is
also used in ADAPT.

A. Fault Model

BFT fault model [4] assumes a message-passing distributed
system using a fully connected network among nodes: clients
and servers. The network may (not infinitely) fail to deliver,
corrupt, delay, or reorder messages. Faulty replicas and clients
may either behave arbitrarily, i.e., in a different way to
their designed purposes, or they just crash (benign faults).
A strong adversary coordinates faulty replicas to compromise
the replicated service. However, we assume that the adversary

cannot break cryptographic techniques like: collision-resistant
hashes, encryption, and signatures. Liveness, however, is only
guaranteed when the system is eventually synchronous, i.e.,
during intervals in which messages reach their correct desti-
nations within some fixed worst case delay. ADAPT complies
with this BFT model.

B. BFT Protocols

BFT protocols maintain system resilience against Byzan-
tine failures using replication. A protocol ensures safety and
progress if up to a fraction (often 1/3) of the replicas is
faulty. (We refer to “faults” as Byzantine faults in this paper).
PBFT [4] is the first practical BFT protocol. Messages are
exchanged in three phases (see Fig. 1(a)): pre-prepare, pre-
pare, and commit. Since most replicas contribute in message
exchange, in each phase, consensus can be achieved even when
f replicas are Byzantine. This extensive all-to-all messaging
makes PBFT robust, but causes significant performance draw-
backs. Zyzzyva [8] is a speculative BFT protocol where a
client sends a request to a primary replica that assigns it
a sequence number and forwards it to other replicas. These
replicas speculatively execute the request and send their replies
(or digests) back to the client (Fig. 1(b)). This makes Zyzzyva
fast as long as the client receives matching replies from all
replicas. Otherwise, complex recovery phases are launched
when a replica or the primary is faulty; and consequently, its
performance drops sharply.

C. BFT Abortability Approach

Abortability [9] was introduced to reduce the complexity of
BFT protocols and improve their performance using modular-
ity: any BFT protocol is first launched on a set of replicas.
When “something wrong happens”, the current protocol is
aborted and another one is launched on the same set of
replicas, starting a new phase where replicas are initialized
with an abort history: a log of recently applied operations
(starting from the last checkpoint). The authors used aborta-
bility to build Aliph [9]. In Aliph, “something wrong happens”
practically means a fault is detected. Aliph used three abortable
protocols: Quorum, Chain, and backup (an “abortable” version
of PBFT). Aliph initially runs Quorum. Upon failures, caused
by contention, it aborts to Chain. Again, once failures occur,
due to any reason, Chain aborts to backup (simply PBFT in
the rest of the paper) in this specific order, then it continuously
tries to switch back to Quorum using a backoff scheme, either
rigorous (one try per request) or exponential (one try each
2n requests, n being the number of tries). Next, we recall
three important abortable protocols: Quorum [9], Chain [9],
and Ring [17].

Quorum [9] has the theoretical minimum latency among
BFT protocols in contention-free systems due to its simple
one-phase message pattern: a non-faulty client broadcasts a
request to all replicas, and the replicas reply back directly to
the client (see Fig. 1(c)). Since there is no central replica for
sequence number assignment in Quorum, problems can arise
under contention or Byzantine behaviors, and thus it aborts



(a) PBFT (b) Zyzzyva (c) Quorum

(d) Chain (e) Ring

Fig. 1. Message patterns of the state-of-the-art BFT protocols; for f = 1.

to another protocol. Chain [9] is another abortable protocol
that has the highest theoretical throughput. All replicas are
ordered in a chain fashion. The head of the chain receives
a request from a client. Each replica forwards the request to
its successor in the chain until the tail sends the reply back
to the client (Fig. 1;(c)). Although this technique increases
the end-to-end delay, the throughput improves as the number
of MAC operations by each replica is close to one, i.e. the
theoretical lower bound. With large message payloads, Chain
loses its charm due to the network bottlenecks formed on
the head and tail replicas. Ring [17] is an abortable BFT
protocol (Fig. 1(e)) where replicas are organized in a ring
fashion, and each replica has a predecessor and a successor.
A client can send a request to any replica and receive the reply
from the predecessor of that replica. Any request is forwarded
in two rounds around the ring to complete. In the first, it
gets assigned a sequence number by a specific replica, called
“sequencer”; whereas the second round is needed to execute
it on all replicas (Fig. 1(e)). This long trip causes large delays
in Ring responses which makes Chain better in throughput, in
normal conditions (though both require one MAC operation
per replica). However, Ring has a high throughput when the
network becomes a bottleneck as all replicas can receive and
send requests from/to clients.

III. ADAPT ARCHITECTURE

ADAPT is composed of three sub-systems: BFT System
(BFTS), Event System (ES), and Quality Control System
(QCS). BFTS is composed of the libraries of BFT protocols
and abortability [9]. We adjusted existing BFT protocols to
fit the modular logic of BFTS. BFTS operates in a similar
manner to the abortability approach described in Section II-C
above. The Event System (ES), on the other hand, monitors the
whole system and collects the defined Impact Factors: chosen
metrics that have a significant impact on the performance
and reliability of the system (e.g., number of client, request
size, etc). ES sends periodic event notifications to the Quality
Control System (explained next) informing it with any changes
in the impact factors. In ADAPT, we used a simple version of
ES described in Section V-B; (a more sophisticated ES is a
future plan). Since this work focuses on dynamic switching,
and to gain some space, we skip any further discussions about

BFTS and ES, and we focus on the Quality Control System
(QCS) in the rest of the paper.

IV. QUALITY CONTROL SYSTEM (QCS)

A. Overview

QCS is the control unit of ADAPT that is in charge of taking
the decisions: whether switching is needed due to possible
changes in system state, and which protocol is the best to be
launched in the next phase. QCS works as follows: consider
the set of n BFT protocols in BFTS, and assume that BFTS
is initially running pi, i ∈ [1, n]. Once QCS receives an event
from ES indicating some change in the system state, i.e.,
the considered impact factors (e.g., request size), this event
triggers an evaluation process. If this process resulted in a
new protocol pj with a sufficient improvement, i.e., a pre-
defined threshold, over the current performance of the system,
then QCS orders the BFTS to abort the current protocol and
switch to pj ; otherwise, pi is kept running.

B. The QCS Evaluation Process

The evaluation process operates in three modes: static,
dynamic, and heuristic. In the static mode, the evaluation
process selects the best protocol according to its (predefined)
characteristics, and is done before the system starts. In the
other two modes, however, the evaluation process selects
the best protocols in a dynamic way at run-time. Evaluation
includes the characteristics of the protocols and their perfor-
mance. In addition, the heuristics mode (as explained later)
uses some heuristic rules to adjust the system behavior in
exceptional cases. In this paper, we focus on the dynamic and
heuristic modes whereas details about the static mode can be
found in [18], [19]. We make the evaluation process easy to
understand by providing a simple example in Fig. 2.

1) Evaluation metrics: Evaluations are conducted consid-
ering two types of metrics: Key Characteristic Indicators
(KCIs), and Key Performance Indicators (KPIs). The KCIs
represent the fixed (or static) characteristics of the protocol
like: whether it tolerates client faults, the number of replicas
needed to tolerate f faults, etc. The KPIs are the dynamically
computed metrics that evaluate the performance of a protocol,
e.g., throughput and latency. KCI values can be defined by an-
alyzing the BFT protocols, whereas, KPI values are computed
at run-time using prediction mechanisms.



Example: A simple example that describes the computations of the evaluation process.

1. KCI Symbols: spec=Speculative, byz=toleratesByzantineClients, ip=NoIPMulticast
2. KPI Symbols: thr=Throughput, lat=Latency, and cap=Capacity.
3. Considered protocols: PBFT, Zyzzyva, and Quorum.
4. Given user preferences (metrics weights): U means a protocol must be tolerant to Byz. clients, with no IP multicast, and not necessarily speculative. V
means throughput is given higher priority over latency and capacity. W means no heuristics are used.

U =

 0
1
1

 ← spec
← byz
← ip

;V =

 5
2
3

 ← thr
← lat
← cap

; and W =

 1
1
1

 ← thr
← lat
← cap

;

5. KCI and KPI values: The predefined KCI values are presented in matrix A. The KPI values in matrix B are theoretically estimated using message pattern
and MAC operations. (In Section V we use accurate experimental results). B± is derived from B using Eq. 3.

A =


spec byz ip

0 1 1
1 1 1
1 1 0

 ← PBFT
← Zyzzyva
← Quorum

;B =


thr lat cap

0.36 0.4 0.8
0.43 0.3 0.7
0.5 0.2 0.3

 ← PBFT
← Zyzzyva
← Quorum

 =⇒ B± =


thr lat cap

0 0 1
0.5 0.5 0.8
1 1 0


6. Computing C: C indicates that Quorum does not satisfy the KCI user requirements (in matrix U).

C =

[
1

a
. (A ∨̇ (ea − U))

]
=

1

3
.

 0 1 1
1 1 1
1 1 0

 ∨̇
 1

1
1

−
 0

1
1

 =

 1
1

2/3

 =

 1
1
0

 ← PBFT
← Zyzzyva
← Quorum

7. Computing P: P indicates that Quorum, theoretically, achieves the best performance (without considering matrix C yet).

P = B±.(V ◦W ) =

 0 0 1
0.5 0.5 0.8
1 1 0

 .

 5
2
3

 ◦
 1

1
1

 =

 0 0 1
0.5 0.5 0.8
1 1 0

 .

 5
2
3

 =

 3
5.9
7

 ← PBFT
← Zyzzyva
← Quorum

8. Computing E: E indicates that Zyzzyva is chosen as the best protocol (theoretically) since Quorum is now ruled out.

E = C ◦ P =

 1
1
0

 ◦
 3

5.9
7

 =

 3
5.9
0

 ← PBFT
← Zyzzyva
← Quorum

Fig. 2. A simple example about using the BFT evaluation process.

2) Best protocol selection: The evaluation process ends
up by selecting the preferred BFT protocol among a set
of candidate ones in BFTS under the new conditions; this
is achieved through computing the evaluation scores of the
competing protocols, and then selecting the protocol that
corresponds to the maximum score. More formally, for any
state s, and protocol pi ∈ BFTS that has an evaluation score
Ei,s; the best protocol ppref is chosen according to Eq. 1:

ppref = pi, s.t. Ei,s = max
1≤j≤n

Ej,s. (1)

Any evaluation score Ei,s is calculated according to the
formulas introduced in Eq. 2 which is explained next.

E = C ◦ P

where C =

[
1

a
. (A ∨̇ (en − U))

]
and P = B±.(V ◦W ).

(2)

a) Matrix E: The evaluation matrix E is the Schur
product 2 of the KCI matrix C and the KPI matrix P . C
represents the part of the evaluation that deals with the KCIs
of the protocols; whereas, P represents the evaluation part
that deals with the KPIs. E is calculated after computing the

2A Schur, a.k.a., Hadamard, product of two matrices with entries aij and
bij , resp., returns a new matrix where an entry cij = bij × aij ∀i, j.

values of C and P. The combination of C and P in computing
evaluations is important as it eliminates the protocol that does
not match the characteristics required by the user and, at
the same time, recommends the protocol that has the best
performance. If the mode of the system is dynamic or heuristic,
then E may change at run-time as P also changes.

b) Matrix C: The matrix C =
⌊
1
a . (A ∨̇ (en − U))

⌋
matches given the user preferences against the characteristics
of different protocols. Matrix A represents the profiles (i.e.,
the KCIs) of the protocols; each row represents a vector of a
different KCIs. U is a vector matrix that represents the given
user preferences (i.e., the weights). The operator ∨̇ is similar to
the product operator with using ‘∨’ boolean operator instead of
the dot ‘.’. This is used to calculate the total number of KCIs
that do match user preferences in U, per each protocol. The
column matrix en is a unit matrix that is only used to invert
the values of the matrix U to −U . The use of 1/a within the
integer value operator [ ] rules out the protocol that does not
match all user preferences in matrix U (see Fig. 2).

c) Matrix P: Matrix P is defined in the formula: P =
B±.(V ◦W ). B represents the matrix of considered KPIs
of the protocols, one protocol per row. Since all KPIs are
represented in the same matrix and the same formula, a
special care must be taken to avoid “comparing oranges to
apples”. For instance, consider the two KPIs: throughput and
latency. Throughput can have very high numbers (e.g., in



thousands) whereas latency can have small numbers (likely
less than 1 sec). Simply adding or multiplying their values
would give high significance for throughput. In addition, a
higher throughput is better, while a higher latency is worse,
which gives a wrong evaluation.

To handle these issues, we say that a KPI has the property
Tendency=‘high’ if a higher value means better evaluation
score E, e.g., throughput; this KPI is denoted by β+. On the
contrary, a KPI of type β− has the property Tendency=‘low’,
e.g., latency, where a higher KPI value means a worse evalua-
tion score E. Now, suppose the number of β-KPIs is b, then the
matrix B can be divided into b column matrices (i.e., vectors):
B1, B2, Bi, ..., and Bb. Let the maximum (resp., minimum)
entry value of each vector Bi be maxi (resp., mini), Then,
we compute a new normalized matrix B± whose entries can
be calculated according to Eq. 3:

β+
ji = 1− maxi − βji

maxi −mini
;

β−
ji = 1− βji −mini

maxi −mini
;

where i ≤ b and j ≤ n.

(3)

where the entries of the matrices B± and B are denoted by
β± and β, respectively. This brings three benefits: (1) all the
KPI values are now bounded by the same interval [0, 1] which
does not give any significance for a KPI over the others; (2)
a higher value in B± means a better performance whatever is
the KPI; (3) values are now small floats which are easier to
compute by the processor.

V is a column matrix that represents the KPI user-defined
weights for evaluations. The matrix follows two constraints:
(1) its entries are in [0, 10], and (2) their sum

∑b
i=1 vi1 = 10.

Matrix W is a column matrix only used in the heuristic mode.
W is important to adjust the user preferences given in V (using
the Schur product V ◦W ) according to predefined heuristic
rules (discussed next). Finally, the computation of P becomes
straightforward (see Fig 2).

C. Heuristics

The weights in matrix V are offered by the user telling
which KPI is given a higher priority. However, our experience
shows that there are practical considerations that make these
weights less effective and thus require special intervention,
which we enforce using heuristic rules. To clarify our idea,
consider the following two heuristic rules:

(H1) when concurrent clients are few, latency becomes more
important than throughput and capacity and

(H2) under high contention, capacity and throughput be-
come significantly more critical than latency.

The first heuristic rule is valid as no bottlenecks are present
and thus the priority is to give faster replies to current users.
Thus regardless of the weights provided by the user in matrix
V, latency must be given high priority under this condition,
this is achieved by giving a large weight for latency in the
matrix W. The second rule follows the opposite logic and thus
latency is given low priority regardless of the user choice. The

values of matrix W have the same constraints as matrix V
explained in the previous section. Using these rules improves
the evaluations that would have resulted using V alone (notice
that V and W are Schur multiplied). (Defining a more complete
set of heuristic rules can be a future study).

D. Worthy Switching

The evaluation process described above runs the protocol
that is roughly better than others under the current state
(Eq. 1). This is theoretically sound; however, in practice,
it can impose a high cost due to the switching overhead,
discussed in Section V. This makes it costly and useless
to switch from one protocol to another if the improvement
induced by the new one is not significant. Therefore, it makes
sense to only switch when the new protocol brings sufficient
benefits, i.e., exceeding a predefined switching threshold: Sthr.
Consequently, Eq. 1 can be confined with the following
constraint:

pmax

pcurr
≥ Sthr

where pmax and pcurr are the evaluation scores corresponding
to the best protocol (under the current state) and the currently
running one, respectively. Sthr can be defined by the service
administration (e.g., 10%).

It can happen that the current switching phase was triggered
by a malicious behavior event (induced by ES) and that the
performance of other protocols is not sufficiently better than
the current one. This is however safe, since the evaluation
process considers KCIs too, which will exclude the protocols
that are not robust to the current malicious state. In Section V,
we show that ADAPT switches to PBFT under faults, being the
most robust protocol in BFTS.

E. Prediction of KPIs

The evaluation process strictly depends on the values of
KCIs and KPIs. As mentioned above, KCIs are fixed val-
ues defined before the system starts. However, KPI values
must be computed at run-time in order to perform a correct
evaluation since a protocol’s performance can change as the
system conditions vary. In ADAPT, we assess the KPI values,
experimentally, as it gives run-time accurate numbers; to the
contrary of theoretical analysis and simulation-based methods
in [13] and [14] that give a general inaccurate theoretical
results. This is done using prediction mechanisms, like Support
Vector Machines for Regression [12] (SVR).

We briefly describe the prediction process of a single KPI
in the following. First, each protocol is run a period of time
while tuning the impact factors and getting the KPI values
under each state. After a sufficient set of records is collected,
i.e, a training set, a prediction function is designated and
trained on it. The prediction function takes the impact factors
as input and outputs a KPI value. The purpose is to find the
parametric values of the prediction function that give the most
accurate predictions. Once training is done, at any instant
while the system is running, when ES sends an event with
new values for the impact factors, the prediction function is



executed on these values and returns a new predicted value
for each KPI (that is used in matrix B above). To get accurate
predictions, the training set must always be updated by ES,
while the system is running, such that the prediction function
periodically “improves itself”.

F. A Robust QCS

The role of QCS is essential in ADAPT as it controls the
entire system and thus must also be Byzantine resilient. To
achieve this, a shadow control channel runs QCS using PBFT
protocol on the same set of replicas, in parallel with the
other running protocol. The parallel protocols are completely
separated and not allowed to interfere. This means that QCS
is run on all replicas and the switching decisions are taken
by the primary replica in the current PBFT view. QCS runs
PBFT since it is a robust protocol suitable for critical services,
like QCS, where performance is not a requirement, being not
exposed to clients (the clients in this case are the replicas
themselves). Since the evaluation process often occurs silently,
while the current protocol is running, using PBFT has no effect
on the performance of this process. The only affected case is
when the system switches due to some fault; this forces the
current protocol to abort and wait until evaluation finishes. In
this case, the delay to achieve consensus in PBFT imposes
additional time on the evaluation process that we discuss in
Section V-G.

V. EVALUATION

A. Evaluation Methodology

To evaluate our approach, we first briefly describe ADAPT
code, and then we move to the experimental settings including
the code setup, applications, and prediction methods. Second,
we present the scores inferred by the evaluation process
showing that different protocols are chosen in different con-
ditions. These scores are also important to help explain the
performance graphs of ADAPT that dominates those of other
protocols. Then, we show how ADAPT improves the switching
dynamics of Aliph, and that the switching cost in ADAPT is
also not significant. At the end, we present an experiment with
dynamic workload showing that Zyzzyva sometimes perform
better than Aliph due to the classical static switching used;
and that this issue is absent in ADAPT. In our experiments,
we considered:

- Five BFT protocols: PBFT, Zyzzyva, Quorum, Ring, and
Chain; we have chosen these protocols as they have clear
improvement over others which helps explaining our idea.

- Three KPIs: throughput, latency, and capacity; being
the most important metrics for performance. Capacity in our
context means the maximum number of clients that a protocol
tolerates.

- Four impact factors: number of clients, request size,
response size, and faulty replicas; as we noticed through our
experiments that these are the most significant factors on most
BFT protocols.

For the evaluation process (introduced in Section III),
we used the client preferences represented by the following

matrices: U = en meaning that no constraints are made on
the KCIs of the protocols, i.e., all protocols are accepted
to show the strengths of the dynamic switching using KPIs.
V = (3, 3, 4) corresponding to (throughput, latency, capacity),
meaning that the three metrics are given similar weights. In
addition, we translate the heuristic rules, H1 and H2, defined
in Subsection IV-C to using W = (1, 8, 1) and W = (2, 1, 7),
respectively.

B. The Implementation in Brief

The code of ADAPT is divided into several modules. The
QCS is implemented in 1274 lines of C/C++ code compris-
ing the evaluation process and the mathematical equations
introduced above. We used one thread per KPI such that
evaluations of different KPIs take place in parallel. A plug-
in of eight Bash scripts was also implemented to interface
the control module with the prediction library used, i.e., the
Java LIBSVM [20]. Another module implements the switching
logic of abortability which is a modified version of the one
used in Aliph [9]. This module also collects the BFT libraries
of the considered protocols in our experiments. Finally, we
implemented a simple module in C++ to act as an Event
System in order to conduct our experiment, e.g., we use
message buffers and sockets to get the number of concurrent
clients and to check the message sizes, etc.

C. Experimental Settings

1) The Setup: We experimented ADAPT on a cluster of 25
64-bit Xeon machines with 2 GB of memory, running Ubuntu
OS, and deployed on Emulab [15] test-bed. All modules were
installed on all replicas, whereas, the QCS was only run on
one machine. The number of replicas is four (i.e., f=1). Each
replica runs on a separate machine and the client processes
share 20 machines. The maximum bandwidth of the network
is set to 100Mb to be able to easily saturate the network and
observe the behavior of the protocols. To compare our results,
we use the standard a/b benchmark 3 with different payload
sizes [4]: 0/0, 4/0 and 0/1. (We experimented other payload
sizes too but we don’t present them since they are similar to
the presented ones, and because we believe these are enough
to clarify our idea.)

2) About Applications: We considered three different ap-
plications in our experiments: (1) a simple integer-increment,
(2) the key-value store Redis [16], and (3) OpenLDAP [21].
The purpose was to cover a wide range of applications where
BFT protocols may behave differently. It turned out that as
the execution time of the considered application increases, the
different protocols converge in performance. For instance, our
results, confirm the results published in literature, e.g., [4],
[7], [8], [9], [10], [11], while negligible execution time is
considered, as in case (1). On the contrary, with OpenLDAP
(having more than 1ms execution time), the performance of
the protocols was very close ([22] explains this observation
in more detail). Consequently, ADAPT is not very effective

3In a/b benchmarks, a, and b correspond to request size, and response size
in KB, respectively.
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with OpenLDAP since no switching will occur. On the other
hand, using a naive application like integer incrementing is
not too realistic, though it can show the strengths of ADAPT
more clearly. This encourages us to only consider Redis (due
to space limitations) as a trade-off, and being a cutting-
edge application that spans a wide market. Redis server was
installed on all system replicas, and accessed locally by each
BFT library through its API.

3) Computing Predictions: KPI predictions were done us-
ing the Machine Learning SVR method [12] with the Radial
Basis Kernel (RBK) supported by the LIBSVM library [20].
The parameters of the SVR prediction function (C and γ)
were chosen using the five-fold cross-validation [12] over a
training set and test set. In total, the size of the data instances
was around 500 records of the form (number of clients,
request size, response size, throughput, latency, capacity). We
divided the data instances into: a training set (85%), and a
test set (15%). The former was used to train the prediction
function, and the latter to evaluate its accuracy. We have
run the five protocols for 10 continuous days with varying
the values of the four impact factors introduced above. In
essence, we used nine request size in the range [0B, 4KB];
and used three response size: 0B, 64B, and 1KB. The number
of simultaneous clients ranged between 1 to 450 clients, with
running more frequent experiments with fewer clients. The
achieved prediction accuracy using RBK was more than 95%
which was sufficient to get accurate evaluation scores for
ADAPT. (We omit prediction details for space limits). The
prediction database (raw data files) of the QCS was hosted
by the same replica where QCS is located.

D. Evaluation Scores

ADAPT launches the protocol that achieves the best eval-
uation score as described in Section III. Fig. 3 conveys
the results of the evaluation scores (y-axis) returned by the
evaluation process with different payloads 0/0, 4/0, and 0/1 as
the number of concurrent clients change (x-axis). (We present
0/1 instead of 0/4 since we had problems with Zyzzyva code).
The figure only depicts the protocols with the highest scores,
i.e., those will be launched by ADAPT in the corresponding
conditions. The figure shows that different protocols are better
under different conditions. For instance, Quorum leads other

protocols with small message sizes and few clients, e.g., up
to 30 clients in the 0/0 payload experiment. We expected this
since Quorum has the lowest latency among other protocols,
and due to using the heuristic rule H1 in this case. Beyond 30
clients, Chain is chosen as best protocol since it theoretically
requires almost one MAC operation per replica. With larger
message sizes, e.g., 4/0 and 0/1 experiments, Chain saturates
the network (since a request visits all replicas); consequently,
Zyzzyva is chosen in this case up to 80 clients. This is referred
to the short messaging pattern in Zyzzyva and having replicas
to respond with response digests directly to the clients. Under
high contention, e.g., beyond 80 clients in the 4/0 experiment,
Ring achieves the highest evaluation score since it allows
all replicas to receive requests from clients. Finally, PBFT
protocol is the only protocol that operates in presence of
faults, and thus it gets the highest evaluation score under these
conditions. Next, we show how these evaluation scores impact
the performance of ADAPT.

E. Performance Comparison

In general, a chosen protocol in Fig. 3 would mean a
high throughput and low latency in the performance graphs
presented next in Fig. 4. For brevity, we only present the
results for 4/0 and 0/1 payloads (other payloads are similar).

a) 0/1 benchmark.: As shown in Fig. 4(a) and 4(b),
ADAPT outperforms other protocols with large responses, i.e.,
0/1 payloads, in throughput and latency. ADAPT launches
Quorum up to 10 clients (using heuristic rule H1) and then
switches to Zyzzyva as noticed before in Fig. 3. Using Quorum
with few clients makes the throughput of ADAPT slightly better
than Zyzzyva, however, significantly better than Zyzzyva in
latency (since H1 says that latency is more important with few
clients). The throughput of ADAPT, as well as latency, is close
to Aliph that also runs Quorum with few clients. Then, the
throughput and latency of ADAPT becomes close to Zyzzyva
since ADAPT switches to Zyzzyva that leads other protocols.
This result is interesting since as it shows the strengths of
the dynamic switching of ADAPT in comparison to static
switching in Aliph. In fact, Aliph switches from Quorum to
Chain with 80 clients once Quorum crashes. Between 10 and
80 clients, ADAPT runs Zyzzyva that significantly dominates
Quorum (almost double its throughput). Then, Aliph has the
only choice to switch to Chain; whereas, ADAPT switches in
a smart way to Zyzzyva, thus achieving a higher throughput
than Aliph; this limitation is due to the pre-defined order of
protocols in Aliph (i.e., Chain, Quorum, then PBFT).

b) 4/0 benchmark.: With 4/0 payloads, ADAPT leads
the other protocols too, as depicted in Fig. 4(c) and 4(d).
ADAPT launches Zyzzyva with up to 80 clients, after which
Ring leads Zyzzyva, and thus, ADAPT switches to Ring to
benefit from its performance under high load (see Fig. 3);
consequently, ADAPT outperforms both Zyzzyva and Ring.
ADAPT outperforms Quorum and Chain too. We refer this to
using message digests with MAC authentication in Zyzzyva
instead of Quorum that uses complete messages and RSA
authentication. On the other hand, sending message digests
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Fig. 4. Performance comparison of BFT protocols.

directly to the client in Zyzzyva avoids the network bottlenecks
found in Chain. Moreover, ADAPT dominates Aliph since the
latter uses Quorum with few clients an switches to Chain
with 80 clients (when Quorum crashes). Aliph could not
benefit from the performance of Ring and Zyzzyva, as ADAPT
does, due for two reasons: (1) its predefined switching order:
Quorum, Chain, and then PBFT; and (2) since it lacks the sense
of intelligent dynamic switching like ADAPT (e.g., switch
when you can gain performance). As for latency, Fig. 4(d)
shows that the latencies of ADAPT, Aliph, and Zyzzyva
are close. The reason is that Quorum and Zyzzyva exhibit
similar latencies under these conditions, and since ADAPT
and Aliph run Zyzzyva and Quorum, respectively. Notice that
with more than 400 clients, ADAPT launches Ring as it has
a higher capacity to clients (2000 clients), though the latency
of Zyzzyva is lower. This is explained by the heuristic rule
H2 that gives more weight to throughput and capacity as the
number of clients gets very high (to avoid the risky running
of Zyzzyva).

F. The Case of Faulty Replicas

Fig. 4(e) depicts a 0/0 payload comparison of throughput
between ADAPT and Aliph with one faulty replica, where both
protocols switch to PBFT. We do not plot other protocols
since Chain and Quorum could not run under failures; whereas
Zyzzyva achieves 15% lower throughput than PBFT under
failures as the authors mention in [8]. Ring is worst than
PBFT under faults too [17] due to its long two-chain-rounds
messaging pattern.

For Aliph, Fig. 4(e) plots the curves for the default rigorous
switching and for the exponential backoff switching. To simu-
late faulty replicas, we disconnect one replica for 30 seconds.

During this period, ADAPT switches to PBFT (as already seen
in Figure 3). Once the faulty replica comes back, ADAPT
switches back to Quorum that achieves the best evaluation
score with 0/0 payload. On the contrary, Aliph with the
rigorous scheme repeats the process of “executing one request
using PBFT, switching back to Quorum, it fails, an then
switches to PBFT again” until the faulty replica comes back,
where Aliph finally runs Quorum. The throughput during these
30 seconds period is close to zero. With exponential backoff
scheme, Aliph runs PBFT for 2 requests and attempts to switch
to Quorum, it fails, and runs back PBFT each time with 2i

requests (where i is the switching attempt number). Aliph with
backoff scheme switches back to Quorum where i = 14; thus,
executing around 36K operations during 45 seconds. Notice
that, in this scheme Aliph could not immediately switch back
to Quorum after the faulty replica recovers, at 30 seconds.
Therefore, during 45 seconds, ADAPT executes around 66K
operations by the time Aliph switches back to Quorum with
36K operations in the backoff scheme, and 30K operations in
the rigorous scheme. This is expected since ADAPT switches
either upon failures or when performance changes, whereas
Aliph only switches upon failures.

G. Switching Cost

We only compare switching cost in ADAPT with Aliph
since it is the only protocol among others that uses switching.
The results in Fig. 4(f) show that the switching overhead of
1KB requests is negligible (up to 30 ms), even with an abort
history (AH) of 250 requests. In fact, ADAPT uses a similar
fine-grained checkpoint algorithm as in Aliph [9], which
prevents AH from getting too large. Although applications
can have long request execution times (which is ≈ 20µs in
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Redis [16]), this does not affect ADAPT and Aliph since they
do not execute operations that are previously executed. The
switching time of ADAPT is close to Aliph with no faults since
ADAPT runs the evaluation process before switching, and only
switches if it is worthy (as explained in Subsection IV-D).
Upon failures, however, ADAPT runs the evaluation process
(including predictions) after aborting; this causes a higher
switching overhead that goes up to 100 ms with 250 AH size.
This cost is considered tolerable and has no big impact on the
performance as explained in Subsection V-E above.

H. Performance Under Dynamic Workloads

We compare ADAPT, Aliph, and Zyzzyva under dynamic
workloads. We discard the other protocols as they exhibit
poor performance in this case. We injected to the system
1M operations in three bursts of different message payloads:
7 × 105 0/0, 6 × 104 4/0, and 25 × 104 0/1. We used fewer
requests with larger payloads since it is very time consuming
(though ADAPT can perform better than others under these
conditions since it runs Ring). For each burst, we changed
the number of clients from 5, to 30, and then to 250. To
consider workload under faults, after each burst, we reduced
the number of clients to 5 and we disconnected one replica
(not the primary), then we injected 20K 0/0 operations.

Fig. 5 shows that Aliph and Zyzzyva require 24% and
16.5% additional time to finish the 1M requests, respectively.
We expected this result as ADAPT uses a combination of
Aliph (that uses Quorum, Chain, and PBFT), Zyzzyva, and
Ring, choosing the best protocol under different conditions.
The surprising result, however, is that Zyzzyva finished before
Aliph. We did not expect this at first; however, after deeper
observation, we referred this to two reasons:

- The first reason is that, under faults, and although the
throughput of Aliph (i.e., 871KB/s) is better than Zyzzyva 4

(i.e., 760KB/s), Aliph is delayed 27 seconds after two faulty

4Since our Zyzzyva code does not work properly under faults, we estimated
Zyzzyva’s throughput under faults according to the Zyzzyva paper [8] stating
that it performs 15% worst than PBFT under failures.

periods, labeled in blue on Figure 5, due to the exponential
backoff scheme. In the first faulty period (at 38sec), for
example, we noticed that Aliph was forced to switch back
and forth from Quorum to PBFT 15 times; and thus executing
215=32K requests instead of 20K, meaning that it executed
32K-20K=12K requests while running PBFT (of throughput
871KB/s) instead of Quorum (of throughput 2290KB/s), yield-
ing a backoff overhead of 14 seconds. Zyzzyva, however,
finished these 12K requests in 4.5 seconds as it has a 2820KB/s
throughput. Notice that ADAPT does not pay this handoff cost
as it immediately switches to Zyzzyva once the faulty replica
recovers.

- The second reason is that Zyzzyva performs better than
Chain (that is used by Aliph) with large responses (1KB and
more). This is expected since Zyzzyva replicas (except one
replica) send response digests directly to the client, whereas a
response in Chain visits all replicas that overloads the network.
Simply using Zyzzyva in Aliph (in addition to Quorum, Chain,
and PBFT) is not trivial since it is not clear when to abort
from Chain to Zyzzyva or vice versa; unless similar methods
to those used in ADAPT are used.

VI. RELATED WORK

BFT Protocols. The Byzantine generals problem was in-
troduced by Leslie Lamport in [3]. Then, the first practical
BFT protocol (PBFT) was introduced in [4] by Castro et al.
PBFT has proven to be robust under faults, though it exhibits a
low performance in fault-free conditions. Later works ([7], [8],
[9], [11], [10], etc.) then appeared to enhance the performance
of PBFT, often using speculation in fault-free periods, and
an expensive recovery phase upon failures. Nevertheless, no
single protocol dominated the others under all conditions. The
notion of abortability, proposed in [9], enabled the use of
multiple BFT protocols and switching between them in a static
pre-defined order. This paper shows that abortability could not
achieve the expected results under dynamic payloads using the
simple static switching with backoff scheme, as in [9], and
proposes an alternative smart dynamic switching policy.

Performance Assessment. Analytical models like [13]
and [14] give a general idea about the performance of BFT
protocols; however, these models are not very accurate in
systems that have highly dynamic conditions, and they could
not be used efficiently at run-time. Our approach requires
accurate predictions in order to achieve meaningful decision
making. In this paper, we adopt a Machine Learning (ML)
prediction method (i.e., SVR [12]) based on real experimenta-
tion, leading more than 95% prediction accuracy. To the best
of our knowledge, the idea of using ML is new to fault tolerant
protocols either Byzantine or benign.

Adaptive Fault Tolerance. To the best of our knowl-
edge, this work represents the first dynamically adaptive BFT
approach. The abortable BFT protocol introduced in [9] is
statically adaptive, meaning that the protocols and their order
must be defined before deployment. Other adaptive fault
tolerant approaches existed in literature, e.g., in databases
[23] and clouds [24], but they are adaptive in the sense that



they try to change the strategy of distributed objects across
replicas or by using a variant number of nodes; however, ours
is adaptive by changing the running protocol itself without
touching the data objects. For instance, the fault tolerant
database idea in [23] changes the replication scheme of an
object (number of reads/writes); in [24] the authors present a
fault tolerant cloud system where add/remove operations are
done according to the reliability level of an image. Other multi-
agent systems [25] and sensor networks [26] tackled similar
problems by changing the strategy played among agents, or
by changing paths in sensor networks, respectively.

VII. CONCLUDING REMARKS

The fault tolerance area was flooded by dozens of BFT
protocols trying to improve their robustness and performance.
But it remained hard to cope with systems that exhibit variable
conditions and workloads. A promising idea, i.e., abortability,
was introduced in [9] to combine existing protocols in a single
system that can run one of them at a time. In this paper, we
have shown that this approach does not achieve the anticipated
results without a dynamic switching mechanism to move from
one protocol to another, as the system conditions change.

We introduced ADAPT, an adaptive abortable BFT system
with a dynamic switching method that evaluates each protocol
at run-time, using Machine Learning predictions, and switches
to the protocol having the highest evaluation score. This is
triggered by an event sent by a system module that monitors
the system state (number of clients, faults, message sizes,
etc.). To compute the evaluation scores, we devised some
mathematical equations that match the characteristics of a
protocol and its performance metrics against the BFT user (i.e.,
service owner) preferences. We conducted some experiments
showing that ADAPT outperforms other protocols under most
conditions, and especially dynamic workloads.

Our approach is useful for systems having variable con-
ditions and workloads, and such that the execution time of
operations is small (e.g., up to 100ms). Longer execution
times mask the communication overhead of protocols and
makes their performance close. In this case, switching is a
waste of time. Furthermore, systems that experience stable
conditions and constant message payloads are advised to use a
single BFT protocol to avoid the switching overhead and the
added complexity induced by our approach. Our experience
shows that, in many cases, Zyzzyva (or another variant, e.g.,
Aardvark [10]) is known to perform very well, whereas PBFT
is recommended when the performance is not a major concern.

A future work can be to involve more BFT protocols in
ADAPT, and to define a set of heuristic rules to improve its
performance further. Introducing an Event System (ES) for
ADAPT is another possible future direction.
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