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Abstract. Architectural (bad) smells are design decisions found in soft-
ware architectures that degrade the ability of systems to evolve. This pa-
per presents an approach to verify that a software architecture is smell-
free using the Archery architectural description language. The language
provides a core for modelling software architectures and an extension
for specifying constraints. The approach consists in precisely specifying
architectural smells as constraints, and then verifying that software ar-
chitectures do not satisfy any of them. The constraint language is based
on a propositional modal logic with recursion that includes: a converse
operator for relations among architectural concepts, graded modalities
for describing the cardinality in such relations, and nominals referencing
architectural elements. Four architectural smells illustrate the approach.

1 Introduction

Software systems evolve to cope with contextual change. This change compro-
mises the value a system delivers as it might come, for instance, from the market
or legislation in which the system is embedded. The principal design decisions
governing a system, i.e., the software architecture [14], play a fundamental role
in its ability to evolve and address change.

Architectural (bad) smells are recurrent architectural decisions that have a
negative impact on the ability of a system to evolve [5]. A catalogue is pre-
sented in [6], where they are characterized in terms of the basic building blocks
that architectural description languages (ADL) offer, i.e., components, connec-
tors, interfaces, and configurations. These design decisions may not constitute
an error or fault, but violate engineering principles such as isolation of change
and separation of concerns. They affect the ability to evolve since they difficult
understanding, testing, maintaining, extending and reusing parts of a system.

In the context of open source software (OSS), architectural smells acquire
further relevance. This is because one of the most important success factors is
the voluntary contribution of OSS community members [1]. Thus, the easier the
system is to understand, test, maintain, extend and reuse, the greater the chances



of involving volunteers. Formal approaches enabling the automatic verification
of smell-freeness of architectures will have a positive impact in both the quality
of OSS projects and in the health of the involved community [2].

The work reported in this paper aims toward such end. The approach consists
in using the Archery language [8,9], an ADL with formal semantics, to verify
constraints specifying the absence of architectural smells in software architec-
tures. It does not aim at replacing existing practices in OSS communities, but
to complement them, as suggested by the proposal discussed in [2]. Archery
is organized as a basic language, named Archery-Core, and extensions built
on top of it. Archery-Core allows modelling the structure and behaviour of
software architectures in terms of architectural patterns, and the extensions are
for specifying reconfiguration scripts and constraints.

Archery-Constraint is the extension for specifying constraints upon ei-
ther structure, behaviour or reconfiguration processes of architectures. The spec-
ification language is based on a propositional modal logic. As a consequence,
constraints become formulæ of a modal logic, interpreted over Kripke structures
obtained from Archery’s specifications (see [10] for reconfiguration and [11]
for structure). Since the proposed approach focuses on structural constraints,
modalities allow inspecting the Kripke structure obtained from an architecture,
by regarding the configuration constituents and their relationships as the Kripke
structure’s worlds and relationships, respectively.

The underlying logic is a fully enriched µ-calculus [3]. It includes fixed points,
a converse operator, two graded modalities and hybrid features. Fixed points are
for specifying recursive formulæ, and thus liveness and safety conditions. The
converse operator allows exploring the converse of relations, and graded modal-
ities allow describing their cardinalities. Hybrid features consist of a mechanism
to explicitly refer to specific worlds through nominals, elementary propositions,
each of which is only true at the world it identifies, and a reference operator
which asserts that a formula is satisfied at the world named by a specific nomi-
nal. These features make possible, for instance, to express the equality between
two worlds, to denote that a world is accessible through a relation from another
world, or to assert the irreflexivity of a relation. Moreover, they make possible
to describe acyclic structures when included in recursive constraints [11].

The approach can be used upon recovery techniques are applied to obtain an
Archery model. In fact, techniques were applied in [12] to recover an Archery
model for an existing software system, and subsequent model-based analysis and
modifications were carried out. It is worth noting that the unrestricted access to
source code renders OSS systems a natural target for the presented approach.

Architectural smells described in [6], and architectures of actual software sys-
tems illustrate the approach. The architectures were either documented during
development, or recovered from source code, and are described in references also
available in [6]. Observe that one of the example architectures was recovered
from Linux [4], an open source operating systems widely adopted.

The obtained constraints correspond to decidable fragments of the underlying
logic. The fully enriched µ-calculus is known to be not decidable, however, the



fragments obtained by omitting one of either the converse operator, the graded
modality operators, or the hybrid features, is [3]. None of the constraints that
characterize the smells requires recursion, and three of them exclude either the
converse operator, the graded modality operators, or the hybrid features.

The contribution of the paper is two fold. First, the constraint language pre-
sented in [11] is extended by including graded modalities. Second, the extended
language is applied to precisely model architectural bad smells, which enables
formally verifying the absence of these violations to design principles.

The rest of the paper is structured as follows: section 2 briefly describes the
Archery language; section 3 characterizes the smells as structural constraints;
section 4 describes the fully enriched µ-calculus, the translation of structural
constraints to it, and illustrates how a constraint is verified; section 5 summarizes
results and describes future work.

2 The Archery language

This section describes Archery-Core in a brief and partial way (detailed de-
scriptions can be found in [8,9]), and extends the structural part of Archery-
Constraint presented in [11]. The language is illustrated with an architectural
pattern inspired in the Java Messaging Service (JMS). It prescribes three archi-
tectural elements: queues, where messages are kept in a specific order; producers,
that send messages to the queue; and consumers, that receive messages from
the queue. In the example pattern, a consumer provides one of three possible
services, depending on the received message.

2.1 Archery-Core: Modelling structure

An Archery-Core specification comprises one or more (architectural) patterns,
a variable that references the main architecture, and global data specifications
(not part of the examples in this paper). A pattern defines one or more (archi-
tectural) elements (connectors and components), such as the JMS pattern and
the Queue, Producer and Consumer elements shown in Listings 1.

1 pattern JMS()
2 element Queue() interface in rcvMsg; out dlvr;
3 element Producer() interface in start; out sndMsg;
4 element Consumer() interface in onMsg; out func;
5 act funcA,funcB,funcC;
6 end
7 jms:JMS = architecture JMS()
8 instances
9 q:Queue();

10 p:Producer=Producer(); c:Consumer=Consumer();
11 attachments
12 from p.sndMsg to q.rcvMsg;
13 from q.dlvr to c.onMsg;



14 interface p.start as produce; c.func as consume;
15 end

Listing 1. JMS Pattern and architecture

Each element includes an interface that contains one or more ports. A port
is defined by a polarity, either in or out and a name. For instance, the interface
of Queue defines two ports in line 2. An element can optionally include a set
of actions, and a set of process descriptions expressed in a subset of the mCRL2
process algebra. An action represents an event that is not a port activation, e.g.,
see line 5. Process descriptions are not considered in the sequel.

A variable (see line 7) has an identifier and a type that must match an element
or pattern name. Allowed values are instances of a type (element or pattern),
that do not necessarily need to match the variable’s own type.

An architecture describes the configuration a set of instances adopt. It con-
tains a token that must match a pattern name, a set of variables, an optional set
of attachments, and an optional interface. The type of each variable in the set is
limited to an element in the pattern the architecture is instance of, such as in line
10. Each attachment includes port references to an output and an input port. A
port reference is an ordered pair of identifiers: the first one matching a variable
identifier, and the second matching a port of the variable’s instance. Then, an
attachment indicates which output port communicates with which input port –
see e.g. p.sndMsg with q.rcvMsg in line 13. The architecture interface is a set
of one or more port renamings. Each port renaming contains a port reference
and a token with the external name of the port. An example interface is shown
in line 14. Ports not included in this set are not visible from the outside.

2.2 Archery-Constraint: Describing structure

Structural constraints are verified over Kripke models obtained from Archery-
Core specifications. Each model includes a set W of worlds and a family R
of binary relations among them, with Mod a set of relation labels. The meta-
model of Archery’s architectures is shown in Figure 1. The worlds are the
constituents: instances, ports, actions, variables, port references, attachments,
names, and renamings. The relationships among constituents conform the family
R of relations. The labels of relationships in Figure 1 become the modality sym-
bols m ∈Mod. For convenience, modality symbols attd and evt are included.
The former names the relationship that relates two worlds representing variables
connected through an attachment. It is obtained as R[vref ]◦◦R[strt]◦◦R[end]◦
R[vref ], were R◦ denotes the converse of a relation. The latter is obtained as
R[prt] ∪R[act].

Propositions test if a specific condition is present at a (world) w. They are
classified in: a) Naming propositions exist for each action and port name, and
hold when evaluated at a world representing the corresponding action or port.
b) Meta-type propositions hold when w belongs to a specific participant set, e.g.,
PatternInstance. c) Emptiness is checked by a single proposition, namely
Empty, which holds when w is a variable with no associated instance. d) Type
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Fig. 1. Relations and roles in spatial specifications

propositions depend on the pattern definition. They test if w is an instance or
a variable of a type. For example, the JMS pattern generates four proposition
symbols: JMS, Queue, Producer and Consumer.

Each variable in a specification defines a nominal in the set Nomvar. In
addition, depending on the variable’s type, they are also included in a subset
Nomvar:TY PEID. Then, each nominal holds exactly at the world that represents
the corresponding variable.

Structural constraints are associated to a pattern or to a pattern instance.
They allow precisely describing design decisions that characterize architectural
patterns [11], and the absence of smells, as it is shown in this paper.

Pat ::= pattern THeader Elem+ SConsts? end
PatInst ::= architecture IHeader ABody SConsts? end
SConsts ::= structural constraints SConst+
SConst ::= const ID Q? F ; Rec* end
Q ::= (all | exists) ID (: TYPEID)? .
Rec ::= (finite | infinite) ID = F ;
F ::= True | False | PROP | not F | F or F | F and F

| F implies F | F iff F
| [M ]F | <M>F | [(Nat,)?M ]F | <(Nat,)?M>F
| A F | E F | ID | NOM | at NOM F

M ::= MOD | MOD-

Fig. 2. Grammar of structural constraints

A well-formed constraint is either a propositional formula, a modal formula,
a converse formula, a graded modality formula, a recursive formula, or a hybrid
formula (see grammar in Figure 2). In a modal formula, a 〈M〉F indicates that
there exists a relationship M (named by expression M) between the present world
and another world satisfying (formula) F, whereas a [M ]F indicates that any
relationship M leads to a world satisfying F. An M non-terminal describes either



a modal symbol Mod, that names a relation R[Mod ] in the Kripke model, or
the converse R[Mod ]◦ indicated with Mod-. Graded modality formuæ, <n,M>F
and [n,M]F, describe a world where F holds in at least n+1 M-related worlds,
and a world where F holds in all but at most n M-related worlds, respectively. In
recursive formulæ, an ID designates a formula, and it is indicated if the recursion
is expected to be finite or infinite. Hybrid formulæ are built of a nominal Nom,
that is satisfied if the current world is the unique world referenced by such Nom,
and of a reference operator at Nom F, which is satisfied if at the world named
by Nom, F is. Global modality formulæ EF and AF are also included in the logic,
as they allow defining duals for the reference operator. They are as 〈M〉F and
[M ]F but with W ×W as the underlying relation.

The quantifiers all and exists can only occur in the beginning of a
constraint and have as domain the variables of the configuration. The mean-
ing of an all x:TYPEID F is the conjunction of formulæ at i F, for each
i ∈ Nomvar:TY PEID. The meaning of an exists x:TYPEID F, is a disjunction
of formulæ at i F, for each i ∈ Nomvar:TY PEID.

3 Architectural smells

In this section, the Archery language is used to characterize the architectural
smells in [6]: connector envy, scattered parasitic functionality, ambiguous inter-
faces, and extraneous adjacent connector. The smells are illustrated using the
same examples used in [6], which are specified and then verified using Archery.
The examples do not aim at including an exact model of the software architec-
ture, but to cover the fragment which is relevant to the smell.

3.1 Connector envy

Components with connector envy assume responsibilities that a connector typ-
ically assumes. These responsibilities supporting interaction are classified as
either concerning communication, coordination, conversion, or facilitation [7].
Communication and coordination services carry out the transfer of data and
control, respectively. Conversion services address mismatches between required
and provided interactions. Facilitation services cover streamlining and optimiza-
tion needs in interactions.

The filesystem daemon of the Grid Datafarm [13] is an instance of connector
envy [6]. The Grid Datafarm is a framework for petabyte scale data-intensive
computing. It offers a filesystem distributed over the nodes of a PC cluster, where
the operations in each node are facilitated by a daemon. The smell emerges as
each daemon incorporates, besides its domain specific functionality, coordination
behaviour that relies in a private remote procedure call (RPC) mechanism to
interact with other daemons.

Listing 2 shows the specification of the pattern fragment and an instance. It
only includes the daemon element GFSD, which has ports to coordinate work with
peers through RPC (sndRpcCoord and rcvRpcCoord), and to allow accessing



its functionality (sndResFun and rcvReqFun). The architecture consists of two
instances of the daemon connected through the ports for RPC coordination.

1 pattern GDatafarm()
2 element GFSD()
3 interface
4 in rcvReqFun, rcvRpcCoord; out sndResFun, sndRpcCoord;
5 end
6 df:GDatafarm = architecture GDatafarm()
7 instances d1:GFSD=GFSD(); d2:GFSD=GFSD();
8 attachments
9 from d1.sndRpcCoord to d2.rcvRpcCoord;

10 from d2.sndRpcCoord to d1.rcvRpcCoord;
11 end

Listing 2. Fragment of Grid Datafarm pattern and example architecture

The constraint that verifies that an architecture does not suffer of connector
envy is shown in Listing 3. It is divided in two parts, one that is generic and
another that is specific to the pattern. The generic part comprises lines 1 to 4.
It states that if a world represents an element instance, then it is not possible to
access to a world that represent domain functionality and to a world that rep-
resent interaction (communicatin, coordination, conversion, or facilitation) from
it. The specific part, line 4–8, establishes the worlds that represent functionality
and interaction by indicating the propositions that hold in such worlds.

1 const ConnEnvy
2 A (ElementInstance implies
3 not (<evt> Function and <evt> Interaction));
4 finite Interaction = Comm or Coord or Conv or Fac;
5 finite Function = rcvReqFun or sndResFun;
6 finite Comm = False;
7 finite Coord = rcvRpcCoord or sndRpcCoord
8 finite Conv = False; finite Fac = False;
9 end

Listing 3. Specification of connector envy for Grid Datafarm

3.2 Scattered parasitic functionality

The scattered parasitic functionality is found when a set of architectural elements
share a concern while at the same time, some of them individually address an
additional unrelated concern. Thus, the principle of separation of concerns is
violated in two different ways: by scattering a concern among a set of elements,
and by making a single element responsible of two concerns.

This smell is found in the Linux kernel architecture [6] as recovered in [4].
The PROC file system contains status information about the kernel, including
its executing processes. However, it relies on other kernel subsystems to report



their own status. As a result, the Process Scheduler and the Network Interface
subsystems depend on the PROC file system.

Listing 4 shows an Archery’s specification for a fragment of the recov-
ered architecture of the Linux kernel. The pattern includes a ProcFS element
that receives status reports in port rcvStatus. It also includes the elements
NetInterface and ProcScheduler that share a port sndStatus and an
action statusChk, as their instances send a status report to an instance of
ProfFS. These two elements also have unshared functionality, modelled by other
actions. The architecture contains an instance of each element, and connects the
other two with the ProcFS instance.

1 pattern Kernel()
2 element ProcFS() interface in rcvStatus;
3 element NetInterface() interface out sndStatus;
4 act connect, access, statusChk;
5 element ProcScheduler() interface out sndStatus;
6 act schedule, statusChk;
7 end
8 k:Kernel = architecture Kernel()
9 instances

10 prc:ProcFS=ProcFS(); sch:ProcScheduler=ProcScheduler();
11 net:NetInterface=NetInterface();
12 attachments
13 from sch.sndStatus to prc.rcvStatus;
14 from net.sndStatus to prc.rcvStatus;
15 end

Listing 4. Fragment of Linux kernel architecture

The constraint specifying the absence of the scattered parasitic function-
ality is shown in Listing 5. It requires that for each instance in an architec-
ture, referenced by a nominal x, if there is a name that corresponds to an
action of (the instance referenced by) x, then, it is not possible to find two
actions with that name that belong to instances in the same architecture as x,
which also have at least another action. The meaning of some of the expressions
is as follows: <name-><act->x describes a name that corresponds to an ac-
tion of x; <name-><2,act-> holds in a name shared by at least two actions;
<comp-><comp>x holds in an instance placed in the same architecture as x;
and <2,act>True holds in an instance with at least two actions.

1 const ScatteredParasiticFunc
2 all x. A ((Name and <name-><act->x) implies not
3 (<name-><2,act->(<comp-><comp>x and <2,act>True));
4 end

Listing 5. Specification of scattered parasitic functionality



3.3 Ambiguous interfaces

An ambiguous interface offers a single entry point into an architectural element
that offers multiple services. Instance of this smell are found in the JMS pattern,
as reported in [6]. The example pattern is described in section 2.

Listing 1 shows the specification that corresponds to a fragment of the JMS
pattern and a software architecture. The smell is present in consumer instances
that receive messages in port onMsg, but can perform any of three functionalities
represented by actions FuncA, FuncB and FuncC.

The absence of cases of this smell is specified for the JMS example in Listing
6. The constraint detects the cases in which there is a single entry point, but
multiple services are offered. The constraint holds if whenever there is an element
instance, it is not the case that it has a number of ports less or equal to two, with
one having inward direction, and it also has at least two actions that correspond
to specific functionality. Note that the expressions [2,prt]False holds at
worlds that represent instances that have at most two ports.

1 const AmbInt
2 A (ElementInstance implies not
3 ([2,prt]False and <prt>In and <2,act>Function);
4 finite Function = FuncA or FuncB or FuncC
5 end

Listing 6. Specification of ambiguous interfaces for JMS architectures

3.4 Extraneous adjacent connector

This smell occurs when two architectural elements interact through two different
connector types. The presence of an extra connector type may cause a cancella-
tion of the benefits that each of them offers individually.

The MIDAS System shows an instance of extraneous adjacent connector as
reported in [6]. Communication in the system is mainly supported by event-
based connectors, which are used by all high-level services. An exception is the
service discovery engine that accesses the service registry using procedure calls.
Then, the two components interact through two different connector types, which
constitutes an instance of the extraneous adjacent connector.

The specification in Listing 7 characterizes a fragment of the pattern of the
MIDAS system, and an architecture where the smell is found. It includes four
elements: two connector types, and two component types. The former represent
the event-based connector type Channel and the procedure call connector type
PC. The component types are ServiceDiscovery and ServiceRegistry.
The architecture includes an instance of each of the elements, and connects
the two components using two connectors of different types. This configuration
constitutes an instance of the extraneous adjacent connector.

1 pattern MIDAS()



2 element Channel() interface in rcvEvnt; out sndNtf;
3 element PC() interface in rcvPcComm; out sndPcComm;
4 element ServiceDiscovery()
5 interface in rcvNtf; out sndEvnt, sndPc;
6 element ServiceRegistry()
7 interface in rcvNtf, rcvPc; out sndEvnt;
8 end
9 m:MIDAS = architecture MIDAS()

10 instances c:Channel=Channel(); pc:PC=PC()
11 sd:ServiceDiscovery = ServiceDiscovery();
12 sr:ServiceRegistry = ServiceRegistry();
13 attachments
14 from sd.sndEvnt to c.rcvEvnt;
15 from sr.sndEvnt to c.rcvEvnt;
16 from c.sndNtf to sd.rcvNtf; from c.sndNtf to c.rcvNtf;
17 from sd.sndPc to pc.rcvPcComm;
18 from pc.sndPcComm to sr.rcvPc;
19 end

Listing 7. Fragment of MIDAS Pattern and architecture

The constraint in Listing 8 specifies the absence of a case of extraneous ad-
jacent connector. The constraint holds if whenever there is an element instance,
it is not attached to connectors of different type. It is formulated in a very spe-
cific way, as it only considers the connector types of the pattern. If the pattern
includes different connector types, the conjunction of the constraint needs to be
reformulated, to consider all different pairs.

1 const ExtAdjConn
2 A (ElementInstance implies not
3 (<attd>PC and <attd>Channel));
4 end

Listing 8. Specification of extraneous adjacent connector for MIDAS

4 Verifying architectural constraints

This section describes the syntax and semantics of the fully enriched µ-calculus
[3], provides a translation that takes a constraint and yields a formula in such
logic, establishes the fragment of the logic used to characterize each architectural
smell, and illustrates the logic with a manual verification of the formula that
corresponds to the absence of the ambiguous interface smell on the model for
the JMS example architecture.

The syntax of the fully enriched µ-calculus is shown in Definition 1.

Definition 1. Let Prop be a set of propositional symbols, Mod a set of atomic
modal symbols, XVar a set of states variables, and Nom a set of nominals. A
modal symbol β is either



(a) an atomic modal symbol α, or
(b) the converse of an atomic modal symbol (denoted as) α◦.

Then, the set SForm of well-formed state formulæ of the fully enriched µ-calculus
is the smallest set such that a state formula is either

(c) the top constant >,
(d) a proposition p,
(e) a negation ¬ϕ,
(f) a conjunction ϕ ∧ ψ,
(g) a possibly operator 〈β〉ϕ,
(h) a state variable X,
(i) a maximal fixed point formula νX.ϕ, with every free X in ϕ occurring pos-

itively, i.e., within the scope of an even number of negations,
(j) an at least graded modality 〈n, β〉ϕ with n ∈ N,
(k) a global possibly operator Eϕ,
(l) a nominal i,
(m) a formula satisfaction operator @iϕ

where p ∈ Prop, {ϕ,ψ} ⊆ SForm, X ∈ XVar , and i ∈ Nom. ut

Derived constants and operators are obtained as follows:

⊥ = ¬> ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ = ¬ϕ ∨ ψ ϕ↔ ψ = ϕ→ ψ ∧ ψ → ϕ

[β]ϕ = ¬〈β〉¬ϕ ¬〈n, β〉ϕ = [n, β]¬ϕ
Aϕ = ¬E¬ϕ µX.ϕ = ¬νX.¬ϕ[X/¬X],

where ϕ[X/¬X] denotes a formula ϕ with all occurrences of X replaced with
occurrences of ¬X.

Table 1. Fragments of the fully enriched µ-calculus

Logic Clauses Constraint (listing)

Fully enriched µ-calculus (a)-(m) Scattered parasitic func. (5)
Full graded µ-calculus (a)-(j) –
Full hybrid µ-calculus (a)-(i),(k)-(m) –
Hybrid graded µ-calculus (a),(c)-(m) Ambiguous interfaces (6)
Graded µ-calculus (a),(c)-(j) –
Hybrid µ-calculus (a),(c)-(i),(k)-(m) Extraneous adjacent conn. (8),

Connector envy (3

Restricted groups of clauses define less expressive, but useful logics. Five
of these logics and the specific clauses that define them are shown in Table 1.
The third column indicates which logic is required to specify each of the four



architectural smells. Note that an actual recursion is not required by any of the
four constraints, which may allow defining them in a less expressive logic. The
translation in Definition 4 provides the correspondence between the structural
constraint extension and the logic, which is used to classify the smells.

Fully enriched µ-calculus formulæ are interpreted over Kripke models.

Definition 2. A Kripke model for the fully enriched µ-calculus is a triple M =
(W,R, V ) where

– W is a non-empty set of worlds, also called states or points;
– R : Mod → W ×W is a relation function that yields, for a given atomic

modal symbol α, a binary relation on W ; and
– V = V : Prop ] Nom → P(W ) is a valuation function that returns the set

of worlds where a given propositional symbol or nominal holds.
ut

The interpretation of formulæ is described relying on the notation as follows:
the expression m[d 7→ r] denotes a map m′ in which m′(d′) = m(d′) for all d′ 6= d
and m′(d) = r otherwise; the set of values in the domain mapped by m is called
its support, and is denoted as supp(m).

The meaning of a state formula is defined in terms of sets of W , as it is
described in Definition 3.

Definition 3. Let M be a Kripke structrue for the fully enriched µ-calculus,
and s : XV ar → P(W ) be a state environment that yields a set of worlds for a
given state variable. The set of worlds that satisfy a state formula ϕ ∈ SForm
(definition 1) is given by the interpretation function J·Ks : SForm → P(W )
inductively defined as

J>Ks , W (1)

JpKs , {w ∈W : w ∈ V (p)} (2)

J¬ϕKs , W \ JϕKs (3)

Jϕ ∧ ψKs , JϕKs ∩ JψKs (4)

J〈β〉ϕKs , {w ∈W : ∃w′ ∈W.(w,w′) ∈ S[β] ∧ w′ ∈ JϕKs} (5)

JXKs , s(X) (6)

JνX.ϕKs ,
⋃
{W ′ ⊆W :W ′ ⊆ JϕKs′} with s′ = s[X 7→W ′] (7)

J〈n, β〉ϕKs , {w ∈W : n <| {w′ ∈W : (w,w′) ∈ S[β] ∧ w′ ∈ JϕKs} |} (8)

JEϕKs ,

{
W if ∃w ∈W.w ∈ JϕKs
∅ otherwise

(9)

JiKs , {V (i)} (10)

J@iϕKs ,

{
W if V (i) ∈ JϕKs
∅ otherwise

, (11)



provided that

S[β] =
{
R[α] if β = α
R[α]◦ if β = α◦,

fsv(ϕ) ⊆ supp(s), and fsv(ϕ) denotes the free state variables of ϕ. ut

Definition 4 presents the translation that takes structural constraints, built as
described in Figure 2, and yields a fully enriched µ-calculus formula. A notational
convention adopted to present the translation is to consider non-terminals of the
grammar as sets. For instance, f ∈ F is used to indicate that expression f is
built according non-terminal F . In addition, the substitution of x by i in a
constraint is denoted as [x/i].

Definition 4. Given a constraint c ∈ SConst, consisting of an optional quan-
tifier q ∈ Q, an expression f ∈ F and optional recursion definitions rs ∈ Rec∗,
the translation T : SConst→ SForm is defined as follows:

T (q, f, rs) =



∧
i∈Nomvar:type

@i T (f,R(rs))[x/i] for q = all x:type∨
i∈Nomvar:type

@i T (f,R(rs))[x/i] for q = exists x:type∧
i∈Nomvar

@i T (f,R(rs))[x/i] for q = all x∨
i∈Nomvar

@i T (f,R(rs))[x/i] for q = exists x

T (f, rs) = T (f,R(rs))

where the translation of the recursion definitions is carried out by function R :
Rec∗ → (ID → SForm) defined as

R(r rs, V ) =

{
R(rs, V [ID → µ ID.T (f, rs)]) for r = finite ID f
R(rs, V [ID → ν ID.T (f, rs)]) for r = infinite ID f

R([ ], V ) = V

with t ∈ (finite|infinite), f ∈ F , rs ∈ Rec∗, and V ∈ ID → SForm, and the
translation of f ∈ F defined as

T (True, V ) = > T (False, V ) = ⊥
T (p, V ) = p T (not f, V ) = ¬T (f, V )

T (f or g, V ) = T (f, V ) ∨ T (g, V ) T (f and g, V ) = T (f, V ) ∧ T (g, V )

T (f implies g, V ) = T (f, V )→ T (g, V ) T (f iff g, V ) = T (f, V )↔ T (g, V )

T ([m] f, V ) = [M(m)] T (f, V ) T ([n,m] f, V ) = [n,M(m)] T (f, V )

T (〈m〉f, V ) = 〈M(m)〉 T (f, V ) T (〈n,m〉f, V ) = 〈n,M(m)〉 T (f, V )

T (A f, V ) = A T (f, V ) T (E f, V ) = E T (f, V )

T (id, V ) = V (id) T (i, V ) = i

T (at i, V ) = @i
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Fig. 3. Partial Kripke model for the JMS example configuration

M(m) = m M(m-) = m◦

where m ∈ Mod . ut

Then, the translation of the constraint in Listing 6 yields formula

A (ElementInstance→ ¬([2, prt]⊥ ∧ 〈prt〉In
∧ 〈2, act〉 µFunction.(FuncA ∨ FuncB ∨ FuncC))).

A partial Kripke model for the architecture in Listing 1 is shown in Figure 3.
The model is partial since worlds representing names and their relationships are
omitted. Each node in the graphic represents a world and includes: an identifier
in the first line; the satisfied propositions in the second line; and the satisfied
nominals in the third line. A short code is used instead of the actual name
of propositions. The codes are: V (Variable), PI (PatternInstance), EI (Ele-
mentInstance), P (Port), I (In), O (Out), A (Attachment), R (Renaming), PR
(PortReference), Act (Action), Q (Queue), Prd (Producer), and C (Consumer).

The verification of the formula is as follows:

A (ElementInstance→ ¬([2, prt]⊥ ∧ 〈prt〉In



∧ 〈2, act〉 µFunction.(FuncA ∨ FuncB ∨ FuncC)))
= { duality and definition of implication }

A (¬ElementInstance ∨ ¬(¬〈2, prt〉¬⊥ ∧ 〈prt〉In
∧ 〈2, act〉 ¬νFunction.(¬(FuncA ∨ FuncB ∨ FuncC))))

= { (2) and duality }
A (¬{w5, w6, w7} ∨ ¬(¬〈2, prt〉> ∧ 〈prt〉{w8, w10, w12}
∧ 〈2, act〉 ¬νFunction.(¬FuncA ∧ ¬FuncB ∧ ¬FuncC)))

= { (1), duality, and (2) }
A ¬({w5, w6, w7} ∧ (¬〈2, prt〉W ∧ 〈prt〉{w8, w10, w12}
∧ 〈2, act〉 ¬νFunction.(¬{w14} ∧ ¬{w15} ∧ ¬{w16})))

= { (3),(4), (7), and (3) again }
A ¬({w5, w6, w7} ∧ (¬〈2, prt〉W ∧ 〈prt〉{w8, w10, w12}
∧ 〈2, act〉 {w14, w15, w16}))

= { duality, (8), (5) and (8) again }
¬E ({w5, w6, w7} ∧ (¬∅ ∧ {w5, w6, w7} ∧ {w7}))

= { (3) and (4) }
¬E ({w7})

= { (9) and (3) }
∅.

Then, the constraint is not satisfied by the architecture in Listing 1, i.e., the
architecture contains an instance of the ambiguous interface smell.

5 Conclusion and future work

This paper proposes the usage of the Archery ADL to verify that software
architectures are free of architectural smells found in catalogue [6]. The approach
consists in specifying the absence of smells as constraints, and then verifying
that architectures satisfy them. The constraint language is translated to a fully
enriched µ-calculus, whose syntax and semantics are described. An architectural
smell is detected in an example architecture, by showing that it fails to verify
the corresponding constraint.

Future work includes the extension of the constraint language to cover the
behaviour of instances and of reconfiguration scripts, and the development of a
verification tool. The application of the language to case studies in Healthcare
and e-Gov is also part of future developments.
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