
Universidade do Minho
Conselho de Cursos de Engenharia
Mestrado em Informática

Master Thesis
2007/2008

P2P content-push for the Internet

Ana Nunes

Supervisor: José Orlando Pereira <jop@di.uminho.pt>

November, 2008

2

Acknowlegements

To my supervisor who didn’t give up on me, and lent a helping hand until the
very end.
And to Carlos, for his unwavering support.

3

4

Abstract

Syndicated content-push in the Internet is a huge success, and web feeds are
being used to convey various types of content: from news headlines, to pod-
casts and video podcasts, to being a feature in Web 2.0 websites. This diversity
lead to the appearance of several frameworks, each tailored to a specific con-
tent type. At the same time, interest in social networking exploded, as more
and more websites of this purpose were launched. Syndicated content and so-
cial networking websites are now intimately connected.
In this work, a generic, modular, p2p content-push architecture is proposed.
It provides an evolutionary upgrade path based on the technologies already
in use in the Internet for interoperability, thus without disrupting current in-
frastructure or changing participants’ habits. It also leverages social networks
for content discovery and aggregation, using peer-to-peer protocols for distri-
bution. A partial implementation of this architecture, dubbed SEEDS, is also
presented.

5

6

Resumo

O conteúdo agregado na Internet é um grande sucesso, e as “feeds” de conteúdo
web estão a ser usadas para transportar vários tipos de conteúdo: desde cabeçalhos
de notı́cias, a “podcasts” e “video podcasts”, até aparecendo como funcional-
idade de sı́tios Web 2.0. Esta diversidade levou ao aparecimento de várias
plataformas, sendo cada uma pensada para um tipo de conteúdo especı́fico.
Ao mesmo tempo, o interesse em redes sociais explodiu, dado que cada vez
mais sı́tios Web com este propósito foram lançados. O conteúdo agregado e os
sı́tios Web de redes sociais estão agora intimamente ligados.
Neste trabalho, uma arquitectura de “content-push” ponto-a-ponto, genérica e
modular, é apresentada. Esta proporciona um caminho evolucionário de mel-
horamento, baseado em tecnologias já em uso na Internet para potenciar a in-
teroperabilidade, sem causar rupturas na infraestrutura actual ou modificar
os hábitos dos participantes. Também tira partido das redes sociais para de-
scoberta de conteúdo e agregação, utilizando protocolos ponto-a-ponto para
a distribuição. Uma implementação parcial desta arquitectura, denominada
SEEDS, é também apresentada.

7

8

Contents

1 Introduction 13
1.1 Background . 13
1.2 Problem Statement . 17
1.3 Approach . 17

2 Related Work 19
2.1 Some Definitions . 19
2.2 Related Work . 21

2.2.1 Content dissemination . 21
2.2.2 Social networking . 26

3 Proposed Architecture 27
3.1 Overview . 27

3.1.1 User Interface . 29
3.1.2 Publisher Interface . 29
3.1.3 Feedback and Recommendations 29
3.1.4 Social Interaction . 29
3.1.5 Standards . 30
3.1.6 Automatic Content Cooperative Downloading 30

3.2 Protocols . 31
3.2.1 Multicast . 31
3.2.2 File Sharing . 31

4 Evaluation 33
4.1 Overview . 33
4.2 The SEEDS Proxy . 34

4.2.1 Instantiation . 35
4.2.2 Protocols . 36

4.3 Standards . 38
4.4 Social I/O Manager internal architecture 39

4.4.1 Instantiation . 39

9

10 CONTENTS

4.4.2 Group Management Policy 40
4.5 Recommendation . 41

4.5.1 Feedback and Endorsed Entry Recommendation 41
4.5.2 Feed Recommendation . 41

5 Conclusions 45
5.1 Future Work . 45

List of Figures

1.1 Internet news feeds distribution and caching architecture. . . . 14

3.1 Overall Architecture . 28
3.2 The Social Information Flow . 30

4.1 Overall Architecture . 34
4.2 SEEDS proxy’s internal architecture 35
4.3 SEEDS Conceptual Social I/O Manager’s Internal Architecture . 39
4.4 Some Statistics . 43

11

12 LIST OF FIGURES

Chapter 1

Introduction

Some time ago, the bulk of information available in the Internet was only
accessible in the content-pull paradigm. E-mail was pretty much the only
widespread application of content-push. Since then, a shift towards making
information available through content-push was made, using web syndication
as the platform to support it. Social content sharing spawned from this shift in
paradigm and from the growing interest in social networking services. In this
work, a p2p content-push architecture, which leverages syndication protocols
and the social web, is presented.

The rest of this chapter is structured as follows: in Section 1.1 the current
syndication architecture and its shortcomings are presented, using news feeds
as an example, hinting at the motivation for this work. Then, in Section 1.2 the
problem statement for this work is given. Finally, in Section 1.3, an approach
to solving the problem stated is given, highlighting its guidelines.
The rest of this document is organized as follows: in Chapter 2, some defi-
nitions are given, along with an analysis on related work in content dissemi-
nation and social networking. Then, in Chapter 3, the architecture of the pro-
posed system is presented, along with the contributions it entails. In Chapter 4,
the feasibility of the proposed system architecture is assessed, detailing a par-
tial implementation. Finally, in Chapter 5 some conclusions are drawn, along
with some insight for future work.

1.1 Background

Syndicated content in the Internet has been a huge success ever since its early
days. Currently, it is the cornerstone of content-push, ranging from podcasts
to emerging Web 2.0 sites. Unfortunately, the bafflingly simple technology that

13

14 CHAPTER 1. INTRODUCTION

HTTP

Feed2
Static

Aggregator
(planet)

Dynamic
Agregator Site

(portal)

Feed1

Browser
Aggregator
Application

Figure 1.1: Internet news feeds distribution and caching architecture.

makes publication and subscription very simple and flexible, thus explaining
in part its success, is also limiting its usefulness in more demanding applica-
tions.

In order to illustrate the motivation for this work an example using news
feeds is presented. Notice that feeds are an example of the migration to content-
push in the Internet.

An example using news feeds

Fig. 1.1 depicts the common Internet feed distribution architecture. Feeds, pub-
lished in a XML format (e.g. RSS [12]), can be subscribed to directly by the end-
user, using an aggregator application (e.g. RSSOwl), by a portal (the original
intent), or by a static aggregator (a.k.a. planet)1. Feed addresses are shared
directly by users, through planets or portals. Notice that even though all ag-
greators can perform caching, only in portals and planets can cache be shared
between multiple users. Notice also that planets are a manual effort to identify
communities with shared interests and provide them with commonly accepted

1See Section 2.1 for definitions.

1.1. BACKGROUND 15

content. Portals are much less prone to allow that sharing. But, on the other
hand, in planets the end user is not allowed to customize the feeds to be pre-
sented.

Even though from the user’s perspective news feeds seem to behave like
content-push, they are, in fact, a pull technology. The aggregator application
simply hides the polling from the user, pushing new entries when those be-
come available.

Consider, for instance, that one tries to stay current with the content of a
given website. It would be necessary to keep polling each of the server’s pages
to check for updates. Now if we add that instead of one client, a website will
typically serve several (and a popular website will serve thousands), and also
take into account the mere size of the Internet, it soon becomes clear that band-
width consumption and increased server load pose a problem, as the number
of clients and their polling rates rise.

Syndication eases polling by collecting short descriptions of recent updates,
with pointers, in a single file that can be polled more easily. Nonetheless, con-
sider the following example. Each Wired Top Stories feed is sized at about
79KB, and from data available at Bloglines2 it’s subscribed by at least 94,951
users. If separately polling the feed with an estimated refresh period of 2 hours,
with 12 updates per day, daily polling-related traffic reaches 87.9 GB.

Bandwidth consumption is aggravated by the inability of many servers and
clients to retrieve only the updated entries, and that once a user subscribes to
a feed, she’ll likely maintain it for a long time. Also, stemming from the use
of news readers and from the global nature of the Internet, polling will occur
persistently.

Some techniques have been proposed to try to minimize this problem [27],
although with limited success, as discussed in [37]. In [35] the author points
out that “Conditional GET” [36] mechanisms may not necessarily lead to the
bandwidth savings expected,

“ since most of these news operations churn out headlines with
monotonous regularity. ”

The RSS specification foresees the possibility of notifications being deliv-
ered to readers, through the rssCloud interface[14], whereby readers register
to a cloud, and notifications are delivered by calling back, using either XML-
RPC or SOAP, to a procedure registered by the reader. However, by design,
this mechanism doesn’t work for readers behind firewalls or NAT.

Another interesting point raised in [35] is that even the purpose of ISP-level
caching may be defeated as

2http://bloglines.com, a popular Web based feed reader that provides usage statistics.

http://bloglines.com

16 CHAPTER 1. INTRODUCTION

“... if they do it with cached times of more than 10 min, then
people will route around the caches.”

This article also raises the concern of default loading of RSS feeds by browsers
and possible implications for bandwidth consumption.

A look at syndication

The Web has grown tremendously and it’s content has evolved to be much
more dynamic than in its early days. While some websites still feature essen-
tially static content, others are updated daily, and in some cases (e.g., news ori-
ented websites) the update rate is even higher, amounting to several updates a
day.

Syndication has changed the standard paradigm in order to cope with these
events, by addressing the problem of knowing when an update is available.
This is achieved using a content-push model, based on the publish/subscribe
paradigm: content publishers provide a feed, that is, a XML file containing
headlines and descriptions, often with links to new articles or blog entry posts,
that users subscribe to. Conceptually, a web feed provides a summary of a
website’s recently added content.

Web feeds are also a major feature of social networking sites, being used
to disseminate frequently updated information to interested users. For in-
stance, Facebook [2] uses feeds to highlight changes in social circles and also
to disseminate information about any particular user; FriendFeed [4] tries to
make Web content more useful by leveraging social connections, as informa-
tion about Web interaction, for users considered to be interesting, is condensed
into a feed.

Current syndication protocols (RSS [12], Atom [1]) allow anyone to easily
publish or subscribe to feeds by using simple tools. These protocols prove
quite adequate for the large majority of feeds, featuring few subscribers and
low data throughput.

Still, a new dimension arised when feeds began to be used to convey audio
or video, originating podcasts and video podcasts, respectively.

There are some feed/content distribution architectures/frameworks avail-
able, but each bound to specific purposes: file-sharing, micronews delivery,
microblogging, etc. Some frameworks even feature social awareness. Also,
some proposals geared towards fully decentralized social networks, focusing
both on privacy concerns and on data portability, have been presented.

1.2. PROBLEM STATEMENT 17

1.2 Problem Statement

These different feed/content distribution architectures each look to a specific
subset of p2p-based content push in the Internet. The social dimension, which
by enhancing collaboration, could lead to benefits in terms of bandwidth sav-
ings, provide content recommendation and aid in establishing trust, is lacking
in some and all together too restrictive in others. Also, available toolsets are
tightly bound to the specific-purpose architectures. An important issue is the
lack of an open and flexible framework to provide generic content-push, while
leveraging existent general-purpose social networks to promote collaboration
in managing the available resources. This open framework should not rein-
vent the wheel, building, instead, on composition of different already existent
architectures, retaining the ability to cater to different needs.

1.3 Approach

The main goal of this work is to obtain a generic content-push architecture
for the Internet, addressing the issues raised in Section 1.2. Feed entries are
construed as content, and dissemination is done using p2p protocols. Group
formation is central to this approach, and social information is key. To accom-
plish this purpose with the desired properties of openness and flexibility, a set
of guidelines were considered:

Multiple Dissemination Protocols Content type and traffic patterns vary
widely. For example, some feeds can be mainly composed of text, normally
for website related news, or feature richer content (feeds with audio/video at-
tached), generating traffic with different characteristics. File-sharing imposes
yet another traffic pattern. Another factor is the number of publishers and
subscribers envolved in each instance. It makes sense not to use the same dis-
semination protocol for such different cases, so it is necessary to differentiate
them and choose the right protocol.

This way, we are able to disseminate small content quickly and large con-
tent efficiently.

No Change to the Source One of the reasons other feed dissemination pro-
posals haven’t met great success (e.g. FeedTree [44]) was that they relied heav-
ily on the source to explicitely join the system. We should not expect the source
to collaborate. Also, it should possible to use existent protocols and its archi-
tectures without fundamentally altering them.

18 CHAPTER 1. INTRODUCTION

No Change to the Target Clients shouldn’t need to change their habits. Some
content dissemination architectures require a specific client, and some use only
specific-purpose social networks (eg. Tribler [40]). It should be possible to
use pre-existent social networks (eg. Hi5 3) and take advantage of the differ-
ent dissemination architectures without requiring a special client for each one,
selecting automatically the most appropriate method.

Enhanced Discovery and Aggregation By leveraging social networks the clients’
experience should be enhanced with recommendations and cooperation. These
can be content related or stem from social connections.

Click but no Wait Large content, such as media files in podcasting and vod-
casting, should be available to be viewed by the user with the same timeliness
as the others, avoiding the “click-wait”[45] system.

3www.hi5.com

Chapter 2

Related Work

In this chapter, some related work is presented. First, in Section 2.1, definitions
for some terms are given. Then, in Section 2.2, a number of proposals that focus
either on news or multimedia caching and dissemination, and on content shar-
ing in social networks, all relevant to this work, are presented and analyzed
with respect to desired features.

The peer-to-peer content-push system proposed in this work handles di-
verse content types, where large content is automatically downloaded, pub-
lished autonomously by a large number of sources, with large numbers of sub-
scribers, which interface with the system using any feed-capable third-party
application. Also, content discovery is provided through endorsement and
recommendation. Technology standards are respected, including networking
ones, such as to handle NAT traversal.

2.1 Some Definitions

In this section, some definitions deemed relevant to the scope of this work are
given.

Publish/Subscribe or pub-sub is a message-based communication paradigm
in which senders and receivers are decoupled. Receivers (subscribers)
indicate their interest in specific channels, thereby subscribing to them.
Senders (publishers), instead of sending messages directly to receivers,
publish them to related channels. In an asynchronous manner, sub-
scibers receive messages only from channels they expressed an interest
in. The pub-sub paradigm comprises two fundamental processes for se-
lecting messages for reception: topic-based in which named channels ex-
ist; and content-based in which selection is done based on subscriber-

19

20 CHAPTER 2. RELATED WORK

defined attributes and/or content. A hybrid approach to selection is also
possible. In [24], pub-sub is explained in further detail.

Content-pull vs Content-push Content-pull is the traditional communication
pattern in which the receiver requests a data transfer from the sender.
Content-push is a communication pattern implementing the publish/subscribe
paradigm. In content-push services, the server delivers (pushes) content
to the client, without being requested to do so by the latter. For example,
the SMTP 1 protocol, used for email delivery, conforms to this pattern.
For further details on these concepts, see [33].

Overlay Network Overlay networks, or simply overlays, are constructed by
creating virtual or logical links between nodes of an underlying network.

Peer-to-peer Network A peer-to-peer (p2p) network is an overlay formed by
edge nodes. Nodes cooperate to accomplish different tasks, be it file-
sharing or information dissemination. In decentralized p2p networks,
each peer simultaneously functions as a client and as a server,

Content Distribution Network (CDN) CDNs are overlays consisting of nodes
that cooperate to deliver content to end users. Content distribution net-
works attempt to optimize content delivery, implementing web caches
to store popular content closer to the user, thus reducing bandwidth re-
quirements and server load, increasing reliability and also improving
client response times. For example, the Coral Content Distribution Net-
work [26] is an academic, free, peer-to-peer content distribution network
that leverages the bandwidth of participating nodes as proxy servers,
making it similar to a distributed web proxy.

Broadcatching This refers to automatic downloading of content published in
feeds, eg. tv series related feeds.

Web Syndication, Feed, RSS, Atom Web feeds are files composed of entries,
which may be headlines, full-text articles, excerpts, summaries, and/or
links to content on a web site, along with various metadata. These have
been traditionally used to provide users with frequently updated content.
The term web syndication refers to how feeds are made available from a
website, which is analog to how syndication works in broadcasting. RSS
and Atom are XML-based document formats, both used for feeds. For
futher details on these concepts and on how they relate to each other see
[41] and/or [46].

1http://www.ietf.org/rfc/rfc2821.txt

2.2. RELATED WORK 21

Portal Portals are websites featuring content from a static set of chosen feeds.

Planet Planets are websites featuring aggregated content of interest to a par-
ticular community of users.

Aggregator Aggregators, also known as feed readers or news readers, are ap-
plications that fetch feeds, usually in an automated manner, and present
entries to the user.

Social Networking This concept usually refers to using social network ser-
vices, “focused on building online communities”[15].

Social Bookmarking This concept usually refers to sharing bookmarks with
an online community.

Micro-blogging is “... a form of multimedia blogging that allows users to send
brief text updates (say, 140 characters or fewer) or micromedia such as
photos or audio clips and publish them, either to be viewed by anyone
or by a restricted group which can be chosen by the user. These messages
can be submitted by a variety of means, including text messaging, instant
messaging, email, MP3 or the web.”[7]

Swarming Swarming refers to collaborative file download, in which end users
download bits of the file from other end users who already have them.

2.2 Related Work

2.2.1 Content dissemination

In this section, some related work in the areas of feed/content dissemnination,
content recommendation, and social implications is discussed. An issue shared
by several of the following architectures is the need to use of special-purpose
tools and social networks.

YouTube

Youtube 2 is a very popular centralized video repository. Each time a user
wishes to see video, it is streamed to the user. This sort of centralized architec-
ture is perfect for when a single user is interested in a particular video. How-
ever, if this user wants to share this video with others, and since this is done
by providing a link, each of the other users will need to stream the video from
the centralized repository. Taking into consideration that each of these users

2http://youtube.com

22 CHAPTER 2. RELATED WORK

can then share the video with others, or simply watch the video again, stream-
ing from the centralized repository just seems wasteful in terms of bandwidth
usage and of time waiting for the streaming itself.

Twitter

Twitter[16] is a popular micro-blogging service with an embedded social net-
work and a large user base, distributed across the world[31]. Also from [31],
one of the main user intentions is news reporting and

“Some automated users or agents post updates like weather re-
ports and new stories from RSS feeds.”

Stemming from it’s popularity and large user base, Twitter is currently suffer-
ing from scalability issues[17]. These issues are also discussed in [29] and in
part III of this discussion, there are some suggestions on moving some of the
load to the clients. In such a setting, polling in needed once again. A solution
like the one proposed in this work could then improve bandwidth consump-
tion, since Twitter’s social network could be used to power the social engine
for dissemination groups’ management.

FriendFeed

FriendFeed[4], is a social networking service that condenses information on
Web interaction, for interesting users, in a feed. Content consists of not only
content published by friends (users subscribed to), but also of friends of friends.
Other feeds are also published. For each user, a feed is created with self pub-
lished content (eg. YouTube videos, Digg). Another feed features entries pub-
lished by others that the user marked as “liked”. Yet another feed carries the
user’s comments.
FriendFeed’s architecture is fully centralized, leading to a necessary limit on
the rate of new entries published by a user, to keep scalability-related perfor-
mance issues in check. Once again, a website is consistently polled for updates.
This proposal could be of help in minimizing polling, harnessing social net-
work information for group management. In fact, FriendFeed already features
user-managed groups, which just makes it easier. Also, the “like” mechanism
could be construed as content endorsement, and used to generate recommen-
dations.

Pownce

“Pownce is a way to keep in touch with and share stuff with
your friends. Send people files, links, events, and messages and

2.2. RELATED WORK 23

then have real conversations with the recipients.”

The Pownce 3 service integrates social networking with content sharing. How-
ever, since it is implemented on a centralized architecture, there are some lim-
its [10] to what users can do, both on the number of posts and on shared files’
size.

Flock

Flock 4 is a web browser, but heavily interlaced with social networking and me-
dia services. Inspite of this integration, no bandwidth consumption optimiza-
tion is done, nor improvements over traditional feed readers/aggregators:

“Every hour Flock will check feeds for updates. You can refresh
individual feeds by using the Reload button while viewing a feed.”

Mermaid

Mermaid 5 is a suite of pure peer-to-peer desktop applications in which users
create their own peer-to-peer networks. Among applications for video/audio
broadcasting, a news exchange system 6 is presented, in which members of the
peer-to-peer network are able to broadcast news. However, each content type
requires a different application and the system is presented as an alternative to
RSS.

Portals

Bloglines7 is a portal, ie., a web-based news aggregator, where users can man-
age their feed subscriptions. Even though polling is reduced since, globally,
each feed publisher is refreshed hourly, this imposes limits on the entries’ fresh-
ness. Users wishing to monitor feeds at a higher rate cannot do so using this
service.

Planets

Planet websites are used to aggregate syndicated web content for online com-
munties and to display it on a single page. There is, without question a social
component to this, albeit a static one, as viewers do not control which feeds are
aggregated. Also, for different areas of interest, a client has to visit different
planets which impose sharp boundaries on communities.

3http://pownce.com
4http://flock.com
5http://mermaid.metaaso.com
6http://mermaid.metaaso.com/mermaid/news/overview.html
7http://bloglines.com

24 CHAPTER 2. RELATED WORK

FeedBurner

FeedBurner [3], provides several services to feed publishers. To do so, it works
like a centralized cache, in that the ”burned” version of the feed is the one pub-
licized. The original feed is checked for updates every 30 minutes. Although
server load is moved away from the publisher’s server to FeedBurner’s servers,
the bandwidth consumption problem remains the same. Also, the published
”burned” feed’s timeliness is limited.

FeedTree

FeedTree[44], is an approach directed at collaborative micronews delivery. It
uses a single communication protocol (Scribe [20]) built on top of a peer-to-peer
overlay network (Pastry [43]) and does not promote discovery and aggregation
based on interests or social connections.

FeedEx

FeedEx[32] is a news feed exchange system, where peers cooperate by exchang-
ing feed documents with their neighbours. In FeedEx, content recommenda-
tion is provided, stemming from two sources: from entries rating (or votes) or
by viewing a read as an implicit endorsement; from the feed subscription sets,
determining similar interests. Neighbour selection is done at each peer, based
on the overlap in subscription sets, considering also other factors like topolog-
ical proximity.
FeedEx is limited to news feed dissemination, and so, not suited for dissem-
inating multimedia content (large files). It does provide interesting features,
such as the construction of a distributed news archive and an incentive mech-
anism to minimize selfish behaviour. Also, in this proposal, a specifically tai-
lored peer-to-peer protocol is used, and it is heavily intertwined with the appli-
cation itself. Thus, FeedEx does not support different dissemination protocols.

Tribler

Tribler [40] is an open source BitTorrent client that leverages a social network
to provide content recommendations and cooperative downloading, using a
mechanism of bandwidth donation. Users can create profiles, groups, add
friends and tag content. Tribler’s decentralized recommendation process uses
an algorithm based on an epidemic protocol, by exchanging download his-
tories with peers known to have similar tastes but also with peers chosen at
random. Tribler is geared towards file-sharing, particularly video content and
requires custom desktop tools to participate.

2.2. RELATED WORK 25

Last.fm

Last.fm [5] is a service that can be used for listening to music and that provides
content recommendation based on user’s profiles. When a user listens to a mu-
sic, this information is added to a profile page, visible to other users. With this
data, Last.fm suggests music to users, also allowing them to create personal-
ized radio stations. In this social network, the notion of friendship exists along
side the notion of neighbourhood, taken from the similarity in musical taste.
This service is designed to work with musical content only and is restricted to
centrally supplied content.

Content Distribution Networks

Content distribution networks attempt to optimize content delivery, imple-
menting web caches to store popular content closer to the user, thus reducing
bandwidth requirements and server load, increasing reliability and also im-
proving client response times.
The Coral Content Distribution Network [26] is an academic, free, peer-to-peer
content distribution network that leverages the bandwidth of participating
nodes as proxy servers, making it similar to a distributed web proxy. How-
ever, network nodes are not users and there is no social component associated.
Corona is a distributed, peer-to-peer, cooperative resource management frame-
work. It’s purpose is to maximize the effective benefit of the aggregate band-
width of the system, while remaining within server-imposed bandwidth lim-
its. With Corona, any object identifiable by an URL can be monitored for
changes. Like Coral, network nodes are either a part of the same adminstra-
tive domain, or can consist of server-class nodes, owned by participating in-
stitutions. This framework focuses on balancing the tradeoff between update
performance (freshness) and network load.

Flash 10, Stratus, RTMFP

Adobe 8 has just released a “hosted rendezvous service” to enable direct end
user to end user communication. This service is based on the Real-Time Media
Flow Protocol (RTMFP) 9, a peer-to-peer protocol. However, peers must keep
connected to the rendezvous host, even though application data is exchanged
directly by them. The end clients can be either Flash Players or Adobe AIR
endpoints. This service is directed at real-time communications, such as social
networking and multi-user game. File or document-sharing is not supported,
nor is swarming.

8http://www.adobe.com/
9http://www.adobe.com/go/rtmfp faq

26 CHAPTER 2. RELATED WORK

Although this platform may come to be the one with the most peers (one needs
only to think about Flash browser plugins), as it is now, the service feels too
restrictive in its usefulness.

Azureus/Vuze

Vuze 10 is a GUI 11 for the popular Azureus BitTorrent client, which now fea-
tures an embedded social network based on the notion of friendship, for col-
laborative downloading. This friendship is considered to be, mostly, deriva-
tive from pre-existent social connections. Some mechanisms are available for
friends to cooperate: friend boost if one of a user’s friends wants content already
owned by the user, the latter is able to donate a portion of available bandwidth
to download it; torrents can be shared with friends, which can be construed as
a form of recommendation.

Miro

Miro 12 is an open source desktop video player and broacatching application
that integrates a BitTorrent client to automatically download videos from RSS-
based channels.

2.2.2 Social networking

One of contributions of this work is the leveraging of social networking in-
formation to perform content recommendation and group management. Sev-
eral proposals[19, 23] have been presented regarding social network extrac-
tion from several types of data, like email exchange, instant messaging, phone
calls, publications, web pages, as well as infomation extraction from social net-
works. An interesting contribution is made in [42], which proposes a frame-
work for using social network connections to establish out-of-band communi-
cation channels. The recent proposals for universal identification services like
OpenID 13 may be a stepping stone for enabling a more integrated view of so-
cial networks. Also, many of the social networking services mentioned in this
chapter already expose APIs that can be used to extract useful information.
Some even conform to a common specification dubbed “OpenSocial” 14. This
sort of initiatives enable easy access to social networking information.

10http://www.vuze.com/app
11Graphical User Interface
12http://www.getmiro.com
13http://openid.net
14http://code.google.com/apis/opensocial/

Chapter 3

Proposed Architecture

3.1 Overview

Figure 3.1 shows the proposed architecture for a generic peer-to-peer content-
push system in the Internet, providing the features presented.
The peer-to-peer content-push system is composed of the following entities:

Publishers make web feeds available in the Internet, thereby supplying con-
tent to the system;

Social Networks exist throughout the Internet, be it specific in purpose or, re-
cently, in dedicated websites;

HTTP is the communication protocol of choice for the World Wide Web, serv-
ing as a base for web feeds;

Multicast protocols are used to efficiently deliver compact files to a number of
different parties, creating peer-to-peer overlay networks over the Inter-
net;

File Sharing protocols are used to efficiently deliver large files to a number of
different interested parties, creating peer-to-peer overlay networks over
the Internet.

3rd Party Applications provide the system’s users with an interface;

System Proxys provide access to the system, and cooperate towards the estab-
lished goals;

Social I/O Managers are the gateways to social networking services. The har-
nessed information is used to establish system-wide management poli-

27

28 CHAPTER 3. PROPOSED ARCHITECTURE

 File Sharing

Multicast

HTTP

Feed2

System
Proxy

System
Proxy

Feed1

3rd Party
Application

Social
I/O

Manager

Social
Network

1

Social
Network

2

Figure 3.1: Overall Architecture

cies. These can be deployed separately from the rest of the system, as the
system can function without them.

A brief summary of how these components interact, starting from a given
Proxy, follows: the Proxy identifies a feed request from a third-party applica-
tion and either returns the correponding cached feed, or requests it from the
Publisher. If it is a previously unknown feed, the Proxy contacts a Social I/O
Manager to obtain instructions on how to handle its caching and dissemina-
tion; if none is available, the Proxy proceeds with its own set of configurations.
The Proxy deploys client instances of a multicast protocol for entry dissemina-
tion, and if deemed necessary, of a file sharing protocol. Updates to the cached
feeds arrive from the protocol instances.
Also, the Proxy gathers user feedback, transmits it to a Social I/O Manager and

3.1. OVERVIEW 29

also uses it to determine endorsed content. The Proxy also provides a locally
generated recommendation feed.
The Social I/O manager posts new content to Social Networking services, and
retrieves information on social connections to create groups.

The following subsections summarize the main characteristics of the generic
architecture being proposed.

3.1.1 User Interface

The system is offered as a feed service performance booster and a proxy server
is deployed locally (client-side) to interpret user requests. Because this service
is offered in this manner, any feed-capable third-party applications, like web
browsers or feed readers, can be used as an interface to the system. Configura-
tion is as simple as providing the proxy’s address to the application.
Since the user interface is exactly the same whether this system is used or not,
and little configuration is required, the system is designed to work with large
numbers of feed subscribers.

3.1.2 Publisher Interface

In order to be compatible with the proposed system, publishers just need to
provide a web feed through an HTTP service. Since this requires no change on
the publishers part, the system is set up to handle large numbers of subscribers.

3.1.3 Feedback and Recommendations

User feedback is collected on each entry viewed by the user. Recommendations
are offered in two complementary ways: recommended entries are presented
to the user embedded in other content and recommendation feeds, are made
available for user subscription, by the proxy.

3.1.4 Social Interaction

Some input is taken from social networking services regarding, in particular,
social connections for optimizing peer organization. Also, if desired, the ser-
vices’ content regarding user activity in the system is updated. This makes the
system two-way compatible with existing social networking services.

Figure 3.2 depicts both the information flow and interaction pertaining to
the social features of the system.

30 CHAPTER 3. PROPOSED ARCHITECTURE

<enclosure ... video>

feed

feed

...

Like Dislike

social inputProxy
Overlay network Overlay network

Group Policy

Social I/O
Manager

feedback

Figure 3.2: The Social Information Flow

3.1.5 Standards

To further interoperability, the system must adhere to standards. For example,
NAT 1 or firewalls should not prevent the system from being used.

3.1.6 Automatic Content Cooperative Downloading

Large content is automatically downloaded and made locally available to the
user. In order to optimize bandwidth consumption and the timeliness of con-
tent delivery, peers cooperate to download these files. The communication
paradigms used to accomplish this goal are a part of the Internet.

1http://en.wikipedia.org/wiki/NAT traversal

3.2. PROTOCOLS 31

3.2 Protocols

3.2.1 Multicast

The multicast protocols used to disseminate feed entries must meet the follow-
ing requirements:

• to be reliable;

• to scale to large numbers of peers;

• to scale to large numbers of entries;

• to handle many different groups (overlays);

• to expose a convenient API for this purpose;

3.2.2 File Sharing

The file sharing protocols used to disseminate large content should meet the
following requirements:

• to be reliable;

• to optimize bandwidth consumption by taking advantage of cooperative
downloading;

• to feature small latency from when a file is first downloaded to when it is
made available for others;

• to expose a convenient API for this purpose;

32 CHAPTER 3. PROPOSED ARCHITECTURE

Chapter 4

Evaluation

In order to show that the proposed architecture is, in fact, feasible, a prototype
was built and named SEEDS.

4.1 Overview

Figure 4.1 depicts overall architecture of SEEDS. If compared to Figure 3.1, it is
clear that this figure depicts an instance of the previous one, now naming the
protocols to be used, and identifying the proxy’s implementation.

When enabled, the proxy tries to identify feed URLs. Once a new feed is
detected, the proxy contacts the Social I/O Manager for a seed. A seed is simply
an XML configuration file containing both caching and dissemination protocol
directives. Within these directives comes the identification of the dissemina-
tion group this feed belongs too. From this point on, each new entry of this
feed received is to be broadcasted to the group, with the purpose of updating
other peers. Naturally, the proxy is now listening for updates for this feed from
the group. If a seed isn’t available for any reason, the proxy falls back on local
configuration. Two buttons are added to each entry presented to the user, to
obtain feedback. This feedback is used to update the user’s information on
social networking services and it proves quite useful for recommendation pur-
poses. Recommendations are offered in two complementary ways: in a specific
feed generated at the proxy with entries of feeds that are not yet being moni-
tored by it; by piggybacking endorsed entries on regular ones. This process is
detailed in Section4.5.1.
Simply put, the social I/O manager handles the interaction with social net-
working services, and defines group policies. This service is presented sepa-
rately, so it can be deployed independently.

33

34 CHAPTER 4. EVALUATION

 BitTorrent

NeEM

HTTP

Feed2

Seeds
Proxy

Seeds
Proxy

Feed1

3rd Party
Application

Social
I/O

Manager

Social
Network

1

Social
Network

2

Figure 4.1: Overall Architecture

4.2 The SEEDS Proxy

The proxy’s internal architecture is shown in Figure 4.2. The proxy is com-
posed of three main modules: the HTTP Servlet which interprets the requests
received by third-party applications; the Cache Manager which handles feed
caching and dissemination to the groups; and an HTTP Client, responsible for
fetching feeds from the publishers and interacting with the Social I/O Man-
ager. Here is a step-by-step example of how this works:

1. a third-party application makes a feed request;

2. this request is interpreted by the servlet to check whether it is in fact a
feed URL, and if so passes it on to the cache manager;

4.2. THE SEEDS PROXY 35

3rd Party
Application

Feed
Publisher

HTTP Client

HTTP Servlet Cache Manager

Cached
Feed

Cached
Feed

Cached
Feed ... Cached

Feed

Protocol
Instance

Protocol
Instance ...

Protocol
Instance

Get feed

enriched_feed

lookup enriched_feed

Peer-to-peer

Get feed

Social
I/O

Manager

 ...overlay

Internet

overlay overlay

Get feed enriched_feed
recommendation

feed

recommendation feed

Figure 4.2: SEEDS proxy’s internal architecture

3. the cache manager does a lookup for the URL in the cache. If the URL is
being cached, it returns the cached feed entries, enriched with the feed-
back “Like” and “Dislike” buttons for the user to provide feedback, if
desired, and also with some recommended entries; otherwise it retrieves
the feed from the publisher and also a seed from the social I/O man-
ager. Then, the cache manager deploys the appropriate protocol module,
configuring it with a peer-to-peer group, according to the information
received in the seed, and to each received entry 1;

4. In the background, the cache manager is both sending to, and listening
for, updates from the peer-to-peer groups.

4.2.1 Instantiation

A Feed is assumed to conform to either the RSS or Atom standards.
1See Subsection 4.2.2

36 CHAPTER 4. EVALUATION

The 3rd Party Application can be any web feed-capable application, like a browser,
or a feed reader;

The HTTP Servlet used in SEEDS is the lightweight Jetty WebServer 2;

The HTTP Client used to retrieve feeds is a part of ROME 3 a Java-based set
of tools designed to handle both RSS and Atom web feeds;

The Cache Manager is implemented in Java.

4.2.2 Protocols

In Section 1.3, one of the guidelines presented referred to using multiple dis-
semination protocols to deal both with the different content types used in feeds,
with the possibly different numbers of interested users in each set of feeds and
also with diverse feed update rates.
One of the features of SEEDS is the automatic inline replacement of links to
media files with the full content. This notion is similar to “broadcatching”
enabling SEEDS to act as a client/server in this type of service. The RSS speci-
fication [11] identifies, in items, links to media (or simply large) files with the
enclosure tag, providing the following information:

• the URL

• file size (in bytes);

• MIME type 4

Similar information can be derived from the link element of an Atom feed. Us-
ing this information, SEEDS uses the BitTorrent protocol to disseminate these
large files in the groups.
Notice that for feeds featuring a single subscriber, a centralized architecture is
best, yet SEEDS can still be used seamlessly, keeping in mind it makes sense
not to burden the network with disseminating these updates. Even in this sce-
nario, users benefit from other features of SEEDS, as recommendations are still
provided and feedback is gathered and processed.

Multicast

Epidemic multicast[39, 25], also dubbed probabilistic or gossip-based, is based
on the simple procedure of relaying each received item to a small random sub-
set of other nodes. This mechanism ensures these procotols are well suited

2http://www.mortbay.org/
3https://rome.dev.java.net/
4http://www.iana.org/assignments/media-types/

4.2. THE SEEDS PROXY 37

to disseminate events to a large number of interested parties, while achieving
stable high throughput, and coping with node or network faults. It has been
shown that the probability that all nodes are informed can be made as large
as desired, without reaching 1, and that messages spread exponentially fast.
NeEM[38] is an implementation of epidemic multicast in wide-area networks
relying on connection-oriented transport connections and on specific mecha-
nisms to avoid network congestion. The resulting overlay network is automat-
ically managed by the protocol.
Its scalability and reliabilty make this protocol ideal for disseminating feed en-
tries in groups where most peers are interested in the same set of feeds, and
with high update rates.
The NeEM protocol exposes the following API 5 :

Class MulticastChannel is instatiated to create a new group;

connect(peer address) is used to add another peer to a group;

read(msg) is used to receive a message, removing it from the incoming queue;

write(msg) is used to send a message to the members of the group;

For this implementation, the NeEM protocol is used, but there are other
protocols, such as Scribe[20] which could also be used, because of SEEDS’ mod-
ularity.

File Sharing

BitTorrent is a peer-to-peer protocol designed for file sharing, that fosters user
cooperation. Each peer is able to request or transmit any computer file over the
network. Here is a brief explanation on how this protocol works:

• A peer creates a .torrent file, containing metadata about the files to be
shared and about a “tracker”, a host to coordinate downloading.

• A peer wanting to download a file must first obtain the corresponding
torrent file, and connect to the tracker therein mentioned.

• The tracker will tell the downloading peer which peers to contact to ob-
tain pieces of the file.

• The downloaded file pieces are immediately made available for down-
load by other peers.

5Only the most relevant portion of the API, for this purpose, is exposed here

38 CHAPTER 4. EVALUATION

There are several BitTorrent clients available for free download, implementing
slight variations of the protocol implemented in the official BitTorrent client 6.
The BitTorrent client chosen to be used in SEEDS is based on Snark 7, a track-
erless 8, lightweight implementation of the protocol, featuring multi-torrent
support, written in Java. This client needed some small changes to serve its
purpose with SEEDS.
Here is the procedure followed by a peer that receives a new entry with an
enclosure:

1. this peer proceeds to download the content from the external link sup-
plied in the enclosure;

2. both a torrent file and a tracker are instantiated by this peer’s Snark client,
and made available in a lightweight webserver;

3. when delivering the feed to the 3rd party application, the remote link is
replaced with a link to the already downloaded file;

4. when disseminating the entry to the group, together with the other entry
types, using, e.g. NeEM, the enclosure link is changed to the correspond-
ing torrent file, hosted in this peer.

This way, in most cases, when large feed entry content is to be displayed in
other peers, the file will already be available locally, thus increasing the timeli-
ness of delivery, while also optimizing bandwidth usage.
This sort of pre-fetching and caching is already implemented for photofeeds,
that is, feeds in which entries feature image enclosures[9]. By integrating Snark
with SEEDS in this manner, it is easy to deal with feeds featuring items with di-
verse content types.

4.3 Standards

SEEDS is fully compliant with the standards associated with the technologies
in use.
The NAT traversal problem has been addressed with UPnP 9, using the UPN-
PLib 10 implementation from SBBI.

6http://www.bittorrent.com/
7http://klomp.org/snark/
8Each client is also a tracker.
9http://www.upnp.org/

10http://www.sbbi.net/site/upnp/

4.4. SOCIAL I/O MANAGER INTERNAL ARCHITECTURE 39

HTTP Client

HTTP Servlet Group Manager

Group
Intance

Group
Instances

Group
Instance ... Group

Instance

Protocol
Instance

Protocol
Instance ...

Protocol
Instance

seed

Get seed

Lookup group
info

Mapping

 ...overlay

Internet

overlay overlay

Get seed seed

Seeds
Proxy

Interest
Database

Group Policy
Ruler

feedback

feed
popularity

Update

Social
Networking

Services

feedback

post
feedback/
content

social connections

Social
Information

Handler

Get
group

Figure 4.3: SEEDS Conceptual Social I/O Manager’s Internal Architecture

4.4 Social I/O Manager internal architecture

Figure 4.3 depicts the conceptual internal architecture for the Social I/O Man-
ager module.

4.4.1 Instantiation

The HTTP Servlet instantiated with the lightweight Jetty Webserver;

The Other Components can be implemented in a programming language of
choice, as long as it provides support for the interactions needed. For
example, the Social Information Handler may need to use the OpenSocial
API, so, a language featuring a library for this purpose should be chosen.

Social networking information is to be used as an input to the Group Manage-
ment module of the Social I/O Manager. Also, user feedback is to be propa-

40 CHAPTER 4. EVALUATION

gated back to these social networking websites. The social networking services
that this module could interact with could be three different types:

• General purpose standalone services, like Facebook, using the OpenSo-
cial API

• Social bookmarking standalone services, like Digg 11

• Content-oriented services, like FriendFeed, which expose useful APIs

Actually, the FriendFeed service provides the concept of a room, a web feed
shared by the room’s “ocupants”. This could enable a first stage of social I/O.

4.4.2 Group Management Policy

Each dissemination group, and therefore, each overlay network, is associated
with a protocol instance.
Notice that BitTorrent groups are dynamically created by the proxys, and man-
aged directly, without interaction with the social module.
Groups using the NeEM protocol are managed by the Group Policy Ruler mod-
ule of the Social I/O Manager, where policy definition will take into account
the following input:

• the number of peers in running groups;

• the interest in specific feeds (number of subscribers);

• information about social connections between peers;

Regarding the first item, when a seed request is received, the interest database
gives a measure of peers’ interest in a particular feed. For example, when only
a single subscriber was previously known, this feed may now be mapped to an
existing group. Also, for highly popular feeds, groups can grow to be so large
that a specially dedicated new group can be created.
Now considering the second item, in some social networking services like
FriendFeed or Twitter 12, social connections are either based on similar inter-
ests/tastes, or “real”/external connections are used to determine who receives
published content. In an initial phase, the FriendFeed service could be used as
a gateway to other social networking websites, since it harvests those other so-
cial networks to address content. Also, it provides a simple but powerful API 13

to take advantage of its service. Notice that while to take full advantage of the

11http://digg.com
12See Subsection 2.2
13http://code.google.com/p/friendfeed-api/wiki/ApiDocumentation

4.5. RECOMMENDATION 41

social features of SEEDS it is necessary for the user to configure her social net-
working accounts, this is still an improvement over simply using FriendFeed
or switchAbit 14, which provides publishing aggregation, separately. Also, if
this is not the case, the SEEDS architecture remains fully functional.

Some work has already been done in identifying possible groups from server
logs. In Figure 4.4, statistics collected from an HTTP proxy are displayed: the
circles represent user IPs, while the diamonds represent the twenty most popu-
lar web feed URLs. Some clusters are identified at a glance, which could easily
be used to create groups:

• A group could be created with the peers interested in the most popular
feed (1);

• Another group could be formed with the peers interested in the bottom
cluster of feeds;

• Yet another group could formed with the peers interested in the third
most popular feed (3);

• And another group formed with the peers interested in the remaining
feeds.

4.5 Recommendation

4.5.1 Feedback and Endorsed Entry Recommendation

To each feed entry, two HTML buttons are added. These are labeled with
“Like” and “Dislike”, an simply embedded in the entry’s description. By click-
ing the “Like” button, therefore signalling the proxy, the user is actively en-
dorsing the content. This entry is then sent to groups, marked as an endorsed
recommendation, to be piggybacked on other entries. Disliked entries will just
be ignored for this purpose. At an initial stage, FriendFeed could be used to
publish these liked entries, depending on whether a peer is also a FriendFeed
user.

4.5.2 Feed Recommendation

Another source of recommendations is group traffic traversing each SEEDS

proxy. Each proxy can then publish it’s own recommendation feed, where en-
tries are derived from the recommended feed’s channel information: the feeds

14http://beta.switchabit.com/

42 CHAPTER 4. EVALUATION

circulating in the group but not subscribed by the proxy’s user are selected.
Users choose to receive this type of recommendations by subscribing to the lo-
cally published feed.

4.5. RECOMMENDATION 43

circles - IPs
diamonds - URLs

Figure 4.4: Some Statistics

44 CHAPTER 4. EVALUATION

Chapter 5

Conclusions

In this chapter, some conclusions are presented and some future work is dis-
cussed.

In this work, several content dissemination platforms, both centralized ones
and peer-to-peer ones, were analyzed, regarding flexibility, scalabilty, content
discovery, social-awareness, user interface, publisher interface and conformance
to standards. None were found to address all of these topics. While some,
targeted towards file sharing, require users to use specific desktop tools (like
Tribler, Vuze, ...), thus ”leaving” the Internet environment, others, directed at
content sharing in a social environment (Twitter,...), are opaque to the user.
The architecture proposed in this work, shows this need not be the case. Its
independence of the actual technologies used to implement it, mean it is as
flexible as desired. Since it can be implemented using actual technologies in
use in the Internet, compatibility issues are avoided. The guidelines “Multi-
ple Dissemination Patterns”, “No Change to the Source”, “No Change to the
Target”, “Enhanced Discovery and Aggregation” and “Click but no Wait”, pre-
sented in 1.3, summarize the main features of the proposed system and also its
main contributions.
The partial implementation of this system (SEEDS) shows that this system is
feasible, and hints at how the complete implementation can be achieved. In its
hole, the system proposed in this work draws from the composition of smaller
systems, but its value is greater than that of the sum of its parts.

5.1 Future Work

A possible improvement would be to embed video/audio content directly in
the feeds to be displayed. A possible research direction could be to take ad-

45

46 CHAPTER 5. CONCLUSIONS

vantage of the Media RSS[6] module defined by Yahoo 1, to make use of a web
browser media player console for this purpose.

Another improvement could be to use the SEEDS proxy’s web server to act
as a tracker for BitTorrent instances.

Initially, the FriendFeed service could be used as a gateway to other social
networking websites. However, to further the usefulness of the integration
those websites, the liked entries 2 should be posted to them websites. Services
like switchAbit which routes content published in one social networking ser-
vice to others, will probably be the way to go to accomplish this goal.

Finally, in order to gather meaningful statistics on the behaviour and per-
formance of the proposed system, implemented in SEEDS, a large-scale deploy-
ment in a platform like PlanetLab 3, could prove instrumental.

1http://yahoo.com
2See Subsection 4.5.1
3http://www.planet-lab.org/

Bibliography

[1] Atom protocol (ietf draft). http://bitworking.org/projects/

atom/draft-ietf-atompub-protocol-04.html.

[2] Facebook. http://www.facebook.com.

[3] Feedburner. http://www.feedburner.com/fb/a/home.

[4] Friendfeed. http://friendfeed.com/.

[5] Last.fm. http://www.last.fm/.

[6] Media rss module - rss 2.0 module. http://search.yahoo.com/mrss.

[7] Micro-blogging (wikipedia entry). http://en.wikipedia.org/

wiki/Micro-blogging.

[8] Miro. http://www.getmiro.com/.

[9] Photofeed (wikipedia entry). http://en.wikipedia.org/wiki/

Photofeed.

[10] Pownce community wiki / api documentation2-0.
http://www.hueniverse.com/hueniverse/2008/04/scaling-a-
micro.html.

[11] Rss 2.0 specification. http://cyber.law.harvard.edu/rss/rss.

html.

[12] Rss protocol (wikipedia entry). http://en.wikipedia.org/wiki/

RSS.

[13] Seeds: server-friendly epidemic feeds. http://seeds.sourceforge.
net.

[14] Soap meets rss. http://cyber.law.harvard.edu/rss/soapMeetsRss.html#rsscloudInterface.

[15] Social network service. http://en.wikipedia.org/wiki/Social network service.

47

http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-04.html
http://bitworking.org/projects/atom/draft-ietf-atompub-protocol-04.html
http://www.facebook.com
http://www.feedburner.com/fb/a/home
http://friendfeed.com/
http://www.last.fm/
http://en.wikipedia.org/wiki/Micro-blogging
http://en.wikipedia.org/wiki/Micro-blogging
http://www.getmiro.com/
http://en.wikipedia.org/wiki/Photofeed
http://en.wikipedia.org/wiki/Photofeed
http://cyber.law.harvard.edu/rss/rss.html
http://cyber.law.harvard.edu/rss/rss.html
http://en.wikipedia.org/wiki/RSS
http://en.wikipedia.org/wiki/RSS
http://seeds.sourceforge.net
http://seeds.sourceforge.net

48 BIBLIOGRAPHY

[16] Twitter: What are you doing? http://twitter.com/.

[17] Twittering about architecture. http://dev.twitter.com/2008/05/twittering-
about-architecture.html.

[18] 22nd Symposium on Reliable Distributed Systems (SRDS 2003), 6-8 October
2003, Florence, Italy. IEEE Computer Society, 2003.

[19] L.A. Adamic and E. Adar. Friends and neighbors on the Web. Social Net-
works, 25(3):211–230, 2003.

[20] M. Castro, P. Druschel, A.-M. Kermarrec, and A.I.T. Rowstron. Scribe:
a large-scale and decentralized application-level multicast infrastructure.
Selected Areas in Communications, IEEE Journal on, 20(8):1489–1499, Oct
2002.

[21] Bram Cohen. Incentives build robustness in bittorrent, May 2003.

[22] Bram Cohen. The bittorrent protocol specification. http://www.

bittorrent.org/beps/bep_0003.html, January 2008.

[23] A. Culotta, A. McCallum, and R. Bekkerman. Extracting Social Networks
and Contact Information From Email and the Web, 2005.

[24] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, 2003.

[25] P.T. Eugster, R. Guerraoui, A.M. Kermarrec, L. Massoulie, and AJ Ganesh.
From epidemics to distributed computing. IEEE Computer, 37(5):60–67,
2004.

[26] M. Freedman, E. Freudenthal, and D. Mazi. Democratizing content pub-
lication with coral, 2004.

[27] Peter Freitag. 8 ways to save bandwidth on your rss feed. http://www.
petefreitag.com/item/642.cfm.

[28] Steve Gilmor. Bittorrent and rss create disruptive revolution.
http://www.eweek.com/c/a/Messaging-and-Collaboration/BitTorrent-
and-RSS-Create-Disruptive-Revolution/1/.

[29] Eran Hammer-Lahav. Scaling a microblogging service.
http://www.hueniverse.com/hueniverse/2008/04/scaling-a-
micro.html.

http://twitter.com/
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.petefreitag.com/item/642.cfm
http://www.petefreitag.com/item/642.cfm

BIBLIOGRAPHY 49

[30] Matthew Hicks. Rss comes with bandwidth price tag.
http://www.eweek.com/c/a/Messaging-and-Collaboration/RSS-
Comes-with-Bandwi dth-Price-Tag/.

[31] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter:
understanding microblogging usage and communities. In WebKDD/SNA-
KDD ’07: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop
on Web mining and social network analysis, pages 56–65, New York, NY, USA,
2007. ACM.

[32] Seung Jun and Mustaque Ahamad. Feedex: collaborative exchange of
news feeds. In WWW ’06: Proceedings of the 15th international conference on
World Wide Web, pages 113–122, New York, NY, USA, 2006. ACM.

[33] Julie E. Kendall and Kenneth E. Kendall. Information delivery systems:
an exploration of web pull and push technologies. Commun. AIS, page 1.

[34] H. Liu, V. Ramasubramanian, and E.G. Sirer. Client Behavior and Feed
Characteristics of RSS, a Publish-Subscribe System for Web Micronews.
In Proc. of ACM Internet Measurement Conference, 2005.

[35] Om Malik. Rss, tiger safari and the bandwidth bottleneck.
http://gigaom.com/2005/04/28/rss-tiger-safari-and-the-bandwidth-
bottleneck/.

[36] Charles Miller. Http conditional get for rss hackers.
http://fishbowl.pastiche.org/2002/10/21/http conditional get for rss hackers/.

[37] Randy Charles Morin. Howto rss feed state.
http://www.kbcafe.com/rss/rssfeedstate.html.

[38] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M. Kermarrec.
NEEM: Network-friendly epidemic multicast. In SRDS [18], pages 15–24.

[39] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M. Kermarrec.
Neem: Network-friendly epidemic multicast. Reliable Distributed Systems,
IEEE Symposium on, 0:15, 2003.

[40] J.A. Pouwelse, P. Garbacki, J. Wangand A. Bakker, J. Yang, A. Iosup,
D. Epema, M.Reinders, M.R. van Steen, and H.J. Sips. Tribler: A social-
based based peer to peer system. In 5th Int’l Workshop on Peer-to-Peer Sys-
tems (IPTPS), Feb 2006.

[41] S. Powers. What are Syndication Feeds. O’Reilly, 2005.

50 BIBLIOGRAPHY

[42] Anirudh V. Ramachandran and Nick Feamster. Authenticated out-of-
band communication over social links. In WOSP ’08: Proceedings of the
first workshop on Online social networks, pages 61–66, New York, NY, USA,
2008. ACM.

[43] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218, 2001.

[44] D. Sandler, A. Mislove, A. Post, and P. Druschel. Feedtree: Sharing web
micronews with peer-to-peer event notification, 2005.

[45] Dave Winer. Payloads for rss. http://www.thetwowayweb.com/payloadsforrss.

[46] H. Wittenbrink. RSS And Atom: Understanding And Implementing Content
Feeds And Syndication. Packt Publishing, 2005.

	Introduction
	Background
	Problem Statement
	Approach

	Related Work
	Some Definitions
	Related Work
	Content dissemination
	Social networking

	Proposed Architecture
	Overview
	User Interface
	Publisher Interface
	Feedback and Recommendations
	Social Interaction
	Standards
	Automatic Content Cooperative Downloading

	Protocols
	Multicast
	File Sharing

	Evaluation
	Overview
	The Seeds Proxy
	Instantiation
	Protocols

	Standards
	Social I/O Manager internal architecture
	Instantiation
	Group Management Policy

	Recommendation
	Feedback and Endorsed Entry Recommendation
	Feed Recommendation

	Conclusions
	Future Work

