
Conflict Classes for Replicated Databases:
A Case-Study

Ana Nunes
INESC TEC & U. Minho

Email: ananunes@di.uminho.pt

Rui Oliveira
INESC TEC & U. Minho
Email: rco@di.uminho.pt

José Pereira
INESC TEC & U. Minho
Email: jop@di.uminho.pt

Abstract—The major challenge in fault-tolerant replicated
transactional databases is providing efficient distributed concur-
rency control that allows non-conflicting transactions to execute
concurrently. A common approach is to partition the data
according to the data access patterns of the workload, assuming
that this will allow operations in each partition to be scheduled
independently and run in parallel.

The effectiveness of this approach hinges on the characteris-
tics of the workload: (i) the ability to identify such partitions and
(ii) the actual number of such partitions that arises. Performance
results that have been presented to support such proposals are
thus tightly linked to the simplistic synthetic benchmarks that
have been used. This is worrisome, since these benchmarks have
not been conceived for this purpose and the resulting definition
of partitions might not be representative of real applications.
In this paper we contrast a more complex synthetic benchmark
(TPC-E) with a real application in the same area (financial
brokerage), concluding that the real setting makes it much harder
to determine a correct partition of the data and that sub-optimal
partitioning severely constrains the performance of replication.

I. INTRODUCTION

Database replication has been a hot research topic for
some time now, from single-tier architectures to multi-tier and
cloud architectures. Currently, distributed transactions are a hot
topic with an expanding audience, fostered by STM and cloud
databases. Previous work on replication is thus being reused in
new settings, widening its significance. The focus has been on
how to enable highly available applications/services through
fault-tolerant and scalable architectures [1], [2], [3], [4], [5],
[6]. A key concern in the design of fault-tolerant database
replication protocols is ensuring that sufficient transactions
can be scheduled to execute concurrently such that the system
performs adequately [7].

A common approach for designing concurrency control
in database replication protocols relies on defining conflict
classes. In short, the available data is partitioned according
to some criteria, and a FIFO transaction queue is associated
to each partition [1], [4], [5]. Disjoint data partitions consti-
tute basic conflict classes. Compound conflict classes can be
defined by grouping basic conflict classes.

Each transaction has an associated set of basic conflict
classes according to the data partitions it accesses. Transactions
that access disjoint sets of basic conflict classes are guaranteed
not to conflict and thus can be concurrently executed. Conflicts
may arise among transactions that access a common conflict
class. In order to ensure correctness, transactions that conflict
must be serialized.

Conservative concurrency control based on conflict classes
requires transaction scheduling to adhere strictly to the order
defined by the conflict class queues: transactions that access
a common conflict class will always be serialized. This is a
fundamental limitation of concurrency control mechanism.

In order to use replication protocols with conservative
concurrency control efficiently, the data must be partitionable
according to the particular data access patterns of the applied
workload, which is a rather strong assumption. Moreover,
even if possible, the concrete conflict class definition chosen
influences the contention and maximum parallelism attainable.
Therefore, the performance of conservative protocols hinges
on a favorable definition of conflict classes, as the number
of disjoint conflict classes defines the maximum number of
transactions that can be executed concurrently.

Most of these protocols have only been tested in custom-
tailored scenarios with very simple and unrealistic database
schemas [2], [3], [5], [6]. Some have also been tested using
benchmarks such as TPC-C [8] and TPC-W [9], for which
straightforward table-based partitioning schemes can be easily
derived [1]. The question remains whether the assumptions
made regarding conflict class definition are still plausible when
dealing with more complex benchmarks, for which partitioning
is not straightforward at all or, more importantly, regarding
real-world applications.

We answer this question by analysing the TPC-E [10]
benchmark and a real-world application in the same domain
focusing on partitioning and the suitability of database replica-
tion protocols with conservative concurrency control for these
scenarios.

The rest of this paper is structured as follows. Section II
provides some background on database replication protocols,
with an emphasis on concurrency control based on conflict
classes. Section III then introduces the synthetic TPC-E bench-
mark, described how conflict classes could easily be defined.
Section IV-A then explains how conflict classes can be defined
for a real brokerage application, showing how the result
impacts concurrency in Section IV-B. Section V concludes the
paper.

II. BACKGROUND

The concept of isolation refers to which interactions are
allowed among transactions executing in the system. A system
that meets the serializability criterion guarantees that regard-
less of the actual interleaving of operations from different



transactions during execution, the result is equivalent to a serial
execution of the transactions.

The overwhelming majority of RDBMSs uses a different
criterion, snapshot isolation, which differs from serializability
by considering only write/write conflicts [11].

Concurrency control is a key issue in database replication.
The idea is to guarantee that the concurrent execution of
transactions does not adversely affect the correctness of the
database system.

For example, in passive primary-copy scenarios, concur-
rency control occurs in three phases: first, in the primary,
the database engine’s native concurrency control decides on
which transactions commit or abort and in which order;
second, the primary forwards write operations or write sets
to replicas; lastly, replicas apply writes. In order to prevent
replica divergence, replicas must be guaranteed to decide on
the same serialization order as the primary. Using a group
communication that offers a FIFO multicast primitive provides
that guarantee. In a multi-primary setting, having several
primaries means that these must agree on a total order for
transaction execution. If replicas apply updates according to
that total order, strong consistency is guaranteed. Total order
message delivery can be provided by group communication
protocols.

Concurrency control comes in two flavours: conservative
and optimistic. A conservative concurrency control prevents
potentially conflicting transactions from executing concur-
rently. A common strategy for assessing potential conflicts is
to partition the database, mapping each disjoint partition into
a basic conflict class. Compound conflict classes are created
by grouping basic conflict classes.

In some conservative approaches, such as the OTP pro-
tocol [6], a transaction queue is associated to each basic
conflict class. In others, such as the NODO protocol [4], [5],
transaction queues are associated to compound conflict classes.
Transactions that access a given conflict class must traverse its
queue.

In any case, the number of transactions allowed to execute
concurrently is limited to the number of basic conflict classes
defined over the database. Thus, the manner in which the
database is partitioned is a determinant factor of the perfor-
mance of a replication protocol using conservative concurrency
control. In fact, protocols such as OTP further require that the
application can be completely partitioned as well, since any
transaction is restricted to accessing a single basic conflict
class.

In replication protocols using optimistic concurrency con-
trol [1], [2], [3], potentially conflicting transactions are allowed
to execute concurrently and a certification (conflict detection)
phase takes place after transaction execution, but before the
changes are applied to the database. While this mechanism
allows more concurrency, transactions that are later found to
conflict are aborted. Notice that the more transactions are
allowed to execute concurrently, the more likely it is for
conflicts to arise. Also, any transaction is vulnerable to being
aborted by other transactions from the moment it starts to
execute until is is certified: the longer it takes to execute and
certify a given transaction, the more vulnerable it is. This is

the caveat of most optimistic concurrency control strategies:
when loaded, latency increases and fairness is compromised,
particularly for long-running transactions, as exemplified with
DBSM [1].

For example, the AKARA database replication protocol [1]
mitigates this issue by introducing conservative re-execution
for previously aborted transactions, using basic conflict classes
to ensure conflict-free scheduling.

There have also been some proposals regarding automatic
database partitioning, but these either: target data warehousing
scenarios, where update transactions are ignored [12]; attempt
to partition the application in an effort to shift some of the
load to an application server [13]; or are only able to find a
small set of partitions [14].

It is important to point out that this work is not only
directly applicable when considering replication protocols with
conservative concurrency control, but it also has a wider
applicability to any proposal that assumes that real-world
databases can be easily and efficiently partitioned into disjoint
partitions [15]. Additionally, it provides some insight on the
criteria that should be used to evaluate automatic database
partitioning for replicated databases.

In the following sections, database and application parti-
tioning, which lead to conflict class definition, are analysed
for a synthetic benchmark that simulates the activity of a
financial brokerage firm and a real-world application in the
same domain.

III. TPC-E

TPC-E [10] is a benchmark that simulates the activities of
a brokerage firm which handles customer account manage-
ment, trade order execution on behalf of customers and the
interaction with financial markets. This analysis was based
on tpce-mysql,1 an open-source implementation of the TPC-
E benchmark. This benchmark defines 33 tables across four
domains: customer, broker, market and dimension and 10
main transaction types that operate across the domains. TPC-
E’s read/write transactions are: Market Feed (MF), Trade
Order (TO), Trade Result (TR), Trade Update (TU) and Data
Maintenance (DM).2

Unlike TPC-C and TPC-W, TPC-E is an open benchmark
suite [16]: new requests are received by the System Under Test
regardless of the completion of previous requests. A closed
benchmark suite does not suitably test replication protocols,
since the inherent limit to the number of requests received by
the system may obfuscate load/contention issues [1]. We argue
that evaluating these protocols using current, more complex
and more realistic benchmark suites will lead to significantly
different conclusions about these protocols’ performance and
applicability, particularly in the financial brokerage domain.

TPC-E is clearly documented and conflict classes can
be defined by inspection. In this analysis we considered
the 1-copy-snapshot-isolation criterion [11]. By analysing the
database footprint of each transaction type, we determined the

1https://code.launchpad.net/perconadev/perconatools/tpcemysql
2The Data Maintenance transaction type operates exclusively on a separate

group of tables. As such, it is not relevant for this analysis and is essentially
omitted from the discussion that follows.



TABLE I. BASIC CONFLICT CLASSES AND TRANSACTION TYPES

Conf. C. Table Transaction Type
C1 trade MF, TO, TR, TU
C2 trade_history MF, TO, TR
C3 trade_request MF, TO
C4 cash_transaction TR, TU
C5 settlement TR, TU

TABLE II. COMPOUND CONFLICT CLASSES AND TRANSACTION TYPES
(NAÏVE)

Conflict Class Transaction Type
{C1, C2, C3} MF, TO

{C1, C2, C4, C5} TR
{C1, C4, C5} TU

TABLE III. COMPOUND CONFLICT CLASSES AND TRANSACTION
TYPES

Conflict Class Transaction Type Write mix
{C1, C2, C3} MF, TO 48%

{C1, C2, C4, C5} TR 43%
{C1} TU 1 3%
{C5} TU 2 3%
{C4} TU 3 3%

TABLE IV. IN-DEPTH CONFLICT ANALYSIS: (I)NSERTS, (U)PDATES
AND (D)ELETES

C1 C2 C3 C4 C5
MF U (PK) I D (PK)
TO I I I
TR U (PK) I I I

TU 1 U (PK)
TU 2 U (PK)
TU 3 U (PK)

specific set of tables for which write/write conflicts (different
transaction types) can occur.

A naı̈ve conflict class definition results from inspecting
reads and writes by transaction type and then grouping the
tables in conflict classes. Table I depicts the basic conflict
classes that can be defined in a table-based manner and the
types of transaction that access them. Table II depicts the
compound conflict classes can be defined based over the basic
conflict classes, so that each transaction accesses a single
conflict class, as required by NODO. Notice that because
every transaction accesses C1, with a conservative concurrency
control, all transactions must be serialized [17].

TPC-E transactions are composed of frames which makes
it possible to define 3 sub-transaction types in lieu of TU.
Table III depicts the compound conflict classes that can be
defined considering TU’s sub-transaction types TU 1, TU 2
and TU 3.3 This would allow up to 3 transactions to execute
concurrently using a conservative mechanism. However, after
analysing the percentage of transactions of each type relatively
to all write transactions in the benchmark’s mix, displayed
in Table III, we conclude that the majority of the load is
concentrated in two non-disjoint compound conflict classes,
which leads to same performance bottleneck that occurs for the
naı̈ve approach. This means that most of the time, transactions
will execute serially.

Table IV details how each transaction type writes each
table. For example, MF transactions update trade (C1) by

3We assumed that each sub-transaction is executed a similar number of
times, but a different distribution would lead to the same conclusion.

primary key, insert one or more rows in trade_history
and delete one or more rows from trade_request by
primary key. Assuming a row-level locking model in the
underlying database, concurrent inserts do not conflict, nor
do inserts and concurrent updates by primary key, or inserts
and concurrent deletes by primary key. Concurrent inserts on
trade_history (C2) also do not conflict because the pri-
mary keys are provided as a part of the transaction’s arguments:
regardless of the order in which the inserts are executed, the
end result is the same. Thus, only MF, TR and TU 1 transac-
tion types conflict. Notice that there is no straightforward way
to encode this information in a conflict class definition short
of defining one conflict class per row, which is impractical. An
alternative could be to explore workload-based approaches to
database partitioning like Schism [14] which is not, however,
directly applicable for this purpose.

The TPC-E recommended way of partitioning the database
is to do so by customer identifier, which would effectively
partition the trade table horizontally. But, for example, the MF
transactions update the trade table ignoring the customer.
Therefore, MF transactions would likely be distributed across
partitions. In general, sharding the database would not prove
helpful since it would either require: the exact transaction write
set to be known before executing it (since conflict detection is
done a priori); or the transaction to be added to queues of all
conflict classes that match shards of accessed tables, rendering
sharding useless.

Moreover, current automatic partitioning tools either do not
target OLTP systems or produce a small number of partitions,
thus being unsuitable for use with conservative concurrency
control (as discussed in Section II).

Protocols based on conservative concurrency control of-
fer inherently limited performance in these circumstances [7].
Still, the TPC-E benchmark can, in fact, be run with a
high-level of parallelism, ie. a large number of transactions
executing concurrently, with a low abort rate, using optimistic
concurrency control [18].

IV. REAL-WORLD APPLICATION

Our case-study real-world application is a production sys-
tem at a financial operator which provides brokerage and
banking services to partners and clients. The main component
of the system is an application that features an architectural
pattern frequently employed by businesses, particularly SMEs,
and showcases many of the challenges that these face: most
features of the brokerage system can be traced to the business
logic implemented within a RDBMS, using triggers and stored
procedures. Globally, the application consists of hundreds of
tables, and thousands of triggers and stored procedures. As
a consequence of the development strategy, there is no doc-
umentation available, either regarding the business processes
that govern operation, or the interactions and dependencies
between them.

The complexity of this application and the lack of docu-
mentation exclude the possibility of defining conflict classes by
simple inspection, as done in the previous section for TPC-E.
A systematic, yet minimally invasive approach is required. We
briefly introduce the technique used to determine appropriate
conflict classes and then present an analysis of the conflict



UPDATE
D

INSERT
A

Trigger_1
A

INSERT
B

Stored 
Proc_1

UPDATE
B

Stored 
Proc_2

UPDATE
C

Trigger_2
B

Stored 
Proc_3

Fig. 1. An example of a write call-graph.

A

I

H

G

F

E

J

D

B

C

Fig. 2. An example subgraph.

class definition that results from applying this method to the
real case-study application.

A. Conflict class extraction method

Conflict class extraction starts with the application’s SQL
source-code, collecting information about table write oper-
ations (INSERTs, UPDATEs and DELETEs) and about the
structure of the application through the analysis of its triggers
and stored procedure invocations. Using this information, the
write call graph underlying the mesh of operations can be
revealed. Both statistics and useful information about the
application structure, which can be used for business process
discovery, can be derived from the call graph. The tool
generates a directed single-edged call graph. There is a vertex
in the graph for each write operation applied to a given table.
There is also a vertex for each trigger or stored procedure.
An edge (a, b) implies that method (or operation ) a calls or
triggers method (or operation) b. Figure 1 shows an example
of such a graph, featuring table write operations, triggers and
stored procedures.

UPDATE
D

INSERT
A

Trigger_1
A

INSERT
B

Stored 
Proc_1

UPDATE
B

Stored 
Proc_2

UPDATE
C

Trigger_2
B

Stored 
Proc_3

WRITE
B

WRITE A

WRITE D

WRITE C

Fig. 3. Vertices representing write operations on the same table are aggregated
into a single vertex, which simplifies the graph. Other vertices are folded into
the edges, further highlighting the connections between tables.

WRITE
A

WRITE
C

WRITE
B

Component 1

WRITE 
D

Component 2

Fig. 4. Weakly-connected components that result from Figure 3. From this
analysis, we could conclude that transactions that write on tables A, B or C,
do not write on table D.

a) Possible executions: For any given vertex, the set of
all of its successors matches the set of operations that might 4

be executed atomically with the operation represented in that
vertex. For a given vertex A consider the subgraph, induced by
the write call-graph on the vertex set consisting of all of A’s
successors. Consider the tree in Figure 2 as such a subgraph.
In this case, as determined by a depth-first traversal starting at
A, a possible execution would be:

• A, B, C, D, E, F, G, H, C, I, J

but, for example,

• A, D, E, F, G, H, C, I, J, B, C

• A, D, E, F, I, G, H, C, J, B, C

would also be possible, because no particular execution order
among a vertex’s successors can be assumed. Depth-first
traversal mimics the nesting behaviour of calls.

By aggregating INSERT, UPDATE and DELETE opera-
tions on the same table in a single vertex, we get a simplified
graph, which offers a more data-focused view of the applica-
tion. Figure 3 depicts this process. This aggregated graph was
then analysed in terms of connectivity.

4Conditional statements are ignored to simplify the approach.



b) Weak Connectivity: A directed graph (or compo-
nent) is weakly-connected iff in the corresponding undirected
version, for each pair of vertices, there is a path between
them [19]. In terms of this specific analysis, each weakly-
connected component corresponds to a self-contained set of
triggers, stored procedures and INSERT, UPDATE or DELETE
operations that can be executed within the same transaction.
Notice that for any given transaction, the set of tables it writes
is contained in a single component. Assume there are N
components and that Si is the set of tables for which there
is a write vertex in component i. The following properties
hold for weakly-connected components:

∀i 6= j ∈ {1..N} Si ∩ Sj = ∅ (1)

and

∀i ∈ {1..N}
N⋃
i=1

Si = Ω (2)

where Ω is the set of all tables. Assume that a conflict class Ci

is defined as the set of tables in Si. From (1) we can conclude
that this method results in disjoint conflict classes, one per
component. From (2) we can conclude that every read/write
table is considered in a conflict class.

Figure 4 shows the weakly-connected components that
result from the graph in Figure 3.

Regarding the real-world application, the graph is the best
approximation that could be extracted from available data
(i.e. source code for stored procedures, no complete traces
available) considering only syntatic criteria.

B. Results

Applying the extraction method to the case-study appli-
cation resulted in the identification of 130 weakly-connected
components, which, as stated, correspond to the same number
of disjoint conflict classes.

For this application, any replication protocol with conser-
vative concurrency control based on conflict classes at most
130 transactions can be scheduled to execute concurrently.

However, upon examining database logs, we found that
most transactions access the same conflict class (compo-
nent/partition). Therefore, most transactions will be serialized,
leading to higher contention that originally expected.

The obvious way to circumvent this issue is to partition the
troublesome component. In an effort to do so, the component
with the largest number of writes was analysed in search of
cut vertices: vertices that, if removed from a graph, result in
an increase of the number of components [19].

Of the 90 cut vertices found, the one that would lead to
the largest number of new components (8) was selected. For
each new component, Table V shows its size and the number
of transactions that write on it.

Note that partitioning the graph like this would require
that the table corresponding to the cut vertex could be added
to each of the 8 new components, making these new partitions
correspond to non-disjoint compound conflict classes. While
some protocols with conservative concurrency control such as

NODO are based on non-disjoint compound conflict classes,
increasing the number of non-disjoint classes does not increase
the level of concurrency allowed by the protocol.

An alternative would be to partition the table corresponding
to the cut-vertex, creating 8 new disjoint conflict classes. This
would, however, require refactoring the application and re-
structuring the database. Even assuming that this could be
done, the vast majority of the writes remain concentrated in a
single component (c5). The cut-vertex strategy could now be
used to partition component c5 and so on. Still, the bulk of the
writes targets a single table. The next step would be to partition
the heavily-written table, which would necessarily lead to table
partitioning based on filters over its attributes. In this case,
matching accessed items to conflict classes would amount to
a satisfiability problem, particularly considering that all “cut-
vertex” tables must also be partitioned [7], [20]. In short, the
same issues that made sharding unsuitable in Section III are
also applicable for this scenario.

Although this technique is simple, it is exaustive (we tried
removing all nodes and selected the ones that yield most
partitions) and optimistic (we are not sure that these partitions
could actually be realized by refactoring and, due to incomplete
data, fail to acknowledge some edges), thus providing a very
strong counter-argument. We can safely conclude that no easy
refactoring exists such that effective conflict classes based on
syntatic criteria can be defined.

Partitioning this application is much more complex than
partitioning a TPC-E database. Moreover, while the number of
disjoint conflict classes that can be defined for this application
is much larger than what can be reasonably defined for TPC-
E, it does not result in a pratical advantage when considering
a conservative concurrency control mechanism. This scenario
presents a significant hurdle for the performance of replication
protocols with conservative concurrency control, which are
thus unsuitable.

Notice that such a scenario would not, however, emcumber
a replication protocol with optimistic concurrency control:
even if most transactions write on a common table, but on
different rows, no conflicts occur.

V. CONCLUSION

Replication is often used to achieve highly dependable
database management services, however, if the result is unable
to cope with the actual workloads it can be self-defeating,
as the service grinds to a halt with peak loads. We have
thus examined to what extent the assumptions of existing
protocols hold in the real world: there is not, to the best of our
knowledge, published work that provides a concrete counter-
example that can be cited. This is precisely what makes our
work significant.

First, we examined the TPC-E benchmark and found that
despite being well-structured in terms of schema and trans-
actions, the number of disjoint conflict classes that can be
reasonably defined is very small, which implied that protocols
based on conservative concurrency control are not suitable for
this type of application.

Then, we analysed a real-world brokerage application.
There was no documentation available regarding this appli-



TABLE V. NEW COMPONENTS, THEIR SIZE AND NUMBER OF WRITES.

Component c1 c2 c3 c4 c5 c6 c7 c8

Size 1 3 28 12 135 2 10 4

Writes 0 50268 5172 4033 394738 359 4 474

cation, nor were transactions clearly defined. To enable our
analysis we devised a general method for extracting a parti-
tioning scheme based on a graph derived from the application’s
source code. In this case, the number of disjoint conflict classes
that could be defined was significantly higher than in TPC-E.
However, after looking at the distribution of write operations
per tables, we found that the vast majority of the write load
falls on a single partition, and at greater detail, on a single
table. While this table could be horizontally partitioned, it is
not clear how to do so to benefit a conservative concurrency
control mechanism. We show that even if the application could
hypothetically be refactored leading to a larger number of
conflict classes, most transactions would still conflict.

ACKNOWLEDGMENT

This work is funded by the ERDF - European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project Stratus/FCOMP-01-0124-FEDER-015020 and project
FCOMP-01-0124-FEDER-022701.

REFERENCES

[1] A. Correia, J. Pereira, and R. Oliveira, “Akara: A flexible clustering
protocol for demanding transactional workloads,” On the Move to
Meaningful Internet Systems: OTM 2008, pp. 691–708, 2008.

[2] F. Pedone, R. Guerraoui, and A. Schiper, “The database state
machine approach,” Distributed and Parallel Databases, vol. 14,
pp. 71–98, 2003, 10.1023/A:1022887812188. [Online]. Available:
http://dx.doi.org/10.1023/A:1022887812188

[3] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-r,
a new way to implement database replication,” in Proceedings
of the 26th International Conference on Very Large Data Bases,
ser. VLDB ’00. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 134–143. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645926.671855

[4] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso,
“Scalable replication in database clusters,” Distributed Computing, pp.
147–160, 2000.

[5] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso, “Im-
proving the scalability of fault-tolerant database clusters,” in Distributed
Computing Systems, 2002. Proceedings. 22nd International Conference
on. IEEE, 2002, pp. 477–484.

[6] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing transac-
tions over optimistic atomic broadcast protocols,” in Distributed Com-
puting Systems, 1999. Proceedings. 19th IEEE International Conference
on. IEEE, 1999, pp. 424–431.

[7] A. Correia Jr, A. Sousa, L. Soares, J. Pereira, F. Moura, and R. Oliveira,
“Group-based replication of on-line transaction processing servers,”
Dependable Computing, pp. 245–260, 2005.

[8] TPC Benchmark C - Standard Specification, Transaction Processing
Performance Council (TPC) Std., 2001.

[9] TPC Benchmark W - Standard Specification, Transaction Processing
Performance Council (TPC) Std., August 2001.

[10] TPC Benchmark E - Standard Specification, Transaction Processing
Performance Council (TPC) Std., June 2010.

[11] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris, “Mid-
dleware based data replication providing snapshot isolation,” in Pro-
ceedings of the 2005 ACM SIGMOD international conference on
Management of data. ACM, 2005, pp. 419–430.

[12] J. Rao, C. Zhang, N. Megiddo, and G. Lohman, “Automating physical
database design in a parallel database,” in Proceedings of the 2002
ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’02. New York, NY, USA: ACM, 2002, pp. 558–569.
[Online]. Available: http://doi.acm.org/10.1145/564691.564757

[13] A. Cheung, S. Madden, O. Arden, and A. C. Myers, “Automatic parti-
tioning of database applications,” Proceedings of the VLDB Endowment,
vol. 5, no. 11, pp. 1471–1482, 2012.

[14] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 48–57, 2010.

[15] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable deferred update
replication,” in Dependable Systems and Networks (DSN), 2012 42nd
Annual IEEE/IFIP International Conference on, june 2012, pp. 1 –12.

[16] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
a cautionary tale,” in Proeceedings of the 3rd Symposium on Networked
Systems Design and Implementation, 2006.

[17] M. Patiño Martinez, R. Jiménez-Peris, K. Bettina, and G. Alonso,
“Middle-r: Consistent database replication at the middleware level,”
ACM Trans. Comput. Syst., vol. 23, pp. 375–423, November 2005.
[Online]. Available: http://doi.acm.org/10.1145/1113574.1113576

[18] A. Nunes, R. Oliveira, and J. Pereira, “Ajitts: Adaptive just-in-time
transaction scheduling,” in Distributed Applications and Interoperable
Systems. Springer, 2013, pp. 57–70.

[19] G. Chartrand and L. Lesniak, Graphs & Digraphs. Chapman & Hall,
1996.

[20] S. Guo, W. Sun, and M. Weiss, “Solving satisfiability and implication
problems in database systems,” ACM Transactions on Database Systems
(TODS), vol. 21, no. 2, pp. 270–293, 1996.


