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a b s t r a c t

Various programming languages allow the construction of structure-shy programs. Such
programs are defined generically for many different datatypes and only specify specific
behavior for a few relevant subtypes. Typical examples are XML query languages that
allow selection of subdocuments without exhaustively specifying intermediate element
tags. Other examples are languages and libraries for polytypic or strategic functional
programming and for adaptive object-oriented programming.

In this paper, we present an algebraic approach to transformation of declarative
structure-shy programs, in particular for strategic functions and XML queries. We
formulate a rich set of algebraic laws, not just for transformation of structure-shy
programs, but also for their conversion into structure-sensitive programs and vice versa.
We show how subsets of these laws can be used to construct effective rewrite systems for
specialization, generalization, and optimization of structure-shy programs. We present a
type-safe encoding of these rewrite systems inHaskellwhich itself uses strategic functional
programming techniques. We discuss the application of these rewrite systems for XPath
query optimization and for query migration in the context of schema evolution.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Structure-shy programming techniques have been introduced for dealing with highly structured data such as terms,
semi-structured documents, and object graphs in a largely generic manner. A structure-shy program specifies type-specific
behaviour for a selected set of data constructors only. For the remaining structure, generic behaviour is provided. Prominent
flavours of structure-shy programming are adaptive programming [31], strategic programming [38,28,29,40], polytypic or
type-indexed programming [17,19], and several XML programming languages and APIs [44,47].

Structure-shy programming offers various clear benefits [27,41]. The elimination of boilerplate code makes a structure-
shy program significantly more concise, focusing on the essence of the algorithm. This reduces development time and
improves understandability. Also, structure-shy programs are only loosely bound to the data structures on which they
operate. As a result, they do not necessarily need adaptation when those data structures evolve, and they may be reusable
for different data structures.

The flip side of these benefits is that structure-shy programs have potentially worse space and time behaviour than
equivalent structure-sensitive programs. A source of performance loss, generally by a factor linear in the input size, is the
dynamic checks employed in the execution of structure-shy programs to determine at each data node whether to apply
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Fig. 1. Representation of a movie database schema, inspired by www.imdb.com.

specific or generic behaviour. Another source of inefficiency is that algorithmic optimizations, such as cutting off traversal
into certain substructures, cannot be expressedwithout to some extent sacrificing structure-shyness and its benefits. In fact,
manual optimization of structure-shy programs typically involves such sacrifice.

For adaptive programming and polytypic programming, substantial effort has been invested in the development of
optimizing compilers. Compilation schemes for Generic Haskell and Generic Clean specialize and optimize polytypic input
programs for specific types [43,1,2]. Adaptive programs are compiled to plain object-oriented programs with optimized
navigation behaviour [30].

In this paper, we present an approach to transformation of structure-shy programs that encompasses typed strategic
programming and XML programming. Our approach builds on the pioneering work of Backus [5] and the ensuing tradition
of algebraic transformation of point-free functional programs [16,12]. Falling back to this tradition is natural, since both
structure-shy strategic programs and path-based XML processors are basically point-free: they are composed from basic
combinators and the terms and document elements they manipulate are not bound to intermediate variables.

Algebraic program transformation laws can be formulated for structure-shy strategic programs and XML processors,
just as they have been formulated for structure-sensitive point-free functional programs. Further laws can be formulated
that mediate between structure-shy and structure-sensitive programs by type-specialization and generalization. Such laws
can be leveraged into useful rewrite systems, not only for optimization of structure-shy programs, but also conversely for
increasing a program’s degree of structure-shyness, which may have its use in program understanding, refactoring, or re-
engineering. We will show how such rewrite systems can be implemented with strong type-safeness guarantees using the
functional programming language Haskell.

Our approach to transformation of structure-shy programs has been demonstrated to be useful for optimization of XPath
queries [15] and for query and constraint migration in the context of coupled transformation of data models, data instances,
queries, and constraints [42,14]. In general, our approach may find applications in compilation, static checking, refactoring,
reverse engineering, and migration of programs that employ XPath expressions and/or rewriting strategies.

In Section 2, we briefly motivate our work with some basic examples. In Section 3, we provide an overview of the
structure-sensitive point-free style of functional programming and the associated algebraic laws. Section 4 presents the laws
for reasoning about structure-shy programs and for mediation between these and structure-sensitive ones. In Section 5, we
explain the Haskell encoding of rewrite systems that harnesses the algebraic laws. In Section 6, we revisit our motivating
examples, and in Section 7 we discuss various application scenarios. Section 8 discusses related work, and Section 9
concludes.

2. Motivating examples

Structure-shy programming allows concise formulation of queries and transformations on rich data formats. Consider as
an example the XML schema represented in Fig. 1 for documents that hold information about movies.

Let us consider some queries and transformations for this schema of varying degrees of structure-shyness.

2.1. XPath

Suppose one wants to retrieve all movie directors from a document. In the XPath query language, this query can be
formulated as follows:

//movie/director

Specifically, it asks to retrieve director elements that are direct children of a movie element, where the movie element
can appear at any depth in the document structure.

We assume some basic knowledge of XPath. Fig. 2 describes the core fragment of XPath syntax used throughout the
paper. The full syntax is described in the XPath language reference [44]. Abbreviated syntax is available and heavily used:
for instance, // expands to /descendant-or-self::node()/ and an element name without preceding axis modifier
expands to /child::name.

www.imdb.com
www.imdb.com
www.imdb.com
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location := ’/’ ? (step (’/’ step)⇤)
step := axis ’::’ test pred ⇤
axis := ’child’ | ’descendant’ | ’self’ | ’descendant-or-self’
test := name | ’*’ | ’text()’ | ’node()’
pred := ’[’ expr ’]’
name := any document tag

Fig. 2. Core XPath syntax.

The above query is structure-shy in the sense that it does not explicitly specify the structural elements that occur between
the document root and the movie element. This structure-shyness is desirable from the perspective of understandability,
maintainability, and conciseness. But the execution time of the query may suffer from its structure-shyness, since it will
look for movie elements throughout the document. Using knowledge of the schema, we would like to apply optimizing
transformations to the query to obtain

imdb/movie/director

This query would not need to traverse into any children of the imdb element except those that aremovie elements.
On the other hand, knowledge of the schema could be used to increase the structure-shyness of the query, transforming

it into

//director

On documents conforming to the given schema, this query of increased structure-shynesswould produce the same result
as the original. But if, during the course of application evolution, the schema were to be changed such that directors no
longer (only) appear as direct children of movies, then the original query would need to be adapted while the new query
could remain untouched.

2.2. Strategic functional programming

Strategic programming was first supported in a non-typed setting in the Stratego language [38]. A strongly-typed
combinator suitewas introduced as a Haskell library by the Strafunski system [28,29]. This suitewas generalized into the so-
called ‘Scrap-Your-Boilerplate’ (SYB) approach to generic functional programming [25]. In this paper, we focus on a limited
set of combinators that convey the essence of strategic programming [26]. Namely, for specifying type-preserving generic
functions (transformations) we will use the following combinators:

nop :: T -- identity
(F) :: T! T! T -- sequential composition
mapT :: T! T -- map over children
mkTA :: (A! A)! T -- creation
apTA :: T! (A! A) -- application

The concrete definition of T, the type of generic transformations, will be presented later in Section 5 (for readability we put
single-letter type constants in sans serif font). The identity transformation is denoted by nop, F sequences transformations,
and mapT maps a transformation to all children of a node. Given a type-specific function f : A ! A, mkTA f is a
generic transformation that applies f to its argument if it is of type A, or otherwise returns it unchanged. Given a generic
transformation, apTA applies it to a specific type.

For specifying type-unifying generic functions (queries) we have similar combinators:

; :: Q R -- empty result
([) :: Q R! Q R! Q R -- union of results
mapQ :: Q R! Q R -- fold over children
mkQA :: (A! R)! Q R -- creation
apQA :: Q R! (A! R) -- application

The type of a generic query with result R is denoted byQ R. The result type R is assumed to be amonoid, with a zero element
and associative plus operator. These operations are used, for example, in mapQ in order to combine in a single value all the
results of mapping a generic query to the children of a node (returning zero if there are no children).

Some highly useful derived combinators are

everywhere :: T! T

everywhere f = f FmapT (everywhere f )
everything :: Q R! Q R
everything f = f [mapQ (everything f )
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data Imdb = Imdb [Movie] [Actor ]
data Movie = Movie Year Title Director [Review] [BoxOffice]
data BoxOffice = BoxOffice Country Value
data Actor = Actor Name [Played]
data Played = Played Year Title Role [Award]
data Director = Director String
data Year = Year Int data Review = Review String
data Title = Title String data Country = Country String
data Value = Value Int data Name = Name String
data Role = Role String data Award = Award String

Fig. 3. Haskell datatypes for the schema represented in Fig. 1.

Suppose one wants to truncate all reviews to 100 characters. Using strategic functional programming, and assuming that
the IMDb XML schema is encoded in Haskell using the datatype presented in Fig. 3, this transformation can be expressed as
follows:

trunc = everywhere (mkTReview take100)
where

take100 (Review r) = Review (take 100 r)

The everywhere combinator applies its generic argument function in topdown fashion to every node in a term. The
transformationmkTReview take100will only produce an effect in nodes of type Review, leaving all others unchanged.

To give an example of a generic query, consider the following function that counts the total size of all reviews stored in
the IMDb:

count = everything (mkQReview size)
where

size (Review r) = length r

These structure-shy definitions suffer from performance problems just like the structure-shy XPath query above. They
traverse into parts of the document where no Review occurs, and perform dynamic type tests, even though the data schema
provides static information about where these tests would succeed.

For optimization, we would like to transform these strategic functions into definitions that do not employ strategic
combinators:

trunc 0 = imdb (map (movie id id id (map take100) id)) id
count 0 = sum �map (sum �map size � reviews) �movies

Here we employ congruence and selector functions (also known as maps and projections, respectively) such as

imdb f g (Imdb m a) = Imdb (f m) (g a)
movies (Imdb m a) = m

The elimination of strategic functions in favour of ordinary functions enables subsequent optimizations by a regular
compiler, and performance gains can be quite substantial.

To give amore precise idea of the possible gains, we havemeasured the space and time consumption for these examples.
In order to quantify precisely the benefits obtained by type-specializing structure-shy strategic functions into ordinary
definitions, we have not used the standard type-class based implementation of strategic combinators [25], but our own,
based on explicit type parameterization and Generalized Algebraic Datatypes (GADTs) [21]. The SYB library is well known for
its poor performance [32], most likely due to its heavy use of rank-2 polymorphism and run-time type-safe cast. For the
running examples, our GADT version was roughly 14 times faster, and consumed 13 times less space.

Fig. 4 shows the time and space behaviour of the strategic and type-specific programs mapped against the size of the
movie database—generated inmemory with equal numbers of movies and actors. We analyze three program combinations:
count � trunc , count � trunc 0, and count 0 � trunc 0. We compiled each program using GHC 6.4.1 with optimization flag O1.
In this case, type-specialization implies an improvement in space and time by factors of 2.6 and 4.8. Optimization of the
trunc transformation alone implies an improvement by a factor of roughly 1.3 in both space and time. Additional type-
specialization of the count query accounts for the remaining factors of 2.0 and 3.7.

As in the XPath example, increasing the structure-shyness of a function definition is also extremely useful. The
introduction of strategic combinators into programs that do not employ them would allow us to synthesize structure-shy
programs from structure-sensitive programs. Code that has been developed before the advent of strategic programming, or
that has been initially conceived for particular data structures could be made more concise, understandable, and reusable.
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Fig. 4. Performance analysis.

3. Point-free functional programming

In his 1977 Turing Award lecture, Backus advocated a variable-free style of functional programming, on the basis of
the ease of formulating and reasoning with algebraic laws over such programs [5]. After Backus, others have adopted,
complemented, and extended his work. This section briefly overviews this so-called point-free style of programming; for a
more detailed presentation we recommend the textbook by Bird and de Moor [6] or the survey by Gibbons [16].

Point-free programs are constructed using a standard set of primitive functions and function combinators. This set of
combinatorswas chosen based on the power of the associated algebraic laws. The set of laws thatwas used in the calculations
performed for this paper is presented in Fig. 5. Although we present some examples in Haskell, we remark that the domain
subject to our calculations is that of sets and total functions: in particular some of the presented laws are not valid over the
counterpart Haskell types (additional strictness side-conditions would be necessary).

The most fundamental primitive and combinator are, respectively, the identity function and function composition.

id :: A!A
(�) :: (B!C)! (A!B)! (A!C)

For defining functions over products we have projections and the split combinator that combines results of two functions
in a pair. The function product combinator updates a pair using different functions for each element.

fst :: A⇥B! A
snd :: A⇥B! B
(M) :: (A!B)! (A!C)! (A! B⇥C)
(⇥) :: (A!B)! (C!D)! (A⇥C ! B⇥D)

Inhabitants of a sum type can be constructed using one of the injection combinators. To process sums we have the either
combinator, that performs case analysis on a value to decide which of its argument functions should be used. Mapping over
sums can be done using the function sum combinator.

inl :: A! A + B
inr :: B! A + B
(O) :: (A!C)! (B!C)! (A + B! C)
(+) :: (A!B)! (C!D)! (A + C ! B + D)

User-defined datatypes are manipulated by first exposing their isomorphic sum-of-products representation. To be more
precise, since a datatype canbe recursive, it can bedefined as the fixpoint of a regular functor that captures the signature of its
constructors. The functor of a datatype Awill be denoted asFA. When the type is clear from the context the subscript will be
dropped. If the type is non-recursive the functor just ignores its argument. For example, typeMovie of Fig. 3 is characterized
by the following isomorphism:

Movie ⇠= µ (FMovie)
where FMovie x = Year⇥Title⇥Director⇥[Review]⇥[BoxOffice]

Here, µ is the fixpoint operator. For recursive datatypes the argument marks the occurrence of recursive elements. For
example, suppose that the datatype Namewas instead defined as a sequence of given names ended by a family name:

data Name = Family String | Given String Name

In this case we have the following isomorphism:

Name ⇠= µ (FName)
where FName x = String + String⇥x

Associated with each datatype A we also have two unique functions, inA :: F A ! A and outA :: A ! F A, that are each
other’s inverse. They allow us to, respectively, construct and inspect values of the given type. To further clarify its meaning,
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f � id = f ^ id � f = f �-Id
f � (g � h) = (f � g) � h �-Assoc

inA � outA = id datamap-Id
f⇥g = (f � fst) M (g � snd) ⇥-Def

fst � (f M g) = f ^ snd � (f M g) = g ⇥-Cancel
(f M g) � h = (f � h) M (g � h) ⇥-Fusion

fst M snd = id ⇥-Reflex
f + g = (inl � f ) O (inr � g) +-Def

(f O g) � inl = f ^ (f O g) � inr = g +-Cancel
f � (g O h) = (f � g) O (f � h) +-Fusion

inl O inr = id +-Reflex
map id = id map-Id

map f � nil = nil map-Nil
map f �map g = map (f � g) map-Fusion

map f � wrap = wrap � f map-Wrap

map f � nil = nil map-Nil
map f � cat = cat � (map f⇥map f ) map-Cat

map f � concat = concat �map (map f ) map-Concat
concat �map wrap = id concat-MapWrap

filter true = id filter-True
filter false = nil filter-False
filter f � nil = nil filter-Nil

filter f � cat = cat � (filter f⇥filter f ) filter-Cat
filter f �map g = map g � filter (f � g) filter-Map

filter f � concat = concat �map (filter f ) filter-Concat
filter f � wrap = cond f wrap nil filter-Wrap

true � f = true true-Fusion
cond true f g = f cond-True
cond false f g = g cond-False

(cond f l r) � g = cond (f � g) (l � g) (r � g) cond-Fusion
plus � (zero M f ) = f ^ plus � (f M zero) = f plus-Zero

zero � f = zero zero-Fusion
zero O zero = zero zero-Either
fold � nil = zero fold-Nil
fold � wrap = id fold-Wrap

fold � cat = plus � (fold⇥fold) fold-Cat
fold � concat = fold �map fold fold-Concat

fold �map zero = zero fold-MapZero

Fig. 5. Some laws for point-free program calculation.

throughout the paper we will usually denote the inspector function outA as unA. For example, the following point-free
function allows us to retrieve the title of a movie (notice that binary operators like⇥ associate to the right):

getTitle :: Movie! Title
getTitle = fst � snd � unMovie

We will also make extensive use of congruence functions such as

title :: (String ! String)! Title! Title
title f = inTitle � f � outTitle

In general, the congruence function for a given datatype has type (F A! F A)! (A! A) and will be denoted with the
same name, but with the first letter in lowercase. For example, given the function toUpper :: Char ! Char , that converts a
single character to uppercase, we can define a function to change the title of a movie to uppercase as follows:

bigTitle :: Movie! Movie
bigTitle = movie (id⇥title (map toUpper)⇥id)

Although they could be added as normal user-defined datatypes, we will give a special treatment to lists: they occur
frequently when encoding XML schemas as Haskell datatypes, and to make calculation easier it is convenient to encode
typical list functions as primitives in our calculus. Namely, we will use the map combinator that applies a given function to
all elements of a list, the wrap function that builds singleton lists, and filter that filters list elements with a predicate.
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map :: (A!B)! ([A]![B])
wrap :: A![A]
filter :: (A!Bool)! ([A]![A])

In this paper we also use some overloaded functions for processing monoid types: zero returns the zero element of monoid
A, plus sums two elements, and fold sums all elements in a list. For example, if the monoid is a list, zero returns the empty
list, plus concatenates two lists, and fold flattens a list of lists.

zero :: B!A
plus :: A⇥A! A
fold :: [A]!A

Here we follow the standard practice in point-free programming of defining constants as functions that ignore their input
parameter (allowing them to be combined with composition or any other point-free combinator). To make the presentation
more clear, when defining functions and laws that are specific to a given monoid we will use specific functions instead of
the overloaded ones. Namely, for the list monoid we will use nil :: B! [A], cat :: [A]⇥[A]! [A] (an uncurried version of
(++) :: [A]! [A]! [A]), and concat :: [[A]]! [A], instead of zero, plus, and fold, respectively. For integers we will use
sum :: [ Int ] ! Int instead of fold. For example, in Fig. 5, we only use the overloaded functions when presenting laws that
are valid for all monoids. Otherwise, we use the specific ones.

We also define (point-free) versions of if-then-else and constant true.
cond :: (A!Bool)! (A!B)! (A!B)! (A!B)
true :: A!Bool

Notice that we use a boolean monoid where zero is false and plus stands for disjunction. Again, we will use false :: B! Bool
instead of zerowhen defining functions and laws specific to the boolean monoid.

In the next sectionwewill showhow thepoint-free style can beused as the solution space for transformation of structure-
shy programs. Structure-shy programswill be converted into structure-sensitive point-free ones, so thatwe can use the laws
presented in this chapter to perform optimizations by calculation. Due to the equational nature of the point-free calculus it
is rather straightforward to implement a rewrite system to mechanize calculations, as will be described in Section 5.

In the past, a similar approach has been proposed to reason about pointwise programs: it is possible to define a systematic
way of turning functions with variables and pattern matching into equivalent point-free forms, so that calculations can be
performed straightforwardly in the point-free counterparts [13]. For example, the tools presented in the cited paper can
convert the Haskell definition

assocr :: ((a, b), c)! (a, (b, c))
assocr ((x, y), z) = (x, (y, z))

into the standard point-free definition of this combinator:
assocr = (fst � fst) M (snd⇥id)

This approach of reasoning about programs in the point-free style has been likened to Laplace or Fourier transforms,
where one transforms aproblem fromonemathematical space into another, solves the problem in that space, and transforms
the solution back to the original space [34]. In the second space, the solution can be found with a straightforward algorithm,
while the original space resists suchmechanized reasoning. Likewise, point-free programs can be used as the solution space
to reason both about pointwise and structure-shy programs.

4. Algebraic laws of structure-shy programs

Just as for point-free functional programs, algebraic laws exist for structure-shy programs. Moreover, laws can be
provided for mediation between structure-shy programs and structure-sensitive point-free programs. By virtue of these
mediation laws, point-free program transformation can be used as the solution space for transformation of structure-shy
programs, as we will demonstrate below.

4.1. Strategic programming laws

Fig. 6 provides an overview of equational laws that govern the strategic programming combinators. For example, the F-Id
law states that the generic identity function is a left and right zero for generic sequential composition. The mapT -Fusion
law states that generic maps distribute over generic sequential composition. The dual mapQ -Fusion law is only valid for
commutative monoids. Some of these laws were formulated earlier [26,25], and can be easily proved by induction on the
representation of types. Note that the reasoning power of these strategic programming laws is rather limited, precisely
because they do not take type information into account. For example, there are no counterparts of the⇥-Cancel rule, which
enable the elimination of redundant computations.

Further laws can be formulated that mediate between structure-shy and structure-sensitive programs by type-
specialization and generalization. Fig. 7 provides an overview of laws that mediate between strategic and point-free
combinators. Essentially, these laws correspond to the operational semantics of generic combinators expressed in the
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f F nop = f ^ nop F f = f F-Id
f F (g F h) = (f F g) F h F-Assoc

mapT nop = nop mapT -nop
mapT f FmapT g = mapT (f F g) mapT -Fusion

f [ ; = f ^ ; [ f = f [-EmptyL

f [ (g [ h) = (f [ g) [ h [-Assoc
mapQ ; = ; mapQ -Empty

mapQ f [mapQ g = mapQ (f [ g) mapQ -Fusion

Fig. 6. Laws for strategic program combinators.

apTA nop = id nop-Apply
apTA (f F g) = apTA g � apTA f F-Apply
apTA (mkTA f ) = f
apTA (mkTB f ) = id, if A 6⌘ B

�
mkT -Apply

apTA (everywhere f ) = apTA (f FmapT (everywhere f )) everyw-Apply
apTA (mapT f ) = id, if A base
apT (A⇥B) (mapT f ) = apTA f⇥apTB f
apT (A+B) (mapT f ) = apTA f + apTB f
apT [A] (mapT f ) = map (apTA f )
apTA (mapT f ) = inA � apT 0(F A) f � outA, if A data

9
>>>=

>>>;
mapT -Apply

mkTA id = nop id-PullT
mkTA (f � g) = mkTA g FmkTA f �-PullT

apQA ; = zero ;-Apply
apQA (f [ g) = plus � (apQA f M apQA g) [-Apply

apQA (mkQA f ) = f
apQ A (mkQB f ) = zero, if A 6⌘ B

�
mkQ -Apply

apQA (everything f ) = apQA (f [mapQ (everything f )) everyt-Apply
apQA (mapQ f ) = zero, if A base
apQ (A⇥B) (mapQ f ) = plus � ((apQA f )⇥(apQ B f ))
apQ (A+B) (mapQ f ) = (apQA f ) O (apQ B f )
apQ [A] (mapQ f ) = fold �map (apQA f )
apQA (mapQ f ) = apQ 0(F A) f � outA, if A data

9
>>>=

>>>;
mapQ -Apply

mkQA zero = ; ;-PullQ
mkQA (plus � (f M g)) = mkQA f [mkQA g plus-PullQ

Fig. 7. Laws for mediating between strategic and point-free programs.

point-free style. However, we believe they were not formulated earlier, nor used for the purpose of type-specialization
and generalization of structure-shy programs.

Specialization of structure-shy transformations proceeds by pushing down the apT combinator until it gets consumed
by the mkT -Apply law. The mapT -Apply law states how a generic map should be specialized. When applied to a base type,
the identity function is returned. For products, sums, and lists all the children are transformed using the respective map
operations. When applied to a user-defined datatype, its sum-of-products representation is first exposed, and then the
argument function is applied to all its content. Since we only have binary products and sums, the representation can be
nested and thus it does not suffice tomap over direct children: it is necessary to descend down the representation until base
types or other user-defined datatypes are reached. This is accomplished by the apT 0 function, whose concrete definition will
be given when discussing the Haskell encoding of this law in Section 5.3. Similar laws are defined for the specialization of
structure-shy queries.

Notice that everyw-Apply uses the recursive definition of this combinator using mapT and F. As such, it cannot be used
for specialization to recursive datatypes, since it would lead to an infinite expansion of the definition (due to successive ex-
pansions of everywhere in recursive occurrences of the type). A similar problem occurswith everyt-Apply. The examples pre-
sented in this paper involve only non-recursive datatypes, and thus, such laws canbe safely applied. Recently,wehave shown
how to extend this specializationmechanism to recursive datatypes [11]; see Section 8 for a brief presentation of that work.

To give an example of applying these laws to the specialization of a generic query, recall the definition of count presented
in Section 2.2:

count = everything (mkQReview size)
where

size (Review r) = length r
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apQ Review count
= {everyt_apply}
apQ Review (mkQReview size [mapQ count)

= {union_apply}
plus � (apQ Review (mkQReview size) M apQ Review (mapQ count))

= {mkQ _apply}
plus � (size M apQ Review (mapQ count))

= {mapQ _apply}
plus � (size M apQ String count � unReview)

= {everyt_apply}
plus � (size M apQ String (mkQReview size [mapQ count) � unReview)

= {union_apply,mkQ _apply}
plus � (size M plus � (zero M apQ String (mapQ count)) � unReview)

= {mapQ _apply}
plus � (size M plus � (zero M zero) � unReview)

= {plus_zero}
plus � (size M zero � unReview)

= {zero_fusion}
plus � (size M zero)

= {plus_zero}
size

Fig. 8. Specialization of apQ Review count .

Fig. 8 presents a derivation of the type-specific definition that results from applying count to a single review. This derivation
uses the laws from Fig. 7 to derive a type-specific point-free definition. Notice how all different possibilities of applying the
generic query are explored:most of them result in empty queries, which are later eliminated using the point-free calculation
laws from Fig. 5. Section 5 presents a Haskell implementation of a rewrite system that can perform this specialization
automatically. In fact, this particular calculation can be reproduced by such a system. Section 6 presents two more
automatic derivation examples, namely a specialization of a generic transformation and a generalization of a type-specific
query.

To increase a program’s degree of structure-shynesswe can use laws like �-PullT, that states how sequential composition
can be pulled up throughmkT to obtain generic sequential composition. However, to successfully accomplish this task some
additional heuristic laws are needed, which will be presented in Section 5.4.

4.2. XML programming laws

Many XPath constructs can be expressed directly as strategic combinators of type Q [?], where ? represents a universal
node type (a similar encoding was developed by Lämmel [24]):

self :: Q [?] -- self::node()
child :: Q [?] -- child::node()
desc :: Q [?] -- descendant::node()
descself :: Q [?] -- descendant-or-self::node()
name :: String ! Q [?] -- self::name
(/) :: Q [?]! Q R! Q R -- /
(?) :: Q [?]! Q Bool! Q [?] -- q[p]
nonempty :: Q Bool

The first four combinators model steps with various axes, eachwith test node(). The combinator name "foo" corresponds
to the XPath step self::foo. When presenting queries we will just write hfooi, which should not be confused with the
XPath abbreviated syntax for child::foo.

Consider the abbreviatedXPath query//movie[//review], that uses a predicate to select allmovies that have reviews.
This query expands to

descendant-or-self::node()/child::movie[
descendant-or-self::node()/child::review]

and is encoded using the above combinators as

descself / child / name "movie" ? descself / child / name "review" / nonempty
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(f [ g) / h = (f / h) [ (g / h) [-Dist
; / f = ; /-Empty

self / f = f ^ f / self = f /-Self
name n / name n = name n /-Name

(f / g) / h = f / (g / h) /-Assoc
; ? p = ; ?-Empty

f ? nonempty = f ?-Nonempty

(f ? p) ? q = (f ? q) ? p ?-Comut

f ? (name n / nonempty) = f / name n ?-Name

Fig. 9. Laws for XPath combinators.

child = mapQ self child-Def
desc = everything child desc-Def
descself = self [ desc descself -Def
mapQ f = child / f mapQ -Def

apQA (f / g) = fold �map (apQ ? g) � apQA f /-Apply
apQA (f ? p) = filter (apQ ? p) � apQA f ?-Apply

apQA nonempty = true nempt-Apply
apQA self = wrap �mkAnyA self -Apply

apQA (name n) = apQA self , if A has name n
apQA (name n) = zero, otherwise

�
name-Apply

apQ ? f �mkAnyA = apQA f ?-Apply
mkQA (wrap �mkAnyA) = name n, if A has name n
mkQA (wrap �mkAnyA) = self , otherwise

�
?-PullQ

mkAny? = id mkAny-Id

Fig. 10. Laws for mediating between XPath and strategic/point-free programs.

This, in turn, we write using our abbreviated notation as

descself / child / hmoviei ? descself / child / hreviewi / nonempty

As expressed by the ? result type, the XPath combinators enjoy a very relaxed typing. The list of results returned by a
query can contain nodes of any number of different types. As we will explain below, this poses additional challenges for
transformation of XPath queries. The function mkAnyA :: A ! ? is used to inject any type A into the universal type. We
assume this function is idempotent, i.e. mkAny? = id. The behaviour of combinators like mapQ , mkQ , and apQ on ? is
defined by their behaviour on the injected type.

Some algebraic laws for XPath combinators are presented in Fig. 9. For instance, the [-Dist and /-Assoc combinators
state the distributivity and associativity properties of XPath combinators. Fig. 10 presents laws for the conversion and type-
specialization of XPath expression. The child, desc , and descself axes are convertible to strategic combinators, as stated
by various Def laws [24]. After converting them, the previously presented specialization laws for strategic queries can
take effect. The remaining combinators can be converted directly to point-free expressions, using Apply rules. Note that
a datatype A has name n if it encodes an XML element named n. The ? laws allow elimination of themkAny function. Below
we will demonstrate how these rules together mediate between XPath and point-free expressions.

5. Encoding in Haskell

The various algebraic laws presented above can be harnessed into type-safe, type-directed rewriting systems for
generalization, specialization, and optimization of structure-shy programs. In this section, we explain how the functional
language Haskell can be used for this purpose.

5.1. Type-safe representation of types

Some of our algebraic laws, especially those of Figs. 7 and 10, make explicit reference to types. Some expose the structure
of types (e.g. mapT -Apply). Others include type equality tests (e.g. mkT -Apply). To encode these laws, we will need type
representations at the value level, which can be provided with the following GADT:

data Type a where
Int :: Type Int
Bool :: Type Bool
String :: Type String
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Any :: Type ?
List :: Type a! Type [a]
Prod :: Type a! Type b! Type (a, b)
Either :: Type a! Type b! Type (Either a b)
Func :: Type a! Type b! Type (a! b)
...

Note that the type a that parameterizes the type representation Type a is instantiated differently in each constructor. This is
precisely the difference between a GADT and a common parameterized datatype, where the parameters in the result type
are unrestricted in all constructors. In the definition of Type a, the parameter a of each constructor is restricted exactly to
the type that the constructor represents, which makes our type representation type-safe. For example, the constructor Int
represents the type Int , and List (Prod Int Bool) represents the type [(Int, Bool)]. This kind of type representation was first
suggested independently by both Baars and Swierstra [4] and Cheney and Hinze [9] to extend a statically typed language to
include some form of dynamic typing and generic programming.

The universal node type will be encoded in Haskell using dynamic values. A dynamic value can be encoded as a value
paired with the representation of its type:

data ? where Any :: Type a! a! ?

FunctionmkAny can be defined as follows:

mkAny :: Type a! a! ?
mkAny ? x = x
mkAny a x = Any a x

It is possible to define a class with all representable types.

class Typeable a where typeof :: Type a

Most instances of this class are trivial to define. For example, for integers and functions, we have

instance Typeable Int where typeof = Int
instance (Typeable a, Typeable b)) Typeable (a! b) where

typeof = Func typeof typeof

The definition of Type a presented above allows the representation of some basic types, products, sums, functions, and
lists. To represent arbitrary user-defined datatypes, we extend it as follows (inspired by a trick previously introduced by
Weirich [46]):

data Type a where
...
Data :: String ! EP a b! Type b! Type a

data EP a b = EP{to :: a! b, from :: b! a}
Here, EP is an embedding-projection pair that converts values of a user-defined datatype a into its sum-of-products
representation. The first parameter stores the name of the datatype. The type b is expected to be equal to F a.

Our movie database schema of Fig. 1 can be represented in Haskell by the user-defined datatypes shown in Fig. 3.
Representations of these datatypes are constructed with Data. For example, the Imdb datatype is represented as follows:

instance Typeable Imdb where
typeof = Data "Imdb" (EP to from) rep

where
rep = Prod (List typeof ) (List typeof )
to (Imdb ms as) = (ms, as)
from (ms, as) = Imdb ms as

Here, Typeable instances are assumed forMovie and Actor .
Type equality can be defined by induction on type representations [4]:

teq :: Type a! Type b! Maybe (Equal a b)
teq Int Int = Just Eq
teq (List a) (List b) =

case teq a b of Just Eq! Just Eq; ! Nothing
...
teq = Nothing
data Equal a b where Eq :: Equal a a

The constructor Eq of the Equal GADT can be seen as a proof token of the equality of types a and b.
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5.2. Type-safe representation of functions

Apart from types, we need to represent functions in a type-safe manner. For this purpose we define a GADT with a
constructor for each point-free program combinator:

data F f where
Id :: F (a!a)
Comp :: Type b! F (b!c)! F (a!b)! F (a!c)
Fst :: F ((a, b)!a)
Snd :: F ((a, b)!b)
(M) :: F (a!b)! F (a!c)! F (a!(b, c))
(⇥) :: F (a!b)! F (c!d)! F ((a, c)!(b, d))
Plus :: Monoid a! F ((a, a)!a)
Datamap :: Type b! F (b!b)! F (a!a)
UnData :: F (a!b)
MkAny :: Type a! F (a!?)
Fun :: String ! (a!b)! F (a!b)
...

Here we have elided many similar constructors. An inhabitant of type F (a ! b) is a representation of a function of type
a ! b. The Datamap and UnData constructors represent congruence and inspector functions for user-defined data types.
Again the type b is expected to be the sum-of-products representation of datatype a. The Fun constructor allows us to include
(pointwise) functions in point-free expressions without converting them to point-free shape; it can be used for functions
over which no reasoning is performed. Constructors with an (implicitly) existentially quantified variable, such as Comp and
Datamap, take a corresponding type representation as an additional argument. This allows one to reconstruct the type of
the argument functions from the result function. Some functions, such as Plus, take as argument an explicit dictionary that
provides the semantics of the respective monoid operations:

data Monoid r = Monoid{zero :: r, plus :: r ! r ! r }
Of course, this dictionary gives no guarantees that r is indeed a monoid: any proof that the operations satisfy the required
laws (associativity and identity) is left to the programmer. These operations are not relevant to calculations and are only
used in the definition of an evaluation function for our typed abstract syntax.

To represent strategic functions, we must first define their types:

type T = 8a . Type a! a! a
type Q r = 8a . Type a! a! r

Then we can add further constructors to F f to represent them:

data F f where
...
Nop :: F T

Seq :: F T! F T! F T

ApT :: Type a! F T! F (a!a)
MkT :: Type a! F (a!a)! F T

MkQ :: Monoid r ! Type a! F (a!r)! F (Q r)
Empty :: Monoid r ! F (Q r)
...

Similar constructors have again been elided. These constructors represent the combinators introduced in Section 2.2.
Note that the query combinators take an additional argument Monoid r because the result type is expected to be a
monoid.

Finally, the XPath combinators introduced in Section 4.2 are represented by constructors such as the following:

data F f where
...
Self :: F (Q [?])
Name :: String ! F (Q [?])
(:/:) :: F (Q [?])! F (Q r)! F (Q r)
(:?:) :: F (Q [?])! F (Q Bool)! F (Q [?])
Nonempty :: F (Q Bool)

Lists are monoids; hence there is no need forMonoid arguments.
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5.3. Rewrite rules

Now that type and function representations are in place, we proceed to the encoding of rewrite rules and systems.
Individual rewrite rules, as well as the rewrite systems composed from them, are represented bymonadic Haskell functions
of the following type:

type Rule = 8f . Type f ! F f ! RewriteM (F f )

Thus, a rule takes a function of type f into a new function of the same type. The type representation passed as first argument
allows rules to make type-based rewriting decisions; the importance of this will become clear below.

The RewriteM monad was designed both to allow partiality of rewrite rules, and to offer the capability of generating
rewrite traces. To allow partiality, any instance of theMonadPlus class would suffice:

class Monad m) MonadPlus m where
mzero :: m a
mplus :: m a! m a! m a

Failure in the application of a rule should be signaled by invoking mzero. Among the possible instances of this class we will
use theMaybemonad, where failure is denote by Nothing and the mplus is a left-biased choice.

The implementation of trace generation is quite more complex, because when rewriting a particular sub-expression we
want to show the result of rewriting the whole expression that contains it. To allow this, the Maybe monad was extended
using RWST , a standardmonad transformer from the GHC library that adds reader, writer, and state functionalities to a given
monad (cf [20]):

type RewriteM = RWST Location [(String, String)] ? Maybe

The state monad allows us to thread a state through the computation. In this case, the state contains the whole point-
free expression being rewritten. Since we are using a typed representation, the type of the state varies according to input
expression: that is the reason why a dynamic value is used to represent the state. In order to knowwhich sub-expression is
currently being rewritten, a Location is propagated using a reader monad: a location is just a sequence of integers encoding
the path from the root to the current sub-expression. Both the location and the state are updated in the rule combinators
presented in Section 5.4.

A writer monad can be used to log information while computing values. In this case, the type of the log is
[(String, String)]: a list of rewrite steps, each represented by a tuple with the name of the applied rule and the result of
rewriting. Logging of a particular rule must be explicitly required by the user, by using the success function instead of return:

success :: String ! (F f )! Rewrite (F f )

The first argument is supposed to be the rule’s name.
Here is an encoding of the �-Id law from Fig. 5, applied in the left-to-right direction:

comp_id :: Rule
comp_id (Comp Id f ) = return f
comp_id (Comp f Id) = return f
comp_id = mzero -- catch all

This simple rule does not involve type information, so the first argument is ignored (indicated by ). Pattern matching is
performed on a function representation and, on successfulmatch, a resulting function representation is returned. Otherwise,
failure of the rule is indicated bymzero. We omit this catch-all case in the rules below.

An example of a rule that involves type information is the left-to-right encoding of law⇥-Def:
prod_def :: Rule
prod_def (Func (Prod a b) ) (f ⇥ g)

= success "prod_def" ((Comp a f Fst) M (Comp b g Snd))

Pattern matching on the type representation is performed to determine the intermediate types of compositions in the
returned function. Notice the use of success to request the logging this rule in the rewrite traces.

Of course, laws can be applied in the right-to-left direction as well. For example, the inverse of the prod_def rule
introduces rather than eliminates product maps:

prod_def _inv :: Rule
prod_def _inv ((Comp f Fst) M (Comp g Snd)) =

success "prod_def_inv" (f ⇥ g)
prod_def _inv ((Comp f Fst) M Snd) =

success "prod_def_inv" (f ⇥ Id)
prod_def _inv (Fst M (Comp g Snd)) =

success "prod_def_inv" (Id⇥ g)
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In this case, it does not suffice to encode the ⇥-Def law as presented in Fig. 5. Suppose we have the point-free expression
fst�fst M snd. In order to rewrite this expression into the equivalent fst⇥id, we first need to apply �-Id (in the right-to-left di-
rection) to snd in order to obtain fst�fst M id�snd. Only then could the⇥-Defbedirectly applicable. Ifwe included in a rewrite
system �-Id encoded as a right-to-left rewrite rule, complexmeasureswould be needed in order to avoid infinite expansions
(including some backtracking technique). To avoid such complexities, some rules need some extra equations to handle cases
where �-Id needs to be first applied in the right-to-left direction. That is the case of the last two equations of prod_def _inv.

Type-equality tests play a role in rules such asmkT -Apply:

mkT_apply :: Rule
mkT_apply (ApT a (MkT b f ))

= case teq a b of Just Eq ! success "mkT_apply" f
Nothing ! success "mkT_apply" Id

Thus, if the type of the ApT and the type of theMkT are equal, the function f is returned. Otherwise, the identity function Id
is returned. The lawmapT -Apply is encoded as follows:

mapT_apply (ApT Int (MapT f )) =
success "mapT_apply" Id

...
mapT_apply (ApT (List a) (MapT f )) =

success "mapT_apply" (Listmap (ApT a f ))
mapT_apply (ApT (Data b) (MapT f )) =

success "mapT_apply" (Datamap b (apT 0 b))
where apT 0 (Prod a b) = (apT 0 a)⇥ (apT 0 b)

apT 0 (Either a b) = (apT 0 a) + (apT 0 b)
apT 0 a = ApT a f

Notice how the apT 0 auxiliary function applies the transformation f to all the content of a user-defined datatype:
representations consist of nested sums of products that must be traversed until base types or other user-defined datatypes
are reached.

5.4. Combining rules into transformation systems

Rewrite rules are possibly partial, type-preserving transformations on function representations. Thus, to combine rewrite
rules into rewrite systems, we define a new suite of strategic function combinators, similar to those presented in Section 2.2:

nop :: Rule -- identity rule
(=) :: Rule!Rule!Rule -- sequential composition
(↵) :: Rule!Rule!Rule -- choice
all :: Rule! Rule -- map on all children
one :: Rule! Rule -- map on one child
rewrite :: Rule! F f ! F f -- top-level application

Rewriting rules can also be seen as generic transformations on values of type F f (type Rule is basically a restriction of
type T to point-free expressions). We cannot reuse exactly the same strategic combinators of Section 2.2 to define rewrite
systems because the result of applying rules is inside the RewriteM monad. Since this monad supports partiality we also
have some extra combinators: the choice combinator ↵ attempts to apply the left rule, and, if it fails, resorts to the right
one; and one applies a rule to just one child. The top-level application function rewrite takes the result of rewriting a term
out of the RewriteM monad; in the case of failure it returns the original function representation.

Using the primitive combinators presented above, we can define a useful set of derived combinators:

many :: Rule! Rule
many r = (r = (many r))↵ nop
once :: Rule! Rule
once r = r ↵ one (once r)
innermost :: Rule! Rule
innermost r = all (innermost r) = ((r = innermost r)↵ nop)

The combinator many applies a rule repeatedly until it fails; once attempts to apply a rule somewhere inside a point-free
expression; and innermost performs exhaustive rewrite rule application.

Optimization of point-free programs. Using these strategic rewrite rule combinators, we can compose our one-step rewrite
rules into complete transformation strategies. For example:

optimize_pf = innermost opt = innermost inv
where
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mapT (everywhere f ) ?= everywhere f mapT -Elim
mkTA f ?= everywhere (mkTA f ) everyw-Intro

mkT [A] (map f ) ?= mapT (mkTA f ) map-PullT
mkT (A⇥A) (f⇥f ) ?= mapT (mkTA f )
mkT (A⇥B) (f⇥g) ?= mapT (mkTA f FmkTB g), if A 6⌘ B

)

⇥-PullT

mapQ (everything f ) ?= everything f mapQ -Elim
mkQA f ?= everything (mkQA f ) everyt-Intro

mkQ [A] (fold �map f ) ?= mapQ (mkQA f )
mkQ [A] (map f ) ?= mapQ (mkQA (wrap � f ))

)

map-PullQ

mkQ (A⇥B) (f � fst) ?= mapQ (mkQA f ), if A 6⌘ B
mkQ (A⇥B) (f � snd) ?= mapQ (mkQB f ), if A 6⌘ B

)

⇥-PullQ

self ?= descself self -Elim
child / descself ?= descself child-Elim

Fig. 11. Heuristic laws for strategic and XPath combinators.

opt = comp_id↵ prod_def ↵ prod_cancel↵ ...
inv = prod_def _inv↵ prod_fusion_inv↵ ...

The optimize_pf strategy first performs optimization of point-free functions by exhaustive application of the laws in Fig. 5,
oriented as rewrite rules from left to right. After that, some inverse rules are applied to make the resulting function
more concise. The main objective of this second phase is not optimization, but to increase readability of the resulting
expressions:most of its rules are right-to-left instances of non-primitive combinator definitions (like⇥-Def) and fusion laws
(like⇥-Fusion). For example, the rules in the second phase allow the following derivation:

fst � snd M fst � snd � snd
= {prod_fusion_inv}
(fst M fst � snd) � snd

= {prod_def _inv}
(id⇥fst) � snd

Notice how the fusion law factored out a common sub-expression and enabled the application of the product combinator
definition.

Specialization of structure-shy programs. The specialization of type-preserving strategic programs into point-free form is
achieved by systematic application of the Apply rules of Fig. 7, followed by the point-free optimization strategy:

optimize_t = t2pf = optimize_pf
t2pf = innermost (mapT_apply↵mkT_apply↵ ...)

For generic queries we have similar optimization strategies.
Increasing structure-shyness. To increase structure-shyness, we complement the laws presented in Section 4 with

additional rules that are not valid in general, but are rather heuristic. Fig. 11 provides a list. To prevent application of these
heuristic laws when they are not valid, they must be guarded: the result of applying a heuristic rule must preserve the
semantics of the original expression. For type-preserving functions, the application of a heuristic rule can be guarded with
the following combinator:

guardT :: Rule! Rule
guardT r t f = do

g  r t f
f 0  optimize_t t f
g 0  optimize_t t g
if (f 0 ⌘ g 0) then return g else mzero

Our approximation to checking semantic equivalence consists in comparing (using the syntactic equality operator ⌘) the
results of specializing to type t (using optimize_t) both the argument expression f and the result g of applying the heuristic
rule r to f . For queries, we have a similar function, guardQ .

We have devised a three-phase strategy for increasing the structure-shyness of generic programs. First, we specialize
the program to an optimized point-free form, using the strategies presented above. The resulting program will not contain
redundant transformations or redundant queries. Secondly, we exhaustively apply Pull laws of Figs. 7, 10 and 11, which
result in a program where as many point-free combinators as possible have been replaced by structure-shy counterparts.
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In the last phase, we further increase the structure-shyness by application of rules for structure-shy combinators only,
presented in Figs. 6, 9 and 10, combinedwith the Elim and Intro laws of Fig. 11. Thus, for type-preserving generic functions,
we have

generalize_t = optimize_t = mkT_apply_inv =
many (once (id_pullT ↵ comp_pullT ↵ ...)

↵ guardT (once (map_pullT ↵ ...))) =
many (once (seq_id↵mapT_fusion↵ ...)↵ ...)

The mkT_apply_inv rule inserts the combinators apTA � mkTA at the top level to seed the pull process of the second phase.
Notice the use of guardT to protect the application of the heuristic rules. The strategies for strategic and XPath queries are
similar.

6. Revisiting the motivating examples

Now thatwe have encoded several rewrite systems for structure-shy program transformation, we return to our examples
of Section 2. We demonstrate several scenarios, such as generalization, specialization, and optimization of transformations
and queries. All examples were run in the GHCi 6.4.1 Haskell interpreter (> denotes the interpreter prompt).

6.1. Transformations

Recall the example transformation for truncating reviews:

> let trunc = everywhere (mkTReview take100)

We can apply our optimize_t strategy to specialize this structure-shy transformation to a structure-sensitive one, for a
specific type. Let us try this first for the type Imdb:

> rewrite optimize_t (apT Imdb trunc)
imdb (map (movie (id⇥id⇥id⇥map take100⇥id))⇥id)

Note the use of apT to select the type for which we want to specialize. So, indeed, our strategy is able to perform the type-
specialization that we expected; the differencewith respect to the result presented in Section 2.2 is due to the fact that these
datatypes are now internally represented as (nested) products. We get different results when we perform specialization for
different types:

> rewrite optimize_t (apTActor trunc)
id
> rewrite optimize_t (apTReview trunc)
take100

Thus, when specialized for the type Actor , inside which no reviews can occur, the transformation reduces to the identity
function. When specialized for the type Review, the transformation reduces to the truncation function itself. The rewrite
trace of this last derivation is presented in Fig. 12.

Rather than eliminating the structure-shyness of a transformation by type-specialization, we can attempt to increase
structure-shyness with our strategy generalize_t . Consider the following function that converts to uppercase all the awards
of an actor.

> let up = apTActor (everywhere (mkTAward upper))
where upper (Award t) = Award (map toUpper t)

A programmer who is not fully aware of the schema could try to convert all of the awards in a movie database by applying
the up query restricted to Actor elements.

> let bigawards = everywhere (mkTActor up)

However, generalization of this query for Imdb yields the following result:

> rewrite generalize_t (apT Imdb bigawards)
apT Imdb (everywhere (mkTAward upper))

In fact, the check for Actor is not needed, because in the Imdb schema the Award element only occurs under Actor .

6.2. Queries

The following query computes the total length of reviews:

> let count = everything (mkQReview size)
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apTReview trunc
= {everyw_apply}
apTReview (mkTReview take100 FmapT trunc)

= {seq_apply}
apTReview (mapT trunc) � apTReview (mkTReview take100)

= {mkT_apply}
apTReview (mapT trunc) � take100

= {mapT_apply}
review (apT String trunc) � take100

= {everyw_apply}
review (apT String (mkTReview take100 FmapT trunc)) � take100

= {seq_apply}
review (apT String (mapT trunc) � apT String (mkTReview take100)) � take100

= {mkT_apply}
review (apT String (mapT trunc) � id) � take100

= {mapT_apply}
review id � take100

= {datamap_id}
take100

Fig. 12. Optimization of apTReview trunc.

Consider the type-specializations obtained when applied to types Imdb and Actor:

> rewrite optimize_q (apQ Imdb count)
sum �map (sum �map size � reviews) �movies

where movies = fst � unImdb
reviews = fst � snd � snd � snd � unMovie

> rewrite optimize_q (apQActor count)
zero

Againwe get a similar result to the one in Section 2.2; in this case the difference is that the selector functions are expressed as
compositions of fst and snd due to internal representation of these datatypes as nested products. As expected, the application
of count to a branch of the schemawhere reviews do not occur specializes to the constant zero function,which always returns
0. If we apply generalize_q to the above result of specializing count , we obtain the original function count again.

In order to increase readability we use a special show function that prints specific monoid functions instead of the
overloaded ones (it can do so because it receives a representation of the type of the expression to be printed). The
factorization of the selector functions into where clauses was manually introduced, but we also intend to automate such
functionality in the future.

6.3. XPath

Recall the XPath queries presented in Section 2:
imdb/movie/director
//movie/director
//director

They all represent the same query, expressed at increasing levels of structure-shyness. The specialization of the last query
for the [ Imdb] type produces the following result (we specialize to a list to allow for XML documents with several top-level
elements):

> let directors = descself / child / hdirectori
> rewrite optimize_xp (apQ [ Imdb] directors)
concat �map (map (mkAnyDirector � director) �movies)

where
movies = fst � unImdb
director = fst � snd � snd � unMovie

The retrieved director elements are wrapped into the mkAny constructor, since the return type of the overall query is still
[?]. The same result is obtained when we specialize the remaining queries.

The rules involved in the specialization of the query //director are shown in tables in Fig. 13, together with how
often they are applied. The table excludes applications of the trivial rules �-Id and �-Assoc. Of the 1177 non-trivial rules
that are applied we can see that the initial specialization of the query to a non-optimized point-free expression accounts
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mapT -Apply 84
?-Apply 55

self -Apply 55
[-Apply 29

everyt-Def 28
name-Apply 27

/-Apply 4
child-Def 2
[-Dist 2

desc-Def 1
descself -Def 1

Specialization 288

⇥-Cancel 204
⇥-Fusion 159
⇥-Def 132

plus-Zero 59
zero-Fusion 58
fold-Wrap 56

fold-Cat 51
map-Cat 51

map-Wrap 37
map-Fusion 33

fold-MapZero 19
fold-Concat 15
map-Concat 15
Optimization 889

Fig. 13. Rules involved in the specialization of the //director query.

apQ [ Imdb] (mkQ [ Imdb] (concat �map (map (mkAny· � director) �movies)))
= {map_pullq}
apQ [ Imdb] (mapQ (mkQ Imdb (map (mkAny· � director) �movies)))

= {data_pullq}
apQ [ Imdb] (mapQ (mapQ (mkQMovie (wrap �mkAny· � director))))

= {data_pullq}
apQ [ Imdb] (mapQ (mapQ (mapQ (mkQDirector (wrap �mkAny·)))))

= {any_pullq}
apQ [ Imdb] (mapQ (mapQ (mapQ hdirectori)))

= {mapQ _def }
apQ [ Imdb] (mapQ (mapQ (child / hdirectori)))

= {self _elim, child_elim}
apQ [ Imdb] (mapQ (mapQ (descself / hdirectori)))

= {mapQ _def }
apQ [ Imdb] (mapQ (child / (descself / hdirectori))

= {child_elim}
apQ [ Imdb] (mapQ (descself / hdirectori))

= {mapQ _def }
apQ [ Imdb] (child / (descself / hdirectori)

= {child_elim}
apQ [ Imdb] (descself / hdirectori)

Fig. 14. Generalization of //directors.

for about a quarter of the steps. The subsequent optimization of this huge intermediate point-free expression into the
final, concise point-free expression accounts for the bulk of the work (three quarters). In general, specialization of highly
structure-shy queries involves a high number of rewrite steps, because larger portions of the schema must be searched to
find opportunities for optimization.

By application of the generalize_xp strategy to the optimized query,we canmaximize its structure-shyness. As can be seen
in the derivation of Fig. 14, the result of this reconstruction is the most structure-shy of the three original XPath queries, i.e.
//director. Recall that the application of a heuristic rule involves a call to the optimization strategy. The derivation trace
presented in the figure only shows one step for each heuristic rule: as such it does not give a clear measure of the effort
involved in the generalization.

More challenging is the specialization of queries with predicates, such as retrieving all movies with an actor descendant
(//movie[//actor]):

> let movactors = descself / hmoviei ? descself / hactori / nonempty
> rewrite optimize_xp (apQ [ Imdb] empty)
nil

Or, retrieving all elements with a director child (//*[/director]):

> let dirparents = descself ? child / hdirectori / nonempty
> rewrite optimize_xp (apQ [ Imdb] dirparents)
concat �map (map mkAnyMovie � fst � unImdb)
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Fig. 15. Coupled transformation of datatypes, data instances, and queries.

Because movies cannot have actors inside, the first query specializes to the constant function nil, which always yields the
empty list. Its generalization, with generalize_xp, yields empty. The second query specializes to a point-free function that
retrieves movies, as these are the only possible parents of directors. Indeed, generalization of this query with generalize_xp
produces //movie.

7. Applications

The algebraic laws and ensuing rewrite systems presented above have found applications in optimizing compilation of
XPath queries, and in query and constraint migration in the context of coupled transformation of schemas, documents,
queries, and constraints. We will briefly discuss these applications.

7.1. XPTO: A schema-aware XPath compiler

Under the supervision of the authors, Ferreira and Pacheco incorporated the rewrite system presented here into a
schema-aware XPath compiler called XPTO (XPaTh Optimizer) [15]. XPTO is schema aware not only in the traditional sense
that it validates XML files against a given schema. It also uses the schema information to optimize the XPath queries using
the techniques described in this paper.

XPTO receives as input an XML schema and an XPath query. As output it produces an executable file that can be used
to run the query against multiple XML documents conforming to the schema. XPTO can also be used to directly interpret
the query over an XML document, but in this case the performance penalty incurred in the optimization process cannot be
amortized, and most conventional interpreters can easily achieve better performance.

The compilation process is staged in two phases:
1. The schema and the query are parsed into the respective type-safe GADT representations. The query is then optimized

using the strategy presented in Section 5.4. The resulting point-free expression is written to an intermediate Haskell
file, together with datatype declarations to represent all XML elements (similar to those presented in Fig. 3). The main
function of this file parses an XML document using the HaXml library [45], converts it to the respective datatype, applies
the optimized query and pretty-prints the results.

2. The intermediate Haskell file generated in the first phase is then compiled using GHC in order to obtain the desired
executable.

Although still far away from the complete XPath 2.0 specification, XPTO already supports more language features then
those allowed by the combinators introduced in Section 4.2. In particular, a predicate that indexes by number inside a result
set is accepted. For example, the compiler supports the query //movie/title[1], which selects the first movie title in
the database. Of course, to optimize this kind of query, new algebraic laws were added to the system. For the particular case
of indexes we have, for example, the following laws:

index n � zero = zero idx-Zero
index 1 � wrap = wrap idx-Wrap

index n �map f = f � index n idx-Map

The idx-Map law used as a rewrite rule from left to right is particularly useful for optimization: to map a function f over all
elements in a set of results followed by selection of a single result is obviously more costly than first selecting the element
and subsequently applying f only once.

7.2. Two-level transformations

Coupled transformations [23] occur in software evolution when multiple artifacts must be modified in such a way that
they remain consistent with each other. A particularly challenging instance of coupled transformation involves the joint
transformation of a data type, its instances, and the programs that consume or produce it. This problem occurs for example
when the schema of a set of documents needs to be adapted. The adaptation of the document schemamust then be coupled
with migration of the documents and with updates of the queries that operate on these documents.

Fig. 15 provides a schematic summary of the problem of coupled transformation. A type-level transformation T of a
source type A into a target type A0 is witnessed by associated instance migration functions to and from. Given a query q
that consumes values of the original type A, we obtain a query on the transformed type A0 by simply composing q with the
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Fig. 16. Representation of an evolved version of the schema of Fig. 1.

migration function from. This amounts to a wrapper approach to query migration where the original type and the original
query are still explicitly present. The challenge of querymigration is to calculate processor q0 from thewrapper composition
in such a way that it no longer involves the original type and query.

Previously, we have shown that coupled transformation of schemas and instances can be formalized by refinement
theory and can be harnessed in strategic rewrite systems for two-level transformations [10]. By refinement, we mean a
lossless transformation where the representation function to is injective and the (possible) partial abstraction function
from is surjective: they must satisfy the law from � to = id. Furthermore, we have shown that such two-level strategic
rewrite systems can be combined with type-preserving rewrite systems for point-free program transformation to support
the coupled transformation of schemas, instances, processors (queries, as well as producers) and constraints [14,3,42].

In the current paper, we have generalized those rewrite systems for point-free program transformations to structure-
shy programs. As an immediate consequence, our approach to coupled transformation now also encompassesmigration and
mapping of structure-shy queries and constraints. In particular, we can use the rewrite systems for structure-shy programs
to:

1. determine whether query q on the original schema A can be re-used as is on the transformed schema A0 without change
in meaning;

2. migrate a structure-shy query q on schema A to a new structure-shy query q0 on an evolved schema A0

We will explain these two scenarios by example.
Consider the Imdb schema of our running example (Fig. 1). Suppose that we want to evolve that schema so that, as well

as the original title, alternative titles can be listed. Fig. 16 represents the evolved schema, where the movie element has
an additional alias child with a list of alternative titles. This evolution step can be captured by a two-level rewrite step,
which is composed of (i) the type transformation from Imdb to Imdb0, and (ii) the pair of functions to : Imdb ! Imdb0 and
from : Imdb0 ! Imdb which allow migration of documents between the two schemas.

To determine whether a query q can be re-used as is, without change of meaning, we need to check two equivalences,
depending on what notion of meaning preservation we want to enforce:

apQ [ Imdb] q ⌘ apQ [ Imdb0 ] � to
(apQ [ Imdb] q) • from ⌘ apQ [ Imdb0 ]

Here, ·•· is a variation of function composition that takes a partial function as second argument. The first states that applying
the query to an old-style document should be equivalent to applying the query after the document has been migrated
(with to) to the new schema. The second equivalence states that applying the query to a new-style document should be
equivalent to applying the query after the document has been migrated backwards, i.e. stripped of any alternative titles it
may store. The second equivalence implies the first, because we have from � to = id for any well-formed refinement. Thus,
the first equivalence incorporates a weaker notion of semantics preservation than the second. The difference lies in what
is demanded for information that can be stored in the evolved schema, but not in the original schema. The weaker notion
makes no demands regarding alternative titles, while the stronger notion demands that the alternative titles, if present, do
not influence the query result.

To see how these two equivalences play out, let us consider the following query, which we assume has been defined on
the original schema:

//movie/title

This query retrieves movie titles from the database. When we instantiate both sides of the first equation with this query,
and then apply our specialization strategy, both sides normalize to the same point-free expression:

concat �map (map (mkAnyTitle � title) �movies)
where movies = fst � unImdb

title = fst � snd � unMovie
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This normal form is reached also when we instantiate and specialize both sides of the second equation. This means that the
meaning of the query is preserved, both in the weaker sense and in the stronger sense.

For a very similar query, different results emerge. Consider

//movie//title

This query is slightlymore structure-shy than the previous one. If we instantiate the first equivalencewith this query, and
apply specialization, both sides reduce to the same point-free expression as before. Thus, like the previous example, under
the schema evolution this query preserves its meaning in the weaker sense. However, when instantiating and specializing
the second equivalence, a different normal form is obtained for the right-hand side:

concat �map (concat �map (cat � (title M alias)) �movies)
where movies = fst � unImdb

title = wrap �mkAnyTitle � fst � snd � unMovie
alias = map mkAnyTitle � unAlias � fst � snd � snd � unMovie

The left-hand side still reduces to the previous normal form. Thus, meaning is not preserved for this query in the stronger
sense. Indeed, since the addition of alternative titles implies the presence of additional titles at a deeper level (below alias),
this alters the results of the more structure-shy query.

Since the meaning of //movie//title is not preserved in the stronger sense under evolution, we are interested in
computing a new query that does have the same meaning. We can do this by applying our generalization strategy to the
composition of the query with the from function, with the following result:

child / child / child / <Title >

In sugared notation, this query reads /*/*/title. Interestingly, a structure-shy query is obtained with the correct
meaning: it retrieves original titles, but not alternative titles. However, other structure-shy queries would have been
possible. In particular, our first query //movie/title would have been a correct outcome. Currently, the heuristics in
our generalization strategy do not lead to that result. Heuristic rules would be needed that replace chains of child axes into
combinations of name and descendant axes.

8. Related work

PAT-algebra. Che et al. [8] performXMLquery optimizationwith a transformation systembased on algebraic equivalences
of so-called PAT-algebra expressions. PAT-algebra expressions are meant to represent XPath queries, though they return
node sets of a single static type. Numerous equivalences and corresponding rules are presented, among which are rules
that exploit schema information and pre-existing indices to obtain expressions with better performance. The test-bed for
performance measurement relies on translation of PAT-algebra expressions to relational database queries. Optimizations
are mostly acquired by making queriesmore structure-shy, and introducing structure indices to short-cut navigation.

Our model of XPath, using strategy combinators and dynamic types, is more faithful: PAT-algebra does not offer the
child, self, or descendant-or-self axes; also, only string matching predicates are modeled, while we allow boolean functions.
More importantly, our approach is not limited to XPath queries. It encompasses both queries and transformations on
any hierarchical data structure, and it facilitates conversion, not only among structure-shy programs, but also to and via
structure-sensitive programs.

Strategic XPath. Lämmel [24] sketches an encoding of XPath-like combinators using strategic function combinators in
the scrap-your-boilerplate style. This style uses Haskell’s overloading mechanism, as provided by type classes. The XPath
encoding uses dynamic typing with ? for query result types. Not only are downward axes modeled, but also upward axes
(parent, ancestor), and sideways axes (siblings). Node selection by name is modeled as selection by type. An indication is
given how type-level programming with type classes could be used to statically exclude non-optimal queries.

Themost salient difference with the strategic XPathmodel presented by us in Section 4.2 is the use of type classes, rather
than generalized algebraic datatypes, to enable type-dependent behaviour. As far as representing and executing queries is
concerned, this difference is fairly insignificant. To enable strategic behaviour, type constraints (Data a ) ...) are used to
pass implicit dictionaries, rather than additional arguments (Type a! ...) to pass type representations. The type-class based
approach is more extensible than the GADT approach, since new class instances can be added without modifying the class
or existing instances. However, when it comes to query transformation, the type-class approach seems less appropriate,
since it would require the encoding of our rules as type-level functions, to be executed statically by the instance resolution
mechanism of the type-checker.

Strategic programming laws. Some algebraic laws of typed strategic program combinators have been formulated earlier,
such as the F-Id laws, the type-preservingmapT -Nop law, and several laws for combinators we have not mentioned [26,25].
The type-preserving mapT -Fusion law was stated before [25] and has been proved by Reig [35]. We are not aware of
earlier formulations of the laws for conversion between strategic and point-free programs, but they are easily derived
from the reduction rules of their operational semantics provided in several other sources [39,22,28,26]. Such laws were
not used earlier for the construction of transformation systems for the generalization, specialization, and optimization of
typed strategic programs. The optimizations performed by the compiler of the untyped strategic term rewriting language
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Stratego [38] are likely to correspond to some of the zero and cancellation laws we listed, but probably not to the
specialization laws.

Polytypic program compilation. Polytypic, or type-indexed programming is supported by the Generic Haskell and Generic
Clean languages. The standard compilation technique for these languages inserts conversion functions between user-
defined datatypes and their sum-of-product representations. To optimize the resulting, often quite inefficient, code, partial
evaluation techniques have been proposed [2]. Generic Haskell now supports other views of datatypes besides the standard
sum-of-product representation [18]. In particular, they have an SYB view that allows encoding of strategic program
combinators. It is unclear how the mentioned partial evaluation optimization techniques can be applied to these recent
extensions.

Adaptive programming. Lämmel et al. [27] make a general comparison between strategic programming, both functional
and object oriented, and adaptive programming. Adaptive programming is an extension of object-oriented programming
where structure-shy traversal specifications are used to create a loose coupling between data and methods [31]. Lieberherr
et al. [30] have proposed an approach to the compilation of such traversal specifications into plain object-oriented code.
Compilation involves reachability analysis on the class graph and produces a dynamic roadmap to guide run-time traversal
without redundant navigation.

Our query optimization approach resembles the compilation of adaptive object graph traversal specification. Both are
aimed at avoiding redundant traversal and at normalization to a structure-sensitive underlying programming paradigm,
i.e. point-free functional programming and object-oriented programming, respectively. The differences between these
paradigms (declarative versus imperative, value-semantics versus reference semantics, object graphs versus algebraic
datatypes) explain to a large extent the differences in approach (algebraic laws and compositional term rewriting systems
versus global graph reachability).

Specialization to recursive datatypes. Recently, we have shown how this specialization mechanism can be extended to
handle recursive datatypes [11]. Instead of relying on the recursive definitions of everywhere and everything , we define these
combinators in terms of well-known recursion patterns such as folds and paramorphisms [33]. These recursion patterns are
characterized by a rich set of equational laws, likewise to all other point-free combinators, thus enabling smooth integration
in our rewrite system for specialization of structure-shy queries and transformations. We also used type-indexed type
families [7,36], a new extension to the Haskell type system already supported in GHC, to bind a user-defined datatype
with its functor. This technique enforces that the type representation that parameterizes the congruence and inspector of a
datatype is exactly the same that parameterizes the respective embedding-projection pair, thus increasing the type-safeness
of the rewrite system.

9. Concluding remarks

9.1. Contributions

We have presented an algebraic approach to transform declarative structure-shy programs. In particular, we have made
the following contributions:
1. We have formulated sets of algebraic equivalences for strategic programs, of which only some had been formulated

earlier, and for the conversion between strategic and point-free programs.
2. We havemodeled the core of the XPath language in terms of strategic program combinators, augmentedwith a universal

node type and associated operations. Our model relies on generalized algebraic datatypes, rather than type classes.
3. We have formulated sets of algebraic equivalences for XPath queries, and for their conversion into strategic and point-

free programs. These equivalences allow derivation of static types for dynamically typed queries.
4. We have shown that the algebraic laws can be harnessed in type-safe strategic rewrite systems, encoded in Haskell, for

specialization, generalization, and optimization.
5. Our approach offers a unified framework for point-free, strategic, and XPath transformations, where structure-sensitive,

point-free programs are used as the solution space for transformation of structure-shy programs.
Though we have only discussed core fragments of strategic programming and XPath, we trust the reader is convinced that
richer languages and rules sets can be handled in basically the same way.

9.2. Future work

Various aspects of the ideas presented in this paper deserve further elaboration.
Proofs. We have stated algebraic laws without proof. Though the validity of many simple laws is immediately evident,

proofs should be constructed for somemore complex laws. Also, the transformation strategies that we composed from these
laws should be better characterized in terms of the normal forms to which they lead, and in terms of their complexity and
termination behaviour.

Further combinators and languages. We intend to expand our coverage of the XPath language and strategic programming
paradigm by representing and transforming more of their constructs. We also intend to address similar query and
transformation languages, such as XQuery, and Stratego, and not so similar ones, such as SQL. Like XPath, Stratego does
not assign static types to its programs. It may be possible to extend our approach for specializing dynamically typed XPath
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queries to Stratego. The objective would be not only to infer static types for Stratego programs but to also exploit them for
optimization. The addition of SQL to themixwould allow transformation of structure-shy anddynamically typedqueries into
relational database queries, again via intermediate structure-sensitive, statically typed point-free expressions. Assignment
of strong types to SQL queries [37] could prove instrumental in these transformations.
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