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Abstract

Defining functions over large, possibly recursive, data structures usually involves a lot of boilerplate. This
code simply traverses non-interesting parts of the data, and rapidly becomes a maintainability problem.
Many generic programming libraries have been proposed to address this issue. Most of them allow the user
to specify the behavior just for the interesting bits of the structure, and provide traversal combinators to
“scrap the boilerplate”. The expressive power of these libraries usually comes at the cost of efficiency, since
runtime checks are used to detect where to apply the type-specific behavior.
In previous work we have developed an effective rewrite system for specialization and optimization of generic
programs. In this paper we extend it to also cover recursive data types. The key idea is to specialize traversal
combinators using well-known recursion patterns, such as folds or paramorphisms. These are ruled by a rich
set of algebraic laws that enable aggressive optimizations. We present a type-safe encoding of this rewrite
system in Haskell, based on recent language extensions such as type-indexed type families.
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1 Introduction

Modeling real-world problems in a functional language typically leads to a large set
of recursive data types, each with a lot of different constructors. That is the case,
for example, when developing language processing tools, where grammars are repre-
sented using a different data type for each non-terminal and a different constructor
for each production rule. Similarly, schema-aware XML processing usually involves
mapping a huge schema to an equivalent data type, with each of the many elements
mapped to a different type. Such proliferation of data types makes it hard to im-
plement even conceptually simple functions, that manipulate a very small subset of
the data constructors.

A classic (but still benign) example used to illustrate this problem is the so
called “paradise benchmark” [LJ03]. Suppose one has a XML schema to model a
company with several departments, each having a name, a manager and a collection
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of employees or sub-departments. This schema could be represented by the following
Haskell data type.

data Company = C [Dept ]
data Dept = D Name Manager [Either Employee Dept ]
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Int
type Manager = Employee
type Name = String
type Address = String

Suppose one also wants to define a function to increase all salaries by a fixed
amount k . A possible definition of this function could be

increase :: Int → Company → Company
increase k (C ds) = C (map (incD k) ds)

where incD k (D nm mgr us) = D nm (incE k mgr) (map (incU k) us)
incU k (Left e) = Left (incE k e)
incU k (Right d) = Right (incD k d)
incE k (E p s) = E p (incS k s)
incS k (S s) = S (s + k)

Even this rather simple definition is filled with boilerplate code, whose only pur-
pose is to perform a standard traversal of the Company data type to find salaries
to increase. Apart from aesthetical reasons, this kind of boilerplate has some major
drawbacks: (1) it makes code understanding rather difficult, since the only inter-
esting functions (in this case incS ) are lost amid bucketloads of uninteresting code;
and (2) it rapidly becomes a maintainability problem, since each model evolution
implies changes to many functions that are only concerned with parts of the model
not affected by the evolution.

Many generic programming libraries have been proposed to address this issue.
Most of them allow the user to specify the behavior just for the interesting bits of
the structure, and provide traversal combinators to encode the remaining boiler-
plate. One of the most successful libraries is the conveniently named “Scrap you
Boilerplate” (SYB), first introduced in [LJ03] and subsequently extended with ad-
ditional functionalities [LJ05]. Using this library, the increase function could be
redefined as follows.

increase :: Int → Company → Company
increase k = everywhere (mkT (incS k))

where incS k (S s) = S (s + k)

The everywhere combinator traverses a data structure in bottom-up fashion, apply-
ing the given generic transformation to all its nodes. The mkT combinator builds a
generic transformation from a type specific one: given a function f :: a → a, mkT f
behaves like f for all values of type a and like the identity function otherwise. Be-
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sides being much easier to understand what increase does, its definition will stay
the same even if the Company data type changes.

Unfortunately, the obvious advantages provided by this style of generic pro-
gramming come at a price: the performance of generic functions is much worse
than analogous non-generic ones. In [MR07], the SYB implementation of a stan-
dard set of benchmark functions was reported to run 7 times slower in average
than the non-generic implementation. Part of this performance loss is due to the
run-time checks needed to determine at each node whether to apply specific or
generic behavior. The remaining is due to structural reasons inherent to this style
of generic programming: the traversal combinators must blindly traverse the whole
data structure, even if a certain branch does not mention types where the specific
behavior applies.

Some new SYB-like generic programming libraries have been proposed to address
this efficiency problem. According to a recent survey [RJJ+08], two of the most
efficient are Uniplate [MR07] and Smash [Kis06]. The former outperforms SYB by
restricting the power of the traversal combinators. The latter offsets some of the
run-time checks to compile-time, but needs extra work from the programmer in
order to support new data types.

In previous work [CV07b], we have taken a different approach to tackle this
problem: we developed a rewrite system that specializes generic functions for specific
types. This specialization proceeds in two phases: (1) the generic functions are
specialized to non-optimized point-free definitions; (2) these definitions are then
optimized using standard algebraic laws for point-free combinators. The major
drawback of that approach was the lack of support for user defined recursive types,
such as the Company type above.

The major contribution of this paper is to extend that specialization mechanism
to also cover recursive data types. More specifically, we will focus on inductive
data types that can be defined as fixpoints of functors. The key idea is to special-
ize traversal combinators using well-known recursion patterns for inductive types,
such as folds or paramorphisms. Likewise to standard point-free combinators, these
recursion patterns are also characterized by a rich set of algebraic laws that en-
able further optimizations after specialization. Most of the definitions that result
from the new rewrite system have runtimes close to the hand-written non-generic
ones. Another contribution is the Haskell encoding of these new laws: thanks to
recent language extensions such as type-indexed type families, we managed to get
an implementation that closely mimics the theory.

Section 2 briefly surveys the SYB approach to generic programming and recaps
our previous work on the specialization of generic functions for non-recursive types.
Section 3 extends this work with new algebraic rules for the specialization for re-
cursive types. Section 4 discusses how these new rules can be accommodated in a
type-safe rewrite system implemented in Haskell. Section 5 presents specialization
examples and compares the respective speedups. Section 6 presents related work,
and Section 7 makes some concluding remarks, including some future work ideas.
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2 Specialization for Non-recursive Types

In this paper we will focus on a limited set of combinators that capture the essence
of strategic generic programming libraries like SYB. Generic functions come in two
flavors: type-preserving (transformations) and type-unifying (queries). For defining
type-preserving functions we have the following combinators:

nop :: T
(�) :: T → T → T
gmapT :: T → T
everywhere :: T → T
mkTA :: (A→ A)→ T
apTA :: T → (A→ A)

In the SYB library, the type T of type-preserving generic functions is defined as
∀a. Data a ⇒ a → a. Type classes like Data are extensively used in SYB to
infer type representations for data types. Among others, these are necessary in
the definition of mkT to determine where the type-specific transformation should
be applied. To simplify the presentation, instead of using type classes, we will
parameterize mkT with an explicit type representation. Besides everywhere, we
have combinators to map a transformation over all direct children of node (gmapT ),
to sequence transformations (�), and to denote the identity transformation (nop).
We also have an explicit combinator to apply a generic transformation to a particular
type (apT ). In SYB this is done implicitly via type-classes. The transformation to
increase all salaries would now be written as follows.

increase :: Int → Company → Company
increase k = apTCompany everywhere (mkT Salary (incS k))

where incS k (S s) = S (s + k)

For defining type-unifying functions we have the following combinators:

∅ :: Q R
(∪) :: Q R → Q R → Q R
gmapQ :: Q R → Q R
everything :: Q R → Q R
mkQA :: (A→ R)→ Q R
apQA :: Q R → (A→ R)

In this case, Q R represents the type of generic queries with result type R. Once
more, to simplify the presentation of the specialization laws we will assume that
R is a monoid, with a zero element and an associative plus operator. In practice,
this makes little difference since most typical results, namely lists and integers, are
indeed monoids. mkQA creates a generic query out of a type-specific one, returning
zero for types other than A. everything collects all results in a bottom-up traversal
using the plus operator. gmapQ collects the results of applying a query to all
direct children, ∪ sums the results of two queries, and ∅ denotes the query that
always returns zero. To apply a generic query to a particular type we have apQ.
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id :: A→ A
(◦) :: (B → C )→ (A→ B)→ (A→ C )
π1 :: A × B → A
π2 :: A × B → B
(4) :: (A→ B)→ (A→ C )→ (A→ B × C )
× :: (A→ B)→ (C → D)→ (A × C → B × D)
i1 :: A→ A + B
i2 :: B → A + B
(∇) :: (A→ C )→ (B → C )→ (A + B → C )
(+) :: (A→ B)→ (C → D)→ (A + C → B + D)

Fig. 1. Point-free combinators.

For example, to compute the total salary bill of a company we could define the
following generic query:

salaries :: Company → Int
salaries = apQCompany everything (mkQSalary billS )

where billS (S s) = s

In previous work [CV07b] we have presented a rewrite system to specialize
generic functions to type-specific point-free definitions. In the point-free style of
programming, functions are composed using a standard set of higher-order com-
binators, avoiding the need to explicitly mention the domain points as variables.
This variable-free style (popularized by John Backus in his 1977 Turing award lec-
ture [Bac78]) is particularly amenable for program calculation since its combinators
are characterized by a rich set of algebraic laws. We use a rather standard set
of point-free combinators for handling products and sums (see Figure 1). Their
behavior should be clear from the type signatures. For more information about
the laws ruling this combinators and point-free program calculation in general see
[Gib02,CPP06].

Most user defined data types can be defined as the fixpoint of a regular functor.
The base functor that captures the signature of a data type A will be denoted
FA (when the type A is clear from the context we will often omit it from the
subscript). A regular functor is either the identity functor Id , the constant functor
A (that always returns A), the lifting of the sum ⊕ and product bifunctors ⊗, or
the composition � of functors. For example, for lists we have F[A ] = 1⊕A⊗ Id . If
the type is not recursive, its base functor will not have any identity. For example,
F(Maybe A) = 1 ⊕ A. Associated with each data type A we also have two unique
functions inA :FA A→ A and outA ::A→ FA A, that are each other’s inverse. They
allow us to encode and inspect values of the given type, respectively.

Figure 2 presents the laws used to specialize type-preserving combinators into
point-free. Specialization proceeds by pushing down the apT combinator until it
gets consumed by the mkT -Apply law. Similar laws exist for the type-unifying
combinators. Although not generic, the definitions produced by the specialization
phase are very inefficient because they still traverse the whole data structure. How-
ever, using point-free program calculation laws they can be optimized in order to
eliminate redundant traversals. Notice that the everywhere-Apply law uses the
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apTA nop = id nop-Apply

apTA (f � g) = apTA f ◦ apTA g �-Apply

apTA (gmapT f ) = id , if A base type
apTA (gmapT f ) = inA ◦ apTF A f ◦ outA, if A datatype

}
gmapT -Apply

apTA (everywhere f ) = apTA (gmapT (everywhere f ) � f ) everywhere-Apply

apTA (mkTA f ) = f
apTA (mkTB f ) = id , if A 6≡ B

}
mkT -Apply

apTA×B f = apTA f × apTB f ×-Apply

apTA+B f = apTA f + apTB f +-Apply

apT 1 f = id 1-Apply

Fig. 2. Laws for specializing generic transformations.

recursive definition of this traversal combinator using gmapT and �. Since the pre-
vious rewrite system only handled non-recursive user defined data types, this law
did not pose any termination problems. However, for recursive types it cannot be
used since it would lead to an infinite expansion of the definition (due to successive
expansions of everywhere in recursive occurrences of the type).

3 Specialization for Recursive Types

The key to avoid infinite expansions is to specialize traversal combinators using an
alternative definition based on standard recursion patterns such as folds. Likewise
to point-free combinators, these recursion patterns are characterized by powerful
algebraic laws, that will enable us to optimize the specialized definitions. For a
comprehensive presentation of most standard recursion patterns and the respective
laws see [MFP91].

The standard recursion pattern of iteration, usually known as fold or catamor-
phism, consumes an inductive type by replacing its constructors with a given argu-
ment function. For an inductive type A, given a function g ::F B → B , (|g |)A::A→ B
denotes a fold over that type that produces values of type B . Its recursive definition
can be clearly depicted in the following diagram.

A
(|g|)A

��

outA //F A
F (|g|)A
��

B F Bg
oo

While folds can express functions defined by iteration, paramorphisms can ex-
press all functions that can be defined by primitive recursion [Mee90]. In practice,
this means that the result can depend not only on the recursive result, but also
on the recursive occurrence of the type. For an inductive type A, given a function
g :: F (B × A) → B , 〈|g |〉A :: A → B denotes a paramorphism over that type that
produces values of type B . Again, its recursive definition can be expressed by a
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(|inA|)A = id reflex -Cata

(|g |)A ◦ inA = g ◦ F (|g |)A cancel -Cata

f ◦ (|g |)A = (|h|)A ⇐ f ◦ g = h ◦ F f fusion-Cata

(|in[A ] ◦ (id + f × id)|)[A ] = map f map-Cata

〈|inA ◦ F π1|〉A = id reflex -Para

〈|g |〉A ◦ inA = g ◦ F (〈|g |〉A 4 id) cancel -Para

f ◦ 〈|g |〉A = 〈|h|〉A ⇐ f ◦ g = h ◦ F (f × id) fusion-Para

〈|f ◦ F π1|〉A = (|f |)A cata-Para

Fig. 3. Some laws for folds and paramorphisms.

diagram.

A
outA //

〈|g|〉A
��

F A
F (id 4 id) //F (A × A)

F (〈|g|〉A× id)
��

B F (B × A)g
oo

Notice how a copy of the recursive occurrence is made before the recursive invoca-
tion. For optimization of functions defined as folds and paramorphisms we will use
the laws presented in Figure 3.

When applied to an inductive type, the bottom-up traversal everywhere will
be specialized into a fold over that type. The everywhere-Apply law will now be
defined as follows.

apTA (everywhere f ) = (|apTA f ◦ inA ◦ apTF A (everywhere f )|)A
The behavior of this fold is better understood with the help of the following diagram:

A
(|·|)A

��

outA //F A
F (|·|)A
��

A AapTA f
oo F AinA

oo F A
apTF A (everywhere f )

oo

The intent of the function apTF A (everywhere f ) is to apply the transformation
to all content of the type, apart from its recursive occurrences (which were already
processed recursively by the fold itself). This behavior is achieved by adding the
following law to the set presented in Figure 2:

apTA f = id rec-Apply

This law guarantees that a type marked with an overline is ignored by the apT

combinator. For example, for lists apTF A (everywhere f ) would be instantiated as
apT

1+A× [A ]
(everywhere f ), which is equivalent to id + apTA (everywhere f ) × id .

Since everywhere f is a bottom-up traversal, after transforming both the re-
cursive occurrences and the remaining content, f still needs to be applied to the
resulting value. To do so, inA is first used to reconstruct a value of type A, followed
by an application of apTA f .

To exemplify the specialization of a generic transformation to a recursive type,
consider the following example, where f = mkT Int succ:
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apT [Int ] (everywhere f )
= {everywhere-Apply}

(|apT [Int ] (mkT Int succ) ◦ in[Int ] ◦ apTF [Int ]
(everywhere f )|)[Int ]

= {mkT -Apply; +-Apply;×-Apply; rec-Apply}
(|id ◦ in[Int ] ◦ (id + apT Int (everywhere f ) × id)|)[Int ]

= {everywhere-Apply}
(|in[Int ] ◦ (id + apT Int (gmapT (everywhere f ) � f ) × id)|)[Int ]

= {�-Apply; gmapT -Apply}
(|in[Int ] ◦ (id + (id ◦ apT Int (mkT Int succ)) × id)|)[Int ]

= {mkT -Apply}
(|in[Int ] ◦ (id + succ × id)|)[Int ]

= {map-Cata}
map succ

As expected, if f is applied to a type that does not contain integers the result
is the identity function:

apT [Char ] (everywhere f )
= { ...}

(|in[Char ] ◦ (id + (id ◦ apTChar (mkT Int succ)) × id)|)[Char ]

= {mkT -Apply}
(|in[Char ] ◦ (id + id × id)|)[Char ]

= {id × id = id ; id + id = id }
(|in[Char ]|)[Char ]

= {reflex -Cata}
id

The bottom-up everything combinator will be specialized into a paramorphism:

apQA (everything f ) =
〈|plus ◦ (apQFR (everything f ) × apQA f ) ◦ (F π1 4 inA ◦ F π2)|〉A

Again, this paramorphism is easier to understand with a diagram:

A
outA //

〈|·|〉A
��

F A
F (id 4 id) //F (A × A)

F (〈|·|〉A× id)

��
R R × R

plus
oo F R × A

apQFR (everything f )×apQA f
oo F (R × A)

F π1 4 inA◦F π2

oo

After recursion, the input value is reconstructed using inA in order to feed it to
the generic query. Simultaneously, the query is applied to the non-recursive type
contents, and finally both results are put together with the monoid plus operator.

4 Encoding in Haskell

In order to harness the above algebraic laws into a type-safe rewrite system for the
specialization of generic functions, we must provide type-safe representations for
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both functions and types. For functions we will use the same representation pre-
sented in [CV07b], based on a generalized algebraic data type (GADT) [JVWW06]:

data PF a where
Id :: PF (a → a)
(4) :: PF (a → b)→ PF (a → c)→ PF (a → (b, c))
(×) :: PF (a → b)→ PF (c → d)→ PF ((a, c)→ (b, d))
(∇) :: PF (a → c)→ PF (b → c)→ PF (Either a b → c)
(+) :: PF (a → b)→ PF (c → d)→ PF (Either a c → Either b d)
mkT :: Type a → PF (a → a)→ PF T
apT :: Type a → PF T → PF (a → a)
...

This type contains both point-free combinators and SYB combinators. Generic
transformations and queries have the following types:

type T = ∀a. Type a → a → a
type Q r = ∀a. Type a → a → r

Instead of using type classes to infer type representations, these are explicitly passed
to generic functions. Type representations are also defined using a GADT. For base
types, sums and products, Type a can be defined as follows.

data Type a where
Int :: Type Int
Char :: Type Char
...

Sum :: Type a → Type b → Type (Either a b)
Prod :: Type a → Type b → Type (a, b)
Func :: Type a → Type b → Type (a → b)

One consequence of using a GADT to encode the combinators is the ability to
define an evaluation function eval ::PF a → a. For example, the evaluation of mkT
follows closely the SYB semantics:

eval (mkT a f ) = λb x → case teq a b of Just Eq → eval f x
Nothing → x

The resulting generic function behaves as f if applied to a value of type a, or as
the identity function otherwise. Function teq tests equality of type representations,
and is nowadays a classical example of the usefulness of GADTs [JVWW06]:

data Equal a b where Eq :: Equal a a
teq :: Type a → Type b → Maybe (Equal a b)
teq Int Int = return Eq
teq (Sum a b) (Sum c d) = do Eq ← teq a c

Eq ← teq b d
return Eq
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...

teq = Nothing

The constructor Eq of the Equal GADT can be seen as a proof that types a and b
are indeed equal.

The representation of user defined recursive types follows directly from the the-
oretical definition given in Section 2. For each type A we need to represent its
base functor F A. When applying a functor to another type we want to get a
sum of products as result, capable of being processed with point-free combinators.
If functors are defined with normal Haskell polymorphic data types, it is impossi-
ble to obtain this behavior, since type-equivalence in Haskell is not structural but
name-based.

In order to overcome this problem, we decided to represent functors using type-
indexed type families [SSJC07,CKJ05], a new extension to the Haskell type system
already supported in GHC. Developed with type-level programming in mind, type
families are type constructors that represent sets of types. Set members are ag-
gregated according to the type parameters passed to the type family constructor,
called type indices: family constructors can have different representation types for
different type indices. A type family to represent functors can defined as follows.

type family F a x :: ∗

In this definition a is the type index that stands for the type whose functor is being
defined, and x is the type argument of the functor itself. For example, for lists we
have the following instance:

type instance F [a ] x = Either One (a, x )

The GADT that represents functions can now be extended with constructors for
the recursion patterns, together with the in and the out functions.

data PF a where
...

In :: PF (F a a → a)
Out :: PF (a → F a a)
Cata :: PF (F a c → c)→ PF (a → c)
Para :: PF (F a (c, a)→ c)→ PF (a → c)

In our rewrite system we will need to apply a functor both to type and function
representations. Using the above type family, we can capture this behavior in the
following data type, that represents the functor of an inductive type a.

data Functor a = Functor{mapT :: ∀b. Type b → Type (F a b),
mapF :: ∀x y . PF (x → y)→ PF (F a x → F a y)}

Our type representation can now be extended with a new constructor to repre-
sent user defined recursive types.
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data Type a where
...

Data :: String → Functor a → Type a

Given a ground type a, it is possible to use the Haskell type system to infer its
representation. We can define a class with all representable types:

class Typeable a where
typeof :: Type a

For example, for lists the Typeable instance can be defined as follows:

instance Typeable a ⇒ Typeable [a ] where
typeof = Data name functor

where name = "[" ++ show (typeof :: Type a) ++ "]"
functor = Functor{mapT = λb → Sum One (Prod typeof b),

mapF = λf → Id + (Id × f )}

In order to guarantee that the rewrite system is type-safe, rewrite rules are
represented by a monadic function that takes a function representation and returns
a representation of the same type.

type Rule = ∀a. Type a → PF a → RewriteM (PF a)

RewriteM is a stateful monad that keeps a trace of the applied rules and is an
instance of MonadPlus, thus modeling partiality in rule application. The extra
type representation passed as argument allows the rule to make type-based rewriting
decisions.

Both the specialization laws of Figure 2, and the point-free optimization laws
(such as the ones presented in Figure 3 for folds and paramorphisms) are encoded
as rewrite rules. For example, the reflexivity rule for folds can be defined as follows.

reflex Cata :: Rule
reflex Cata (Func a b) (Cata In) = do Eq ← teq a b

success "reflex-Cata" Id
reflex Cata = mzero

This rule uses teq to guarantee that is only applied to functions of type a → a.
The monadic function success updates the RewriteM monad to keep trace of the
successful reduction.

Rewrite systems are built from basic rules using a standard set of strategic com-
binators. There are two main top-level strategies: optimize syb for specialization
of type-preserving and type-unifying generic programs into point-free expressions;
and optimize pf for simplification and optimization of point-free definitions. The
latter also applies some “beautifying” rules to produce more concise results.
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5 Examples

We will now present some specialization examples, and compare the performance
between the resulting definitions and the original SYB functions.

The first example is the generic transformation to increase all salaries. In order
to increase the readability of the specialized point-free definitions, we will consider
that the type-specific behavior is for the Employee type instead of Salary . In SYB
we have the following definition.

increase :: Int → Company → Company
increase k = everywhere (mkT (incE k))

where incE k (E p (S s)) = E p (S (s + k))

After encoding this definition using type PF a, and applying the specialization
and optimization strategies, we get the following definition, where C stands for
Company and D for Dept .

inC ◦map (|inD ◦ (id × (incE k × map (incE k + id)))|)D ◦ outC
This definition is a pretty-print of the respective representation in PF a. It approx-
imates the hand-written presented in Section 1: the fold will be recursively applied
to each department of a company; at each department both the manager and all
direct employees will have their salaries increased by the function incE k .

The second example, presented before in Section 2, addresses the specialization
of a generic query to compute the total salary bill of a company.

salaries :: Company → Int
salaries k = everything (mkQ billE )

where billE (E p (S s)) = s

In this case we get the following definition.

sum ◦map (|plus ◦ (billE × (sum ◦map (billE ∇ id)) ◦ π2)|)D ◦ outC
Note how the paramorphism was simplified as a fold, since the query does not
mention the recursive type Dept . The expression sum ◦map (billE ∇ id) collects
all salaries from the direct employees of a department, and all recursively computed
salaries from sub-departments. This result is then summed with the salary of the
manager to compute the total salary bill. The expression sum ◦map f was used in
this example just to make the result more readable. In fact, they are fused together
as a single fold by the rewrite system.

The last example combines the two previous examples into a single function:

higher salaries :: Int → Company → Int
higher salaries k = salaries ◦ increase k

Although the two operations are performed in sequence in the original query,
after specialization we get a result very similar to the previous one, with a single
traversal over the type.
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Fig. 4. Timing results.

let aux = billE ◦ incE k
in sum ◦map (|plus ◦ (aux × (sum ◦map (aux ∇ id)) ◦ π2)|)D ◦ outC

Unlike systems specially designed to implement fusion (such as [SdM03]), our rewrite
system cannot implement the full power of the fusion laws. However it covers most
of the particular instances that occur during the specialization of generic functions.
For example, the above optimization was possible due to the following instance of
fusion-Cata.

(|f |)A ◦ (|inA ◦ g |)A = (|f ◦ g |)A ⇐ F (|f |)A ◦ g = g ◦ F (|f |)A
To verify the side-condition of this law, we first apply the rewrite system optimize pf
to F (|f |)A ◦ g and g ◦ F (|f |)A, and then check for syntactic equality.

Performance analysis
We have compared the runtimes of the first two examples for hand-written,

specialized, and generic definitions written in SYB and Uniplate. The results are
presented in Figure 5. A large part of SYB’s inefficiency is due to the heavy use
of type-classes to infer type representations. To factor out this penalty, and better
quantify the speedup achieved by our specialization mechanism, we also include the
runtimes of both generic functions obtained by evaluating their representation using
the eval function presented in section 4 (denoted in the graphic as SYB GADT). We
compiled each function using GHC 6.8.2 with optimization flag O2. Each example
was tested with Company values of increasing size (measured in kBytes needed to
store the Haskell definition of each value).

As expected, for both examples, the SYB generic definitions perform much worse
than the hand-written, and the loss factor grows with the database size. The SYB
GADT variant is at least twice as fast, but still much slower than the hand-written.
The specialized point-free definitions perform closer to the hand-written, with loss
factors of 1.11 (increase 100) and 2.85 (salaries) for the biggest sample. This per-
formance loss is mainly due to the use of in and out to convert between user defined
types and they structural representation as a sum of products. For these particular
examples, the performance of the specialized point-free code is tangentially better
than Uniplate. As discussed in the next section, Uniplate also has some mechanisms
to avoid traversing unnecessary branches, which justify the proximity in the results.
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Although quite standard when comparing generic programming libraries, these
example are not particularly flattering to our optimization mechanism: in fact, there
are no large branches of data that can be avoided in the traversals. For example, if
the Company data type had any other information besides departments (not con-
taining the type Salary), the runtime would remain the same, further widening the
gap to SYB. We also achieve a significant advantage when optimizing compositions
of generic functions: for example, in the higher salaries example our specialized
point-free definition was already 1.35 times faster than Uniplate for the biggest
sample.

6 Related Work

Uniplate
Unlike SYB, some generic programming libraries have been designed with per-

formance issues in mind, usually at the cost of expressiveness. One such library is
Uniplate [MR07], that is among the fastest libraries currently available for generic
programming in Haskell [RJJ+08]. That fact, together with the SYB-like flavor
of its combinators, motivated an obvious inclusion in the comparative performance
analysis of the previous section. The key idea behind Uniplate is that most generic
traversals have value-specific behavior for just one type. Building on this insight,
this library provides two key combinators to specify bottom-up generic transforma-
tions:

transform :: Uniplate a ⇒ (a → a)→ a → a
transformBi :: Biplate b a ⇒ (a → a)→ b → b

The transform combinator applies its argument to every a occurring inside a value
of type a, while transformBi applies its argument to every a occurring inside a
value of a different type b. Recalling our examples, the increase transformation can
be defined using transformBi , since it looks for all salaries inside a company. The
Uniplate and Biplate classes contain primitive methods to find the substructures of
type a inside values of type a and b, respectively. Instances of these classes can be
defined using a variety of methods, ranging from more generic and less efficient to
more verbose and more efficient. The most efficient method (used in the comparison
of the previous section) is to define the instances by hand, which for Biplate requires
defining n2 instances to support n types. When defining instances for Biplate b a
it is possible to avoid traversing down branches of a that do not contain the target
type b, thus optimizing generic traversals.

The main advantage of Uniplate is that generic functions execute fast out of the
box, without the need of an explicit optimization phase. On the other hand, likewise
to SYB, our optimization technique can handle more powerful combinators, that
target different types in a single traversal. Using fusion techniques, our approach
can also further optimize combinations of traversals, while Uniplate speedups are
constrained to individual traversals.
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Other techniques to optimize generic programs
Another very efficient SYB-like generic programming library is Smash [Kis06].

Instead of using run-time checks to find the target types, it offsets them to compile-
time by using heterogeneous collections [KLS04] to encode the type-specific cases of
generic functions. Unfortunately, the speedup obtained with this technique comes
at the cost of extra work from the programmer: in order to support a new data
type, all different traversal combinators must be defined from scratch, while in SYB
they can all be generically implemented using just two primitive methods.

A different approach has been followed in [AS04], where a technique named sym-
bolic evaluation was developed to optimize Generic Haskell programs [LJC+05]. It
focus on the specialization of fully applied functions and tries to eliminate con-
versions between types and their structural representations. Symbolic evaluation
guarantees that the intermediate structures are completely removed from the opti-
mized code. A similar technique could be used in our framework to further optimize
the point-free definitions, via an additional translation step to explicitly recursive
point-wise code.

Application scenarios
As previously mentioned, our main goal was to extend the specialization mech-

anism presented in [CV07b] to also cover inductive types. In [CV07b] we already
described how it could be used to optimize the structure-shy XPath query language.
This technique was harnessed into the prototype schema-aware XPath compiler
XPTO [FP07]. Query compilation in XPTO proceeds as follows: the XML Schema
is parsed into a sum of products representation using Type a; the XPath query is
parsed into a type-safe representation of type PF a; the rewrite system is used to
specialize the query to the given schema; the specialized point-free definition is out-
put into a new Haskell program to be compiled and linked with an XML parser and
point-free execution library; the resulting program can then be used to execute the
original query against XML files conforming to the given schema. We are currently
deploying the new technique presented here into the XPTO compiler in order to
handle some recursive XML Schemas.

A similar type-safe rewriting system was also used in [CV07a] to optimize two-
level data transformations [COV06]. A two-level data transformation consists of a
type-level transformation coupled with value-level transformations of the respective
inhabitants. More specifically, we developed a framework that allows us to specify
data type refinements A 6 B using strategic combinators, and get for free the
migration functions between values of type A and B, and vice-versa. Both the types
and the migration functions are again encoded using Type a and PF a, allowing
us to use the rewrite system to optimize them, and migrate queries/producers from
the abstract type A to the concrete type B . The inclusion of inductive types in the
rewrite system will allow us to extend the applicability of this framework.

Template meta-programming
We believe that our algebraic approach could be instructed at a lower level to

provide compile-time specialization of generic functions, through template meta-
programming [SJ02]. This rewriting process would encompass transformation of
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Haskell generic programs through direct manipulation of their abstract syntax
trees. However, since the current implementation of template meta-programming in
Haskell is completely untyped, we would loose the guarantee that the rewrite system
is type-safe. Template meta-programming could also be used to infer automatically
the recursive types’ sum of products representation.

7 Concluding Remarks

We have extended an existent mechanism to specialize SYB-like generic functions
to also cover user defined recursive data types. By focusing on inductive types
(fixpoints of functors) we were able to use recursion patterns such as folds and
paramorphisms to encode generic traversals. These recursion patterns are charac-
terized by nice algebraic laws, that were incorporated in a type-safe rewrite system
to further optimize the specialized code. The definitions produced by our specializa-
tion mechanism perform close to hand-written non-generic ones. Thanks to recent
extensions of the Haskell type-system, such as type-indexed type families or general-
ized algebraic data types, our implementation of the rewrite system closely mimics
the theoretical presentation.

The major limitation of the current approach is that it only supports single-
recursive inductive types. We are currently investigating how to extend it to cover
more general forms of recursion, such as mutually-inductive data types or nested
data types. Particularly relevant to this endeavor is the work described in [JG07],
showing that higher-order functors can be used to give an initial algebra semantics
to nested data types (likewise to standard inductive types).
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