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Abstract

In this paper we show how some of the recursion patterns typically used in
algebraic programming can be defined using hylomorphisms. Most of these def-
initions were previously known. However, unlike previous approaches that use
fixpoint induction, we show how to derive the standard laws of each recursion
pattern by using just the basic laws of hylomorphisms. We also define the accu-
mulation recursion pattern introduced by Pardo using a hylomorphism, and use
this definition to derive the strictness conditions that characterize this operator
in the presence of partiality. All definitions are implemented and exemplified in
Haskell.



1 Introduction

The exponential growth in the use of computers in the past decades raised
important questions about the correctness of software, specially in safety critical
systems. Compared to other areas of engineering, software engineers are still
very unfamiliar with the mathematical foundations of computation, and tend to
approach programming more as (black) art and less as a science [5]. Ideally, final
implementations should be calculated from their specifications, using simple
laws that relate programs, in the same way we calculate with mathematical
expressions in algebra.

The calculational approach is particular appealing in the area of functional
programming, since referential transparency ensures that expressions in func-
tional programs behave as ordinary expressions in mathematics. However, in
order to make it more effective, we must avoid the use of arbitrarily recursively
defined functions, using only a limited set of high order functions that encode
typical recursion patterns with well known properties, such as folds and unfolds.
This philosophy is the same that fostered the use of structured control primi-
tives instead of arbitrary gotos. This move also made more feasible to formally
reason about imperative programs.

As will be seen, the recursion patterns arise naturally from an algebraic view
of recursive data types. Although initially they were only defined for finite lists,
it became clear that they could be generalized for any data type [10]. Most of
the research done in this area is being carried in the context of total functions
and total elements. Technically, this means that the underlying category is Set
(of sets and total functions). Unfortunately, this category is not a good semantic
model of most functional languages, since it hardens the treatment of arbitrary
recursive or partial definitions. Another problem is that finite and infinite data
types are different things that cannot be combined, thus excluding, for example,
functions defined by induction that work for both. These problems are overcome
in the category CPO (of complete partial orders and continuous functions), by
imposing some additional structure on objects and morphisms. The dawn side of
this move is that some of laws became polluted with strictness side-conditions.

Meijer, Fokkinga, and Paterson pioneered the study of recursion patterns
in CPO [12, 4]. Besides studying the properties of folds, unfolds, and paramor-
phisms in this category, they introduced a new operator, called hylomorphism,
whose expressive power was equivalent to the composition of a fold after an un-
fold of some intermediate data structure. Although noticing that this operator
was expressive enough to define the others, these definitions were made directly
by fixpoint, and the fundamental laws that characterize them proved using fix-
point induction. In this paper we take a slightly different approach. Given the
definition of hylomorphisms by fixpoint, and the basic set of laws that charac-
terize them, we define all the other recursion patterns as hylomorphisms, and
show how their properties can be derived (without induction) from that defini-
tion. We also show how this approach can be used to investigate the properties
in CPO of other recently introduced recursion patterns, like the accumulation
operator defined by Pardo [16].



The next section presents some basic concepts about category theory par-
ticularized to the category CPO. Most of these concepts appear in any stan-
dard book about category theory, such as [17], and the readers acquainted with
the area can skip this section. In Section 3 we show how to model recursive
data types in this category. Section 4 introduces hylomorphisms, and in the
following sections we show how to define folds, unfolds, paramorphisms, and
accumulations using this recursion pattern. Section 9 concludes with some brief
remarks. All definitions and recursion patterns are implemented and exemplified
in Haskell [8].

2 Preliminary Concepts

The category CPO has pointed complete partial orders as objects (sets equipped
with a partial order, with a least element, and closed under limits of ascending
chains) and continuous functions as arrows (monotonic functions that preserve
limits). Sometimes we will also refer the category CPO⊥, that is the subcategory
of CPO with the same objects but only the strict (continuous) functions as
arrows. A strict functions is defined as follows.

f strict ⇔ f ◦ ⊥ = ⊥ strict-Def

The product of two data types is defined as follows.

A×B = {(x, y)|x ∈ A, y ∈ B}
(f × g) (x, y) = (f x, g y)

Related to these we have the projections and split combinators.

π1 (x, y) = x

π2 (x, y) = y

〈f, g〉 x = (f x, g x)

This is a categorical product on CPO (and CPO⊥) since that it satisfies the
following uniqueness property.

f = 〈g, h〉 ⇔ π1 ◦ f = g ∧ π2 ◦ f = h ×-Uniq

One can also define the product of functions using split and the projections.

f × g = 〈f ◦ π1, g ◦ π2〉 ×-Def

A consequence of the product definition is

〈f, g〉 strict ⇔ f strict ∧ g strict ×-Strict



The following properties can all be derived from these.

〈π1, π2〉 = id ×-Reflex

π1 ◦ 〈f, g〉 = f ∧ π2 ◦ 〈f, g〉 = g ×-Cancel

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 ×-Fusion

(f × g) ◦ 〈h, i〉 = 〈f ◦ h, g ◦ i〉 ×-Absor

(f × g) ◦ (h× i) = f ◦ h× g ◦ i ×-Functor

〈f, g〉 = 〈h, i〉 ⇔ f = h ∧ g = i ×-Equal

The product and split combinators can be defined in Haskell as follows. The
projections are the predefined fst and snd functions.

split :: (a -> b) -> (a -> c) -> a -> (b,c)
split f g x = (f x, g x)

(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
f >< g = split (f . fst) (g . snd)

Sometimes we will also refer the notion of left strictness of binary function.

f left strict ⇔ f ◦ (⊥× id) = ⊥ lstrict-Def

Obviously, left strictness implies strictness.

f strict ⇐ f left strict lstrict-Strict

It is know that CPO does not have coproducts. In CPO⊥ it can be defined as
the coalesced sum of A and B, by identifying ⊥A and ⊥B as ⊥A+B. However,
this is not the coproduct tipically implemented in lazy functional languages.
Instead, we have the separated sum that adds a new bottom element to the
data type. It is defined as follows.

A+B = {0} ×A ∪ {1} ×B ∪ {⊥}
(f + g) ⊥ = ⊥

(f + g) (0, x) = (0, f x)
(f + g) (1, x) = (1, g x)

Related to these we have the injections and either combinators.

i1 x = (0, x)
i2 x = (1, x)

[f, g] ⊥ = ⊥
[f, g] (0, x) = f x

[f, g] (1, x) = g x

Although we do not have a proper coproduct we still have an uniqueness
law.

f = [g, h] ⇔ f ◦ i1 = g ∧ f ◦ i2 = h ∧ f strict +-Uniq



Similarly to products, we can define the sum using either and the injections.

f + g = [i1 ◦ f, i2 ◦ g] +-Def

A consequence of the sum definition is

∀f, g · [f, g] strict +-Strict

Again, we can derive the following laws from these.

[i1, i2] = id +-Reflex

[f, g] ◦ i1 = f ∧ [f, g] ◦ i2 = g +-Cancel

f ◦ [g, h] = [f ◦ g, f ◦ h] ⇐ f strict +-Fusion

[f, g] ◦ (h+ i) = [f ◦ h, g ◦ i] +-Absor

(f + g) ◦ (h+ i) = f ◦ h+ g ◦ i +-Functor

[f, g] = [h, i] ⇔ f = h ∧ g = i +-Equal

The sum and either (predefined) combinators can be defined in Haskell as
follows. The injections are the Left and Right constructors of the Either data
type.

either :: (a -> c) -> (b -> c) -> Either a b -> c
either l r (Left x) = l x
either l r (Right y) = r y

(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
f -|- g = either (Left . f) (Right . g)

The exponentiation to a data type is defined as follows.

BA = {f : A→ B}
fA g = f ◦ g

Related to this we have the curry and apply operators.

f x y = f (x, y)
ap (f, x) = f x

Like products, this is a categorical exponentiation in CPO, and satisfies the
following uniqueness law.

f = g ⇔ g = ap ◦ (f × id) ∧-Uniq

Again, we can define exponentiation in terms of curry and application.

fA = f ◦ ap ∧-Def

A consequence of exponentiation definition is

f strict ⇔ f left strict ∧-Strict



From the definitions and uniqueness we can define the following laws.

ap = id ∧-Reflex

f = ap ◦ (f × id) ∧-Cancel

f ◦ (g × id) = f ◦ g ∧-Fusion

fA ◦ g = f ◦ g ∧-Absor

(f ◦ g)A = fA ◦ gA ∧-Functor

f = g ⇔ f = g ∧-Equal

In Haskell we can implement curry (predefined), application and exponen-
tiation as follows.

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f x y = f (x, y)

app :: (a -> b,a) -> b
app (f, x) = f x

expn :: (a -> b) -> (c -> a) -> (c -> b)
expn f = curry (f . app)

A functor F is a mapping between categories (maps objects to objects, and
morphisms to morphisms) such that

F f : F A→ F B ⇐ f : A→ B functor-Type

F (f ◦ g) = F f ◦ F g functor-Compose

F idA = idF A functor-Id

In Haskell, a functor f is a type constructor that is a member of the following
class.

class Functor f
where fmap :: (a -> b) -> (f a -> f b)

The burden that the map function obeys the functor laws (the last two equations
above) is left to the programmer.

A polynomial functor is either: the identity functor Id; a constant functor
A for a given type A; the composition of other polynomial functors; or the
pointwise product or coproduct of other polynomial functors, defined by

(F +G) h = F h+G h

(F ×G) h = F h×G h

Given an endofunctor F , an F -algebra is a strict function of type F A→ A,
and an F -coalgebra is a, not necessarily strict, function of type A→ F A. The
set A is called the carrier of the algebra. An F -homomorphism is a function



h : A→ B from an F -algebra ϕ : F A→ A to an F -algebra ψ : F B → B that
makes the following diagram commute.

A

h
��

F A
ϕoo

F h
��

B F B
ψ

oo

We also have the dual notion of F -cohomomorphism.
A natural transformation η between functors F and G, denoted by η : F .→

G, is a function that assigns for each type A a function ηA : F A → G A such
that for any function f : A→ B the following diagram commutes.

F A
ηA //

F f
��

G A

G f
��

F B
ηB // G B

3 Recursive Data Types

In order to generalize the results to any recursive data type, we must present
a general and simple framework to describe them in the category CPO. Typi-
cally this is done using fixed points of functors. Given a locally continuous and
strictness preserving functor F , there exists a data type µF and two functions
inF : F (µF ) → µF and outF : µF → F (µF ) such that

inF strict ∧ outF strict in-out-Strict

inF ◦ outF = idµF ∧ outF ◦ inF = idF (µF ) in-out-Inv

idµF = µ(λf.inF ◦ Ff ◦ outF ) fix-Reflex

The data type µF is the least fixed point of F , the functor that captures the
signature of its constructors. The functions inF and outF are used, respectively,
to construct and destruct values of the data type µF . This result is acknowl-
edged to [18]. Note that all functors that we will use through the paper are
polynomial, and thus locally continuous and strictness preserving.

We can implement these concepts directly in Haskell [13]. As an example,
we will show how to implement the following recursive Haskell data type that
models natural numbers.

data Nat = Zero | Succ Nat

one = Succ Zero
two = Succ one

First, we define an explicit fixpoint operator using the keyword newtype to
enforce the isomorphism.

newtype Mu f = In {out :: f (Mu f)}



Then, for each data type, it is necessary to define the functor that captures
its signature (i.e, its constructors) and apply the fixpoint operator in order
to obtain the data type itself. The idea is to separate the recursion from the
signature definition. The functor captures the signature and defines a one-layer
map, and the recursive knot is tied separately by the fixpoint operator. This
technique is also the main idea of programming with recursion patterns and is
kind of folklore in the functional programming community [9]. The isomorphic
encoding of the Nat data type as a fixed point is

data FNat x = Zero | Succ x

instance Functor FNat
where fmap f Zero = Zero

fmap f (Succ x) = Succ (f x)

type Nat = Mu FNat

one = In (Succ (In Zero))
two = In (Succ one)

The Mu operator is always applied to a monofunctor. In order to declare a
polymorphic data type, we must apply sectioning to a bifunctor by treating the
parameter type as a constant type. For example, the usual list data type can
be obtained as follows.

data FList a x = Nil | Cons a x

instance Functor (FList a)
where fmap f Nil = Nil

fmap f (Cons a x) = Cons a (f x)

type List a = Mu (FList a)

The list [1,2,3] can be defined as follows.

list :: List Int
list = In (Cons 1 (In (Cons 2 (In (Cons 3 (In Nil))))))

As a final example, lets see how to encode polymorphic binary trees.

data FTree a x = Empty | Node a x x

instance Functor (FTree a)
where fmap f Empty = Empty

fmap f (Node a x y) = Node a (f x) (f y)

type Tree a = Mu (FTree a)



4 Hylomorphisms

The recursion pattern hylomorphism was first defined in [12, 4], and denotes the
following recursive function defined by a fixed point:

[[g, h]]F = µ(λf.g ◦ Ff ◦ h) hylo-Def

The typing information in this equation is summarized in the following
diagram, where it is clear that the h function is a F -coalgebra and the g function
a F -algebra.

A
h //

[[g,h]]F
��

FA

F [[g,h]]F
��

B FBg
oo

How does a hylomorphism computes its result? The first thing to be no-
ticed is that the recursion is characterized by the functor F . The map function
for a particular functor determines where the recursion will occur. Suppose,
for example, that the functor was FNat. Then, the resulting function is linear
recursive. On the other way, to define a birecursive function we must use a
functor like FTree. Technically, µF is the data type that models the recursion
tree of a hylomorphism. The coalgebra is responsible for all the work that must
be done before recursion, namely, compute the values passed to the recursive
calls from the input parameters. The algebra is applied after the recursion, and
is responsible to determine the final result, essentially by combining the results
of the recursive call(s). Notice, however, that the result can be computed using
other information beside the results of the recursive calls. If we use a functor
like FList, the recursion will only be applied to the second argument of the
constructor Cons. The other argument can be used to pass some information
unchanged from the coalgebra to the algebra. This recursion pattern can be
expressed in Haskell by an high-order function:

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo g h = g . fmap (hylo g h) . h

Likewise to the Mu operator in the approach to define recursive data types
presented in the previous section, the hylomorphism will be responsible to tie
the recursive knot when defining a function. The programmer should select the
appropriate functor and define the non-recursive code. As an example, we will
implement the following typical factorial definition using a hylomorphism.

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

This is a linear recursive function, but to compute the result we need not
only the recursive result of applying fact to n-1, but also the input parameter
n itself. This means that the recursion tree must be a list, where it is possible
to store information in the intermediate nodes of computation. As such, the
factorial function can be defined as a hylomorphism using as functor FList.



fact :: Int -> Int
fact = hylo g h

where h 0 = Nil
h n = Cons n (n-1)
g Nil = 1
g (Cons n r) = n * r

The stop case is triggered by selecting the Nil constructor. The coalgebra com-
putes the parameter of the recursive call n-1 and stores it in the second argu-
ment of Cons. In the first argument it stores the input n in order to be passed
unchanged to the algebra, that just multiplies it with the result of the recursive
call.

This process of converting an explicit recursive definition of a function into
a hylomorphism can be systematized. Hu, Iwasaki and Takeichi implemented an
algorithm that automatically derives the functors, algebras and coalgebras from
most recursive definitions [7]. The main restrictions to this algorithm is that
no mutual recursion is allowed, and the recursive function calls should not be
nested. This algorithm was mainly used in the context of program optimization
through deforestation of intermediate data structures [14]. In the past we used it
in the context of program understanding, at the core of a tool to automatically
visualize recursion trees of Haskell functions [3, 2].

The main advantage of expressing recursive functions as hylomorphisms is
that they have several interesting laws that enable program calculation and
transformation. The following fundamental laws about hylomorphisms follow
directly from the definition or can be proved by fixpoint induction [12, 4]:

[[g, h]]F = g ◦ F [[g, h]]F ◦ h hylo-Cancel

[[g, h]]F strict ⇐ g, h strict hylo-Strict

[[inF , outF ]]F = idµF hylo-Reflex

[[g ◦ η, h]]F = [[g, η ◦ h]]G ⇐ η : F .→ G hylo-Shift

[[g, φ]]F ◦ [[ψ, h]]F = [[g, h]]F ⇐ φ ◦ ψ = id hylo-Compose

g ◦ [[φ, ψ]]F ◦ h = [[β, γ]]F
⇐

g strict ∧ g ◦ φ = β ◦ F g ∧ ψ ◦ h = F h ◦ γ
hylo-Fusion

Since the fixpoint operator can itself be defined as a hylomorphism, this
recursion pattern gives us the full power of recursion [13]. This means that it
should be possible to implement other recursion patterns using hylomorphisms
instead of explicit recursion. In the remaining of the paper we will show how
this implementation can be done for most of the typical recursion patterns, and
also show how the laws that characterize them can be derived from the basic
set of laws presented above, thus avoiding the use of fixpoint induction.

5 Catamorphisms

Each inductive data type is characterized by a standard way of recursively
consuming its values by iteration according to its shape. This standard recursion



pattern is usually known as fold or catamorphism. In the case of Haskell lists
it is encoded in the standard function foldr.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

This function can be generalized to any inductive data type. As an example
we will define the catamorphism for the binary trees declared in section 3.
Similarly to foldr, if we want to produce a value of type b from a value of type
Tree a, we will need as arguments a function to combine the value in each node
of type a with two recursive results of type b, and a value of type b to return
when an empty tree is reached. Both of this arguments can be combined in a
single function of type FTree a b -> b, yielding the following definition.

cataTree :: (FTree a b -> b) -> Tree a -> b
cataTree f (In Empty) = f Empty
cataTree f (In (Node x l r)) = f (Node x (cataTree f l) (cataTree f r))

Using this recursion pattern, we can, for example, define the function that
determines the depth of a tree as follows.

depth :: BTree a -> Int
depth = cataTree f

where f Empty = 0
f (Node _ l r) = 1 + max l r

cataTree can itself be defined as a hylomorphism as follows.

cataTree :: (FTree a b -> b) -> Tree a -> b
cataTree f = hylo g h

where h (In Empty) = Empty
h (In (Node x l r)) = Node x l r
g Empty = f Empty
g (Node x l r) = f (Node x l r)

In this definition is trivial to see that h can be implemented by out, and g
equals the argument function f. Thus the catamorphism for binary trees can
be expressed just as

cataTree :: (FTree a b -> b) -> Tree a -> b
cataTree f = hylo f out

In fact, for any recursive data type, the catamorphism can be defined using
a hylomorphism in the same way. Given a F -algebra f : FA → A we define
(|f |) : µF → A as follows.

(|f |)F = [[f, outF ]]F cata-Def

If we declare our recursive types in Haskell explicitly as fixed points of
functors we can have a single generic definition of this recursion pattern.

cata :: Functor f => (f a -> a) -> Mu f -> a
cata g = hylo g out



From cata-Def and the laws of hylomorphisms we immediately get a set of
useful laws to reason about catamorphisms:

(|inF |)F = idµF cata-Reflex

(|f |)F strict ⇐ f strict cata-Strict

(|f |)F ◦ inF = f ◦ F (|f |)F cata-Cancel

f ◦ (|g|)F = (|h|)F ⇐ f strict ∧ f ◦ g = h ◦ Ff cata-Fusion

Catamorphisms also have an uniqueness law under some strictness condi-
tions:

f = (|g|)F ∧ g strict ⇔ f ◦ inF = g ◦ Ff ∧ f strict cata-Uniq

Proof. The ⇒ implication is trivial from cata-Cancel and cata-Strict. The
⇐ is also trivial from cata-Fusion with g = inF and cata-Reflex. For the
strictness of g we could argue as follows:

† f ◦ inF = g ◦ Ff
‡ f strict

true
⇔ {† }
f ◦ inF = g ◦ Ff

⇒ {Extensionality }
f ◦ inF ◦ ⊥ = g ◦ Ff ◦ ⊥

⇔ { in-out-Strict, ‡ }
⊥ = g ◦ ⊥

⇔ { strict-Def }
g strict

This uniqueness law says that inF is an initial F -algebra in the category of
F -algebras whose arrows are F -homomorphisms in CPO⊥ (this initiality result
does not extend to CPO). This means that for any strict F -algebra g : FA→ A,
there exists a unique strict function f : µF → A such that f ◦ inF = g ◦ Ff .
This homomorphism is the catamorphism (|g|)F . Schematically, (|f |)F is the only
function that makes the following diagram commute in CPO⊥:

µF

(|g|)F

��

F (µF )
inFoo

F (|g|)F

��
A FAg

oo

To exemplify the utility of these laws, lets see how can we prove, without
using the traditional induction, the following property about map and length.

length . map f = length

First, we present the explicit recursive definition of these functions using the
data types List and Nat declared in section 3.



length :: List a -> Nat
length (In Nil) = In Zero
length (In (Cons x xs)) = In (Succ (length xs))

map :: (a -> b) -> List a -> List b
map f (In Nil) = In Nil
map f (In (Cons x xs)) = In (Cons (f x) (map f xs))

Then, we translate them into catamorphisms.

length :: List a -> Nat
length = cata h

where h Nil = In Zero
h (Cons x r) = In (Succ r)

map :: (a -> b) -> List a -> List b
map f = cata g

where g Nil = In Nil
g (Cons x r) = In (Cons (f x) r)

According to the law cata-Fusion, and knowing that length is a strict
function, we have to prove that

length . g = h . fmap length

Going pointwise, and using the definition of fmap for FList, this is equivalent
to prove the following facts.

length (g Nil) = h Nil
length (g (Cons x r)) = h (Cons x (length r))

Both follow from trivial rewritings using the definitions. For the former we have

length (g Nil) = h Nil
length (In Nil) = In Zero

In Zero = In Zero

And for the later we have

length (g (Cons x r)) = h (Cons x (length r))
length (In (Cons (f x) r)) = In (Succ (length r))

In (Succ (length r)) = In (Succ (length r))

6 Anamorphisms

The dual of fold is the unfold or anamorphism. Although already known for a
long time it is still not very used by programmers [6]. This recursion pattern
encodes a standard way of producing a value of a given data type, and for lists
it is defined as unfoldr in one of the standard libraries of Haskell.

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
unfoldr f b = case f b of Nothing -> []

Just (a,b) -> a : unfoldr f b



The argument function f dictates the generation of the list. If it returns Nothing
the generation stops yielding the empty list. Otherwise it should return both
the value to put at the head of the list being constructed, and a seed to carry
on with the generation.

Similarly to catamorphisms, the anamorphism can be generalized to any
recursive data type, and can be easily defined as a hylomorphism. Given a
F -coalgebra f : A→ FA, we define bd(f)ce : A→ µF as follows.

bd(f)ceF = [[inF , f ]]F ana-Def

Following our approach, in Haskell we can have the following generic defi-
nition of this recursion pattern.

ana :: Functor f => (a -> f a) -> a -> Mu f
ana h = hylo In h

A function that, given an integer n, produces a list with all integers from n
downto (but not including) zero can be defined with a hylomorphism as follows.

downto :: Int -> List Int
downto = ana h

where h 0 = Nil
h n = Cons n (n-1)

From ana-Def and the hylomorphism laws we can derive the following laws
about anamorphisms:

bd(outF )ceF = idµF ana-Reflex

bd(f)ceF strict ⇐ f strict ana-Strict

outF ◦ bd(f)ceF = F bd(f)ceF ◦ f ana-Cancel

bd(f)ceF ◦ g = bd(h)ceF ⇐ f ◦ g = Fg ◦ h ana-Fusion

And, likewise to catamorphisms, from these we can derive the following
uniqueness law:

f = bd(g)ceF ⇔ outF ◦ f = Ff ◦ g ana-Uniq

This means that outF is a final F -coalgebra in the category of F -algebras
whose arrows are F -homomorphisms in both CPO and CPO⊥. Dually to cata-
morphisms, this means that for any F -coalgebra g : A → FA, there exists a
unique F -cohomomorphism f : A → µF such that outF ◦ f = Ff ◦ g. This
cohomomorphism is the anamorphism bd(g)ceF . Schematically, bd(g)ceF is the only
function that makes the following diagram commute:

A

bd(g)ceF

��

g // FA

F bd(g)ceF

��
µF

outF

// F (µF )



After defining these recursion patterns, we can present one of the most
essential law about hylomorphisms, that is the one that states their decompos-
ability into catamorphisms and anamorphisms, and that follows directly from
the definitions and hylo-Compose.

[[f, g]]F = (|f |)F ◦ bd(g)ceF hylo-Split

This law can be used to expose the call tree of a recursive definition as an
intermediate data structure, and to present the hylomorphism as the composi-
tion of two functions: one that builds this data structure from the input (the
anamorphism), and another that traverses it in order to produce the result (the
catamorphism). It also as some nice implications in program understanding.
For example, the factorial definition as a hylomorphism puts in evidence the
fact that this function is just the product of all integers from a given n down
to 1: the catamorphism is a function that multiplies all numbers in a list and
the anamorphism is the function downto defined above.

Another nice example is the quick-sort. Given its explicit recursive definition

qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort (x:xs) = (qsort (filter (<=x) xs)) ++ [x] ++

(qsort (filter (>x) xs))

we can translate it into a hylomorphism using binary trees as intermediate data
structure [1].

qsort :: (Ord a) => [a] -> [a]
qsort = hylo g h

where h [] = Empty
h (x:xs) = Node x (filter (<=x) xs) (filter (>x) xs)
g Empty = []
g (Node x l r) = l ++ [x] ++ r

From this definition it is clear that the quick-sort is the composition of an
inorder traversal after a function that builds a binary search tree from an un-
ordered list.

7 Paramorphisms

While catamorphisms can express functions that can be defined by iteration,
paramorphisms can express all functions that can be defined by primitive re-
cursion [11]. In practice, this means that, for example, when defining a function
over a list, the result may depend not only on the recursive result of applying
the function to the tail of the list, but also on the tail itself, as can be seen in
the following definition of this recursion pattern to Haskell lists in the style of
foldr.

paralist :: (a -> [a] -> b -> b) -> b -> [a] -> b
paralist f z [] = z
paralist f z (x:xs) = f x xs (paralist f z xs)



An example of a function that can not be defined directly with a catamor-
phism, but that can be declared with a paramorphism is the insertion of an
element in an ordered list.

insert :: (Ord a) => a -> [a] -> [a]
insert x = paralist f [x]

where f y ys r | x<=y = x:y:ys
| x>y = y:r

The definition of a paramorphism as a hylomorphism is known at least since
[12]. The idea is that the anamorphism should make a copy of the parameter of
a recursive invocation to be passed intact into the catamorphism. This means
that, unlike the definition of the catamorphism where the intermediate data
type was equal to the data type being consumed, in this case we will have
a different data type. Given an input of type µF , the functor that generates
the intermediate data structure will be F ◦ (Id × µF ), that is, every recursive
occurrence of the original type is replaced by a new recursive occurrence and
a copy of the older one that will be left intact when recursing. For example,
the intermediate data type for paramorphisms over naturals will be a list of
naturals (notice that FNat (x, Nat) is isomorphic to FList Nat x). Instead of
an F -algebra, the paramorphism 〈|f |〉 : µF → A is parameterized by a function
f : F (A× µF ), and is defined by the following hylomorphism.

〈|f |〉F = [[f, F 〈id, id〉 ◦ outF ]]F◦(Id×µF ) para-Def

Schematically we have the following diagram. Notice the use of the doubling
combinator 〈id, id〉 to replicate the recursive occurrences of the input data
type.

µF

〈|f |〉F
��

outF// F (µF )
F 〈id,id〉// F (µF × µF )

F (〈|f |〉F×idµF

��
A F (A× µF )

f
oo

To define a generic paramorphism in Haskell we first define a functor trans-
former from F to F ◦(Id×µF ), and then encode directly the previous definition.

newtype FPara f x = FPara {unFPara :: f (x, Mu f)}

instance Functor f => Functor (FPara f)
where fmap f = FPara . fmap (f >< id) . unFPara

para :: Functor f => (f (a, Mu f) -> a) -> Mu f -> a
para g = hylo (g . unFPara) (FPara . fmap (split id id) . out)

Although we already presented it as a hylomorphism, the factorial function
is one of the most typical examples of a paramorphism over naturals. Assuming
that mult is a function that multiplies a pair of naturals, it can be redefined
for the Nat data type as follows.



fact = para g
where g Zero = one

g (Succ (r, i)) = mult (r, suck i)

Some laws about paramorphisms that can be easily derived from its defini-
tion and the laws of hylomorphisms.

〈|inF ◦ Fπ1|〉F = idµF para-Reflex

〈|f |〉F strict ⇐ f strict para-Strict

〈|f |〉F ◦ inF = f ◦ F 〈〈|f |〉F , idµF 〉 para-Cancel

f ◦ 〈|g|〉F = 〈|h|〉F ⇐ f strict ∧ f ◦ g = h ◦ F (f × idµF ) para-Fusion

However, to derive its uniqueness law it is necessary to prove first the equiv-
alence between the definition using hylomorphisms and the original definition
by Meertens using pairs and catamorphisms [11]. Due to its size, the proof of
the following equation is in the appendix A.

[[f, F 〈id, id〉 ◦ outF ]]F◦(Id×µF ) = π1 ◦ (|〈f, inF ◦ Fπ2〉|)F
⇐

f strict

Given the previous equivalence, the proof of the uniqueness law can be easily
adapted from similar proofs in the Set category, such as the one presented in
[19].

f = 〈|g|〉F ∧ g strict ⇔ f ◦ inF = g ◦ F 〈f, idµF 〉 ∧ f strict para-Uniq

8 Accumulations

Accumulations are binary recursive functions that use the second parameter
as an accumulator of intermediate results. The accumulation technique is typi-
cally used in function programming in order to implement efficient versions of
many recursive functions. For example, the reverse function for List can be
implemented in linear time as follows.

reverse :: List a -> List a
reverse l = aux (l, In Nil)

aux :: (List a, List a) -> List a
aux (In Nil, l) = l
aux (In (Cons x xs), l) = aux (xs, In (Cons x l))

Alberto Pardo defined for the Set category a generic version of an accumu-
lation recursion pattern, called afold, that can applied to any inductive data
type [16]. This recursion pattern can be expressed as a hylomorphism using as
intermediate data type a labeled variant of the input type. Lets suppose that
the type of the accumulator is X. Given an input of type µF , the functor that
generates the labeled variant is F ×X. Given f : FA×X → A and τ proper for



accumulation (defined later) we define the accumulation {|τ, f |} : µF ×X → A
in CPO as the following hylomorphism.

{|τ, f |}F = [[f, 〈τ, π2〉 ◦ (outF × id)]]F×X afold-Def

Schematically we have

µF ×X

{|τ,f |}
��

outF×id // F (µF )×X
〈τ,π2〉// F (µF ×X)×X

F{|τ,f |}×id

��
A FA×X

f
oo

As can be seen in this definition, τ is the function responsible for propagat-
ing the accumulator to the recursive calls. This function should be proper for
accumulation, that is, is should be a natural transformation of type

τ : F ×X
.→ F ◦ (Id×X) τ -Nat

which guarantees that the propagated accumulation does not depend on the
recursive values of the data type, and it cannot modify the shape of the data
type neither the data contained in it.

Fπ1 ◦ τ = π1 τ -Cancel

To define this generic accumulations in Haskell we first define the appropri-
ate functor transformer, and then encode directly the definition using rank-2
polymorphism to ensure the naturality of τ . Likewise to the functor implemen-
tation the burden to ensure τ -Cancel is left to the programmer.

newtype FAfold f a x = FAfold {unFAfold :: (f x, a)}

instance Functor f => Functor (FAfold f a)
where fmap f = FAfold . (fmap f >< id) . unFAfold

afold :: Functor f => (forall a . (f a, x) -> f (a, x)) ->
((f a, x) -> a) -> (Mu f, x) -> a

afold t h = hylo (h . unFAfold) (FAfold . (split t snd) . (out >< id))

Using this recursion pattern we can redefine the auxiliary function of reverse
as follows.

aux :: (List a, List a) -> List a
aux = afold t h

where t (Nil, l) = Nil
t (Cons x xs, l) = Cons x (xs, In (Cons x l))
h (Nil, l) = l
h (Cons x xs, l) = xs



Most of the laws about accumulations presented in [16] can be derived di-
rectly from the their definition as hylomorphisms. Some of them rely on the
notion of X-actions, functions of type A ×X → B, for fix X and arbitrary A
and B. Given a function f : A→ B, it is lifted to a X-action as follows.

f̃ = f ◦ π1 xaction-Lift

To exemplify the proof technique we will prove the following law.

(̃|h|)F = {|τ̃, h|}F afold-Lift

Proof. 

(̃|h|)F = {|τ̃, h|}F
⇔ { xaction-Lift, cata-Def, afold-Def }

[[h, outF ]]F ◦ π1 = [[h ◦ π1, 〈τ, π2〉 ◦ (outF × id)]]F×X
⇔ {π1 : F ×X

.→ F }
[[h, outF ]]F ◦ π1 = [[h, π1 ◦ 〈τ, π2〉 ◦ (outF × id)]]F

⇔ {×-Cancel }
[[h, outF ]]F ◦ π1 = [[h, τ ◦ (outF × id)]]F

⇐ {hylo-Fusion }
outF ◦ π1 = Fπ1 ◦ τ ◦ (outF × id)

⇔ { τ -Cancel }
outF ◦ π1 = π1 ◦ (outF × id)

⇔ {×-Def, ×-Cancel }
true

A similar approach can be applied to the following. Notice that some laws
have additional strictness conditions due to the change of the base category.

{|τ, ĩnF |}F = π1 afold-Cancel

f ◦ {|τ, g|}F = {|τ, h|}F
⇐

f strict ∧ f ◦ g = h ◦ (Ff × id)
afold-Fusion

{|τ ′, h|}F ◦ ((|inF ◦ κ|)G × id) = {|τ, h ◦ (κ× id)|}G
⇐

κ : G .→ F ∧ κ ◦ τ = τ ′ ◦ (κ× id)
afold-cata-Fusion

{|τ ′, h|}F ◦ (id× f) = {|τ, h ◦ (id× f)|}F
⇐

τ ′ ◦ (id× f) = F (id× f) ◦ τ
afold-morph-Fusion

Two prove uniqueness we will again resort to an alternative definition of
(curried) accumulations using catamorphisms, presented in [15]. The proof of
the following equivalence is on appendix B due to its size.

[[h, 〈τ, π2〉 ◦ (outF × id)]]F×X = ap ◦ ((|h ◦ 〈Fap ◦ τ, π2〉|)F × id)
⇐

h left strict ∧ τ left strict



With this equivalence, we can prove the following uniqueness law given a
left strict τ .

f = {|τ, g|}F ∧ g left strict
⇔

f ◦ (inF × id) = g ◦ 〈Ff ◦ τ, π2〉 ∧ f left strict
afold-Uniq

9 Conclusions

In this paper we have shown how to define some of the usual recursion patterns
of algebraic programming in CPO using hylomorphisms. Traditionally this def-
inition was made by fixpoint. Although it is already known that most recursion
patterns can be defined using hylomorphisms, we have shown how to derive their
properties directly from that definition and the basic laws of hylomorphisms,
without using fixpoint induction such as in [12, 4]. As acknowledged in [16], the
definition of accumulations in terms of hylomorphisms was introduced by us
and, to our knowledge, this is the first time that the strictness conditions that
characterize this recursion pattern in CPO are clarified. We have also shown
how to implement directly the definitions in Haskell, by defining data types
explicitly as fixed points of functors, and by using functor transformers.

The main advantages of this approach is to avoid proofs by fixpoint induc-
tion, and to increase the understanding of the recursion patterns by factoring
them into the composition of a producer and a consumer of a (virtual) inter-
mediate data structure. For example, for accumulations, the intermediate data
structure is a labeled variant of the input data type, that explicitly stores the
propagated accumulators in each node. We have already successfully applied
the same approach to other recursion patterns, like apomorphisms [21, ?], the
dual to paramorphisms, and also to generalized catamorphisms [20], a recur-
sion pattern parameterized with a comonad that abstracts the way in which
the argument is used in each recursive step.
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A Correctness of the Paramorphism Definition

[[f, F 〈id, id〉 ◦ outF ]]F◦(Id×µF ) = π1 ◦ (|〈f, inF ◦ Fπ2〉|)F
⇐

f strict



Proof.



† f strict
β [[f, F 〈id, id〉 ◦ outF ]]F◦(Id×µF )

β
= {×-Cancel }
π1 ◦ 〈β, id〉

= { cata-Uniq }

〈β, id〉 ◦ inF
= {hylo-Cancel }
〈f ◦ F (β × id) ◦ F 〈id, id〉 ◦ outF , id〉 ◦ inF

= {×-Absor }
〈f ◦ F 〈β, id〉 ◦ outF , id〉 ◦ inF

= { in-out-Inv }
〈f ◦ F 〈β, id〉 ◦ outF , inF ◦ outF 〉 ◦ inF

= { functor-Id }
〈f ◦ F 〈β, id〉 ◦ outF , inF ◦ Fid ◦ outF 〉 ◦ inF

= {×-Cancel }
〈f ◦ F 〈β, id〉 ◦ outF , inF ◦ F (π2 ◦ 〈β, id〉) ◦ outF 〉 ◦ inF

= { functor-Compose }
〈f ◦ F 〈β, id〉 ◦ outF , inF ◦ Fπ2 ◦ F 〈β, id〉 ◦ outF 〉 ◦ inF

= {×-Fusion }
〈f, inF ◦ Fπ2〉 ◦ F 〈β, id〉 ◦ outF ◦ inF

= { in-out-Inv }
〈f, inF ◦ Fπ2〉 ◦ F 〈β, id〉

〈β, id〉 strict
⇔ {×-Strict }
β strict

⇐ {hylo-Strict }
f strict ∧ F 〈id, id〉 ◦ outF strict

⇔ {†, ×-Strict, in-out-Strict, id strict }
true

π1 ◦ (|〈f, inF ◦ Fπ2〉|)F

B Correctness of the Accumulation Definition

[[h, 〈τ, π2〉 ◦ (outF × id)]]F×X = ap ◦ ((|h ◦ 〈Fap ◦ τ, π2〉|)F × id)
⇐

h left strict ∧ τ left strict



Proof.

† h left strict
‡ τ left strict
β [[h, 〈τ, π2〉 ◦ (outF × id)]]F×X

β
= {∧-Cancel }
ap ◦ (β × id)

= { cata-Uniq }

β ◦ inF
= {hylo-Cancel }
h ◦ (Fβ × id) ◦ 〈τ, π2〉 ◦ (outF × id) ◦ inF

= {∧-Fusion, in-out-Inv }
h ◦ (Fβ × id) ◦ 〈τ, π2〉

= {×-Absor }
h ◦ 〈Fβ ◦ τ, π2〉

= {∧-Cancel }
h ◦ 〈F (ap ◦ (β × id)) ◦ τ, π2〉

= { functor-Compose }
h ◦ 〈Fap ◦ F (β × id) ◦ τ, π2〉

= { τ -Nat }
h ◦ 〈Fap ◦ τ ◦ (Fβ × id), π2〉

= {×-Cancel, ×-Def }
h ◦ 〈Fap ◦ τ ◦ (Fβ × id), π2 ◦ (Fβ × id)〉

= {×-Fusion }
h ◦ 〈Fap ◦ τ, π2〉 ◦ (Fβ × id)

= {∧-Fusion }
h ◦ 〈Fap ◦ τ, π2〉 ◦ Fβ

β strict
⇔ {∧-Strict,lstrict-Def,hylo-Cancel }
h ◦ (Fβ × id) ◦ 〈τ, π2〉 ◦ (outF × id) ◦ (⊥× id) = ⊥)

⇔ {×-Functor, in-out-Strict, ×-Fusion, ‡, ×-Def, ×-Cancel }
h ◦ (Fβ × id) ◦ 〈⊥, π2〉 = ⊥)

⇔ {×-Absor, ×-Functor }
h ◦ (Fβ ◦ ⊥ × id) ◦ 〈id, π2〉 = ⊥)

⇔ {β strict }

β strict
⇐ {hylo-Strict }
h strict〈τ, π2〉 ◦ (outF × id) strict

⇔ { in-out-Strict,×-Strict,π2 strict }
h strict ∧ τ strict

⇐ { lstrict-Strict, †, ‡ }
true

h ◦ (⊥× id) ◦ 〈id, π2〉 = ⊥
⇔ {†,⊥-Def }

true

ap ◦ ((|h ◦ 〈Fap ◦ τ, π2〉|)F × id)


