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Abstract. The Raise Specification Language (RSL) is a modeling language which
supports various specification styles. To apply model checking to RSL concurrent
descriptions, we translate RSL specifications into the input language CSPM of
FDR. FDR is the model checker for the process algebra CSP. First, we define a
syntactic and semantic translation from the concurrent applicative subset of RSL
to CSPM, and show that this translation is a strong bisimulation which preserves
properties such as traces and deadlock. Consequently, results obtained by refine-
ment checks in FDR are sound for the original RSL descriptions. Second, RSL
uses Linear Temporal Logic (LTL) to specify desired properties, but FDR does
not support LTL. LTL formulas may be translated to CSP test processes in or-
der to check them with FDR. We build a tool which automates the translation
of RSL specifications into CSPM and translates LTL formulas to CSP processes,
enabling the model checking of LTL formulas over RSL descriptions with FDR.
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1 Introduction

Concurrent systems are increasingly necessary in society. Two characteristics that make
concurrent processes difficult to understand are distribution and reactivity. In order to
facilitate the modeling and verification of such complicated systems, we need powerful
languages and tools than can facilitate the modeling and verification of them.

Although many different kinds of modelling languages and tools are available, it
can still be difficult to model and reason about these systems. Combining the use of two
or more of these formalisms may be suitable to model a particular system. Moreover, it
is also possible to integrate different formalisms to automate the different kinds of tasks
that should be done.

In this paper, we describe the steps we followed in order to model check Raise
Specification Language (RSL) descriptions using the CSP model checker FDR [10].
Section 2 discusses model checking in the context of RSL.

In Section 3 we describe our approach to develop a translation from RSL [5] to
CSP [6, 16, 14], in particular to its machine-readable variant CSPM . We establish a
concurrent applicative subset of RSL that has a translation to CSPM , then we establish
a semantic link between an RSL specification and its CSPM translation by means of



bisimulation. This translation is, actually, a strong bisimulation that preserves properties
such as deadlock and divergence. Hence we show that results obtained by refinement
checks in FDR are sound with respect to the original RSL description.

In Section 4 we consider how to assert and prove properties of our models. In model
checking by refinement, one has to express the required property in terms of a more ab-
stract process: the property is valid for a model if the property’s description as a process
is refined by the model. In CSP there are three kind of refinement: traces, failures and
failures-divergences. Each one is specially useful for proving different properties; for
instance, traces refinement is useful for proving safety properties. It is not always con-
venient to express properties in terms of more abstract processes, and temporal logic
has been the traditional means of stating properties to be model checked.

The relationship between the refinement-based and temporal logic approach was
studied by Leuschel, Massart and Currie [9, 8]. They show an approach for doing LTL
model checking of CSP specifications using refinement checking in FDR. They present
a way to handle deadlocking systems, and discuss the validity for infinite state systems.
After analyzing Leuschel, Massart and Currie’s approach, we take the general idea and
adapt it to translate LTL formulae from RSL to CSP processes.

Section 6 summarizes the achievement: a tool that translates a subset of RSL into
CSPM in order to apply refinement checking techniques over RSL specifications us-
ing FDR, and the translation of LTL formulae from RSL descriptions to CSP tester
processes, so we can apply the traditional model checking technique to applicative con-
current RSL specifications.

2 Model checking

Model checking is an automatic technique for verifying finite state systems. Enabling
model checking often requires building a smaller, more abstract or simplified model of
the main design that preserves its essential characteristics but avoids complexity. The
idea then is to verify this model.

Applying model checking to a model includes mainly these three tasks: modeling
(construction of the model), specification (definition of the properties to be checked)
and verification (mechanical checking of the properties against the model). Many for-
mal languages have been used for modeling, with corresponding tools for verification.
Some form of temporal logic is the most common language for expressing properties,
and the most useful for asynchronous processes is probably LTL [12], which we use.

2.1 Traditional model checking and model checking by refinement

The traditional model checking (MC) method is a verification process which decides
whether p holds for M (M , s |= p); where M is a model structure with a initial state s
and p is a desired property of the system. LTL formulae allow one to specify different
requirements of systems; in particular, they are useful to correctly specify safety and
liveness properties.

The FDR tool is a refinement checker for CSP models and it supports three models:
traces model, failures model and failures/divergences model [10]. Traces(P) represents



the set of finite sequences of communications that a process P can perform. Failures(P)
represents the set of all the pairs (s, X), where ‘s’ is a finite trace of a process P and
‘X’ is a set of refusals, the events that P can refuse to participate in after doing the
trace s. Divergences(P) represents the set of failures and also the set of divergences;
while or after a divergence happens, P can perform an infinite sequence of consecutive
internal actions. The forms of refinement corresponding to the traces, failures and diver-
gences models are called traces refinement, failures refinement and failures-divergences
refinement respectively. Traces refinement allows the checking for safety properties and
failures refinement the checking of deadlock freedom, while failures-divergences re-
finement is the most appropriate for checking livelock freedom.

2.2 Model checking in RSL

RAISE is a formal method, with RSL as its specification language. A set of tools [4]
is available for RSL, including test coverage analysis and mutation testing, translators
to different languages, and a translator to PVS which allows RSL specifications to be
proved by the PVS theorem prover. Model checking has been supported using the Sym-
bolic Analysis Laboratory (SAL) as a third party model checker. This also involved
adding the possibility to include LTL assertions in RSL specifications.

2.3 Using FDR for RSL

The SAL tool in the RAISE suite does not allow one to model check concurrent RSL
specifications. Our purpose then was to translate the RSL applicative concurrent style
process models to suitable CSP ones in order to apply tools like FDR which can help
us to model RSL processes. This raises two issues

1. Translation: There are syntactic and semantic differences between RSL and CSP
which we need to cope with.

2. Specification: We need to find a way to translate LTL into CSP processes.

3 Translation

We want to translate RSL applicative concurrent descriptions to corresponding CSP
ones. We describe the translation in syntactic terms, and then establish formally what
we mean by “corresponding”: we will show that the RSL and CSP descriptions are
strongly bisimilar. The details are in a technical report [18]: we give just an overview
here.

3.1 The syntax

Since we are interested in the translation of RSL to CSPM , the variant of CSP accepted
as input by FDR, we need to identify the features of RSL that can be expressed in
CSPM . This translation subset includes:

– The built-in types Bool, Int and Nat as shown in Table 1.



Language Type Values Operators
RSL Bool true, false ∧, ∨, ∼, =, 6=
CSPM Boolean true, false ∧,∨,¬ , ==, ! =

RSL Int ...,-1,0,1... +, −, ∗, /, \, <, ≤, >, ≥
CSPM Number ...,-1,0,1... +,−, ∗, /, %, <,≤, >,≥
RSL Nat 0,1... +, −, ∗, /, \, <, ≤, >, ≥
CSPM Open range set {0..} +,−, ∗, /, %, <,≤, >,≥

Table 1. Built-in types translation from RSL to CSPM

– The compound types Product, Set, List, Subtype, Variant and Record as shown
in Table 2. Since complex variants and records in RSL provide an implicit con-
structor, destructors, and (optionally) reconstructors, equivalent functions to these
features have to be created during the translation to CSPM .

Language Type Example
definition

Example
value

Operators

RSL Product type Position = Int × Int (-6,5)
CSPM Tuple (-6,5)
RSL Set type IntegerSet = Int-set {1..5} ∪, ∩,\,∈ , card
CSPM Set {1..5} ∪,∩,−,∈, card

RSL List type IntegerList = Int∗ 〈1, 2, 3〉 hd, tl , b, len
CSPM Sequence 〈1, 2, 3〉 head , tail , a, #

RSL Subtype type Gun = {| i : Nat • i ∈ {0..15} |}
CSPM

Close
range set nametype Gun = {0..15}

RSL Variant type ComplexColour ==
RGB(Red : Gun, Green : Gun, Blue : Gun) | Black | White

CSPM Data type

datatype ComplexColour = RGB .Gun.Gun.Gun | Black | White
Red(RGB .vRed .vGreen.vBlue) = vRed
Green(RGB .vRed .vGreen.vBlue) = vGreen
Blue(RGB .vRed .vGreen.vBlue) = vBlue

RSL Record type Figure :: S : Shape C : ComplexColour

CSPM Data type
datatype Figure = mk Figure.Shape.ComplexColour
S(mk Figure.vS .vC ) = vS
C (mk Figure.vS .vC ) = vC

Table 2. Compound types translation from RSL to CSPM

– Explicit constant values of built-in types and compound types.
– Simple channels and channel arrays as shown in Table 3.

In RSL a channel array is expressed through an object array and it is translated to a
complex protocol channel in CSPM .

– Explicit function and process with if, case and/or let expressions as shown in Ta-
ble 4.
CSPM does not support elsif and case process expressions, but they can be simu-
lated using If and Let expressions in the translation to CSPM .

– The communication primitives sequence, internal and external choice, compre-
hended internal and external choice, parallel and comprehended parallel; and the



Channel Language Example definition
Simple channel RSL channel mess : Index × Data

CSPM channel mess : (Index ,Data)

Channel array RSL object fork[ p : Index, f : Index ] :
class channel pickup, putdown : Unit end

CSPM channel fork pickup, fork putdown : Index .Index

Table 3. Channel translation from RSL to CSPM
Expression Language Example
If RSL if x > y then x − y else y − x end

CSPM if x > y then x − y else y − x

Let RSL
let p = input? in let (x,y) = p in output!x+y;
PROC PLUS() end end

CSPM
input?p → let (x , y) = p within output !x + y
→ PROC PLUS

Case RSL

case p of
(true,false) → true,
→ false

end

CSPM

if let (x1 , x2 ) = p
within x1 == true and x2 == false

then let (x1 , x2 ) = p
within true else false

Table 4. Function and process expression translation from RSL to CSPM

basic processes stop and skip. To find an equivalence between these communica-
tion primitives and basic processes in RSL and CSPM , it is necessary to evaluate
the operational semantics of these two languages.

3.2 The semantics

In this section we compare the semantics of the subsets of RSL and CSP.

The operators of RSL and CSP Based on the grammar of the process expression in
both process algebras, we show the operators which can be translated in both cases.

The RSL expressions are as follows:
P = skip | stop | E ; P | P u P | P¤P | P‖P | if v then P else P end
E = c? | c!v
where v is a pure value expression, and P is a process expression.

The CSP expressions are as follows:
P = SKIP | STOP | E → P | P u P | P¤P | P‖P | if v then P else P
E = c? | c!v
where v is a pure value expression, and P is a process expression.

Although the operators are syntactically similar, they are sometimes semantically
different as discussed below.

Operational Semantics Comparison The operational semantics rules are taken from [1]
in the case of the RSL rules and from [16] in the case of the CSP rules.



We do not include the details here, but simply state that the internal and external
choice combinators have equivalent semantics in the two languages. The differences lie
in parallelism, essentially since CSP adopts a “broadcast” semantics to communication
between parallel processes, while RSL adopts a “point-to-point” semantics.

We consider two cases for parallel processes : synchronization and non-synchronization.

Synchronization The operational semantics rules for synchronization of RSL and CSP
are the following:

RSL CSP

ρ ` P a→ P′ , Q ā→ Q′

ρ ` P‖Q τ→ P′‖Q′
(1)

P a→ P ′ , Q a→ Q ′

P‖Q a→ P ′‖Q ′ (2)

where if a is an input (c?x) then ā is an output on the same channel (c!v), and vice
versa. Note that in RSL the event is “consumed” by the synchronization, becoming a τ .
The CSP rule is more general, in that both events may be inputs or outputs. The event in
CSP is not consumed; other processes running in parallel may also participate in it. We
see that the two rules will coincide only for matched inputs and outputs, and provided
we hide synchronized events as they occur.

To deal with this problem, we adopt the following as a design rule:
A process can only either input or output on a channel, and at most one other

process can access that channel, and the access is in the opposite direction.
This rule may seem restrictive, but is in fact advised by the RAISE Method [13],

and is natural in a language with point-to-point communication. If we adopt this rule for
RSL then we see that such RSL translated in the natural manner to CSP will produce
CSP processes in which the two sub cases where both events are inputs, or both are
outputs, cannot occur.

This rule is statically checkable provided there are no channel arrays.

Non-synchronization A non-synchronised transition between parallel processes occurs
when one process makes a transition and the other does not. The relevant semantics
rules for CSP and RSL show that for an internal event the rules are the same. But for a
visible event CSP alone requires that the event involved in the transition of one process
is not in the alphabet of the other. There is no such restriction in RSL. This is necessary
in a language like RSL with point-to-point communication to preserve the associativity
of the parallel operator. Suppose, for example, that P can output on channel c, and both
Q and R can input on c. Then the combination (P ‖ Q) ‖ R must be able to progress by
P communicating with either Q or R, and for P to communicate with R, (P ‖ Q) must
be able to output on c, without Q being involved.

We can see that our design rule takes care of this problem by not allowing such a
parallel combination: we cannot have both Q and R inputting on channel c.1

1 We can also see that our design rule does not remove the possibility of such an architecture.
We replace c by two channels cpq and cpr, say, so that Q inputs on cpq and R on cpr, and P



So we adopt the following rule for translating parallel processes:

(P‖Q)T = (PT‖QT )\αPT ∩ αQT

where XT is the CSP process translated from the RSL process X.

Soundness Soundness means establishing that the results obtained from tools applied
to the CSP model are valid for the original RSL. So we need to establish the following
proof rule:

RT |= PT

R ` P

where we want to prove property P of RSL specification R, translated to PT and RT

respectively.
FDR is essentially a refinement checker, so PT is typically a (traces, failures, or

failures-divergence) refinement relation, but may also be an assertion of deadlock free-
dom. We can therefore establish soundness by establishing the following:

1. that the translation scheme is a strong bisimulation. We need strong rather than
weak bisimilarity to include divergence as a property that is preserved.

2. that strongly bisimilar processes have the same traces, failures, divergences and
deadlocks.

The details are in a technical report [20]: we give a brief summary here.

Bisimulation We first establish the obvious mapping of the events and basic processes
of RSL and CSP. We then proceed by structural induction over the syntax of RSL pro-
cesses: for each construction we assume the component processes are bisimilar to their
translations, and show the constructed process to be bisimilar to its translation.

For example, to prove bisimilarity for the parallel combinator, we assume P is
bisimilar to its translation PT , and Q is bisimilar to its translation QT . We then show
that P‖Q is bisimilar to its translation (given above): call this PQT . To show bisim-
ilarity we consider each possible transition of P‖Q according to the RSL operational
semantics to process X , say, and show there is a corresponding transition for PQT in
the CSP operational semantics to a process which is bisimilar to X . Then we do the
converse, considering each possible transition of PQT , finding a corresponding transi-
tion for P‖Q , and showing the resulting processes are bisimilar.

Properties We prove the following for a process P and its (strongly bisimilar) transla-
tion PT :

1. Traces: P can do a trace l iff PT can do a trace l .
2. Deadlock: P can deadlock iff PT can deadlock.

makes an internal (non-deterministic) output choice between cpq and cpr. This is semantically
equivalent to the original system (assuming no other processes access c) and obeys our design
rule.



3. Refusals: x is a refusal of P iff x is a refusal of PT

4. Failures: failures(P) = failures(PT ).
5. Divergences: P diverges iff PT diverges.

This means that properties we can prove of translated CSP scripts using FDR (lack
of deadlock, trace-, failures- or failures-divergence-refinement) must also be true of the
original RSL descriptions. In other words we have shown that FDR is a sound model
checker for applicative concurrent RSL descriptions.

4 Specification

In this section, we deal with the modelling of LTL formulae. We first explain how
LTL formulae may be modelled as tester processes in CSP, following the approach of
Leuschel, Massart, and Currie [9, 8]. We then discuss how this approach can be adapted
to the RSL setting.

4.1 A translation of LTL formulae to CSP

After a careful study of the relationship between the refinement-based approach and
temporal logic, Leuschel, Massart and Currie [9, 8] propose to make a general solution
building a tester for each possible LTL formula. Looking at the possible LTL formulae
they observe that in general infinite traces have to be tested in order to infer whether a
formula is satisfied. They check the satisfaction of a LTL property following the pro-
cedure defined by Vardi and Wolper [19]; that is, verifying that [[S ]]w ∩ [[¬φ]]w = ∅
(where [[S ]]w represents all the traces of the system′s model and [[¬φ]]w all the traces
of the negation of a LTL formula). If the intersection between [[S ]]w and [[¬φ]]w is
empty then S |= φ.

The approach consists of building a tester Tφ from a formula φ, composing Tφ

with a system S , and checking if the composition satisfies some property. Tφ is built by
translating φ to the corresponding Büchi automaton and translating this automaton to
CSP; finally, FDR is used for checking emptiness. Special attention is paid to deadlock-
ing traces, so they build a tester Tφ which accepts infinite traces and also deadlocking
traces.

Deadlocking treatment and tester building An extended LTL called LTL∆ is defined
in order to handle deadlocking traces. LTL∆ is specified in the same way as LTL but
over an extended alphabet. That is, while LTL is defined overΣ, LTL∆ is overΣ∪{∆};
where ∆ /∈ Σ. If a valid trace π is finite then it is over Σ terminating on infinite ∆’s;
otherwise π is an infinite trace over Σ. Regarding the semantics of LTL∆, two rules are
defined in [9, 8] for translating LTL into LTL∆:

1) Xφ Ã ¬∆ ∧Xφ
2) ¬Xφ Ã ∆ ∨X¬φ

Also, the definition of when an LTL∆ formula holds is shown. Given a system specifi-
cation S and a LTL∆ formula φ:



S |= φ iff ∀π ∈ [[S ]]∆, π |= φ,
where [[S ]]∆ = [[S ]]w ∪ {γ∆w | (γ,Σ) ∈ failures(S )}
Following that idea, and considering that CSP system S cannot extend its traces to

consider deadlocking traces, a tester Tφ of the LTL formula φ is built. Tφ accepts, on
the one hand, infinite traces; and on the other hand, deadlocking traces. The tester is
built from a Büchi automaton using the classical approach. Therefore, given an LTL
formula to check, first it is negated, second it is translated to LTL∆, and finally it is
translated to a special Büchi automaton called B∆. B∆ extends the traditional Büchi
automaton, adding acceptance conditions to manage deadlocks. More formally, B∆ is
defined in [9] as B∆ = (Σ,Q,T,Q0,F,D) where: Σ is the alphabet, Q is the set
of states, T ⊆ Q × Σ × Q is the transition relation, Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of infinite trace accepting states and D ⊆ Q is a set of deadlock monitor
states.

B∆ has two acceptance conditions, the classical acceptance condition for infinite
traces and acceptance conditions for deadlocking traces. The traditional Büchi automa-
ton B over the alphabet Σ ∪ {∆} is modified into B∆ over the alphabet Σ by:

1. identifying deadlock monitor states (DMS) which are reachable from an initial
state by transitions in Σ and accept strings ∆w with the classical Büchi condition,

2. removing all ∆ transitions,
3. removing all transitions and states which do not lead to the acceptance of a trace.

Translation from B∆ to CSP Each state of B∆ is translated to a CSP process with
different characteristics depending on what kind of state it is. If it is an accepting state,
a CSP process with a special success action is created; and if it is a DMS, a special ∆
transition is added. Therefore, translation from B∆ automaton into CSP is defined as:
- map every q ∈ Q to a CSP process name NAME (q)
- for every q ∈ Q0 add the CSP definition TESTER = NAME (q),
- for every non-accepting state q ∈ Q�F and

for all outgoing edges (q , a, q ′) ∈ T
add the CSP definition NAME (q) = a → NAME (q ′)

- for every accepting state q ∈ F where
{(q , a1, q1), ..., (q , an , qn)} ⊆ T are all the outgoing edges of q
add the CSP definition
NAME (q) = success → (a1 → NAME (q1) ¤ ... ¤ an → NAME (qn))

- for every state q ∈ D
add the CSP definition NAME (q) = deadlock → DEADLOCK

- add a single CSP definition of DEADLOCK (where Σ = {a1, ..., an})
DEADLOCK = a1 → k0 → STOP ¤ ... ¤ an → k0 → STOP

Note that success , deadlock and k0 are all different and not in Σ.
If the system is not deadlocked in a deadlock monitor state then the system in par-

allel with the DEADLOCK process will be able to perform some action in Σ and then
the action k0. On the other hand, if the system is deadlocked in a deadlock monitor
state, the DEADLOCK process will not be able to perform k0, so deadlocking traces
will correspond to CSP failures.



Checking emptiness using FDR The final step to verify that [[S ]]w ∩ [[¬φ]]w = ∅ is
to check whether an infinite trace or a finite deadlocking trace of S satisfies ¬φ; if there
does not exist such a trace then S |= φ. The way to do this check using FDR is through
two kinds of refinement check.

– Traces which generate infinite successes are checked by testing whether:
SUC wT (S [[Σ]]TESTER) \ (Σ ∪ {deadlock , k0}) holds, where
SUC = success → SUC .

– Deadlocking acceptances are checked by testing whether:
deadlock → STOP wF (S [[Σ]]TESTER) \ (Σ ∪ {success}) holds

If one of the tests succeeds then S 2 φ, so S |= φ only if both of them fail.

4.2 An approach to translate LTL formulae from RSL to CSP

After analyzing the approach presented in [9] and [8], we take the general idea and
we adapt it in order to translate LTL from RSL to FDR. In the next subsections, our
framework to translate LTL properties from RSL to FDR is detailed.

LTL specification from RSL to LTL∆ We define a grammar for writing LTL as-
sertions in RSL. LTL properties are preceded by the key word “ltl assertion” and the
definition of each property is written using an identifier tag, the process which will be
tested, and the LTL property.

LTL prop decl ::= “ltl assertion” {LTL assertion}+,
LTL assertion ::= “[ ” LTL tag “ ]” Process name ` LTL prop
LTL prop ::= Channel name

| LTL prefix LTL prop | LTL prop LTL infix LTL prop
| “true” | “false” | “(” LTL prop “)”

LTL prefix ::= “X” | “G” | “F” | “∼”
LTL infix ::= “R” | “U” | “∨” | “∧” | “⇒”

‘Process name’ and ‘Channel name’ are type identifiers defined previously for a
process and a channel respectively. ‘LTL tag’ is also an identifier, more precisely an
LTL property identifier. For example, consider the following RSL specification:

scheme VENDOR MACHINE =
class

channel
rich,coin, choc, toff,smile: Unit

value
Machine: Unit → in coin out choc, toff Unit
Machine() ≡ coin?;(choc!();Machine()debctoff!();Machine()),

Customer: Unit → out coin,smile in rich, choc, toff Unit
Customer() ≡ rich?;coin!();(choc?;smile!();Customer()detoff?;smile!();Customer()),



SYS: Unit → in coin,choc,toff,smile,rich out coin,choc,toff,smile Unit
SYS() ≡ Machine()‖Customer()

ltl assertion
[ happy ] SYS ` G(rich ⇒ F(smile))
end

An ltl assertion called “happy” is defined over the process “SYS” and the property
is specified using channels “rich” and “smile”. An occurrence of a channel name in
an ltl assertion indicates the corresponding event occurring. So “happy” asserts that
whenever a “rich” event occurs a “smile” will eventually occur — a classical liveness
property.

The translation from RSL to LTL∆ requires that alphabets are defined by extension,
i.e. as finite sets. So LTL properties only can be defined using models involving simple
channels (not channel arrays).

Negating LTL properties We want to verify that [[S ]]w ∩ [[¬φ]]w = ∅ (where [[S ]]w
represents all the traces of the system’s model and [[¬φ]]w all the traces of the negation
of a LTL formula). So, the first step on the way to translate a LTL formula to LTL∆, is
the negation of the property by means of the introduction of the operator ‘∼’. For this
first translation we use standard rules such as ∼ G φ = F(∼ φ).

Observe that the negation of a event ‘x ’ it is equivalent to concatenation by ‘∨’ of
each alphabet’s symbol, less x and plus the ∆ symbol. This is because we know we
have CSP events where exactly one event from the alphabet happens at any step. For
the same reason, it is not possible to have more that one event concatenated by the ‘∧’
operator either. For instance, if the alphabet is {a,b,c} then

∼a = b ∨ c ∨∆ and ∼∆ = a ∨ b ∨ c and a ∧ b = false and a ∧∆ = false
These rules enable us to remove the negations from any formula. (We will often for

clarity leave ∼∆ unexpanded in the presentation.)

Introducing the special symbol∆ Taking as models the rules defined in [9] for translat-
ing the LTL properties Xφ and ¬Xφ into LTL∆ (see subsection 4.1), we analyzed the
semantics for each LTL∆ operator. Therefore, we specify a translation T of every LTL
operator of a formula φ as follows:

T(G(φ)) = G(∆) R T(φ)
T(F(φ)) = ∼∆ U T(φ)
T(X(φ)) = ∼∆ ∧ X( T(φ))
T(φ U ψ) = (∼∆ ∧ T(φ) ) U T(ψ)
T(φ R ψ) = (G(∆) ∨ T(φ)) R T(ψ)

T(φ ∧ ψ) = T(φ) ∧ T(ψ)
T(φ ∨ ψ) = T(φ) ∨ T(ψ)
T(φ⇒ ψ) = T(φ) ⇒ T(ψ)
T(a) = a , where a ∈ Σ
T(∆) = ∆

Considering the VENDOR MACHINE example shown previously, the translation
for the LTL assertion happy after the negation of the LTL property and the introduction
of the symbol ∆ is as follows:

T(∼(G(rich ⇒ F(smile)))) = ∼∆ U (rich ∧ (G(∆) R (∆ ∨ rich)))



Fig. 1. Büchi automaton for the happy assertion

Translation from LTL∆ to Büchi automata The SPIN model checker [7] is used in
[9] to translate LTL∆ to Büchi automata. Instead of SPIN, we use ltl2ba [2] to generate
the Büchi automaton from an LTL∆ expression. We choose ltl2ba because it is open
source, which allows us to extend it. In addition, experimental work shows that it is
more efficient than SPIN [3].

The ltl2ba algorithm generates a Büchi automaton from an LTL formula. First a
very weak alternating automaton is built and then it is transformed it into a Büchi au-
tomaton, using a generalized Büchi automaton. Each automaton is simplified on-the-fly
for saving memory and time, using iteratively three rules until no more simplification
are possible [3]:

1. Inaccessible states are removed.
2. If a transition t1 implies a transition t2, then t2 is removed.
3. If states q1 and q2 are equivalent, then they are merged.

The Büchi automaton for the happy assertion is shown in figure 1.

Translation from Büchi automata to Büchi delta B∆ We took the source code of
ltl2ba and extended it to generate B∆ from the Büchi automaton. B∆ is obtained fol-
lowing the steps shown in subsection 4.1, that is: 1) identifying each DMS, 2) removing
all ∆ transitions and finally 3) removing transitions and states which do not lead to the
acceptance of a trace.

Regarding detection of DMS, in [9] they are found following an algorithm defined
in [17] (adaptation of the Tarjan’s search algorithm for strongly connected components).
However, this one only detects states which accept strings ∆w with the classical Büchi
condition, but it does not consider which are reachable from an initial state by tran-
sitions in Σ. Therefore, we defined a complementary algorithm which detects states
reachable by Σ transitions.

Consider the Büchi automaton corresponding to the VENDOR MACHINE exam-
ple. Only state 1 is detected as DMS, because it is reachable from the initial state by
transitions in Σ and accepts the string ∆w with the classical Büchi condition. Also, ∆
transitions are removed, according to step 2) for building B∆. The transition labeled
‘rich && delta’ is removed too, because we know we have CSP events where exactly



Fig. 2. B∆ automaton for the happy assertion

one event from the alphabet happens at any time. Therefore, we get the B∆ automaton
shown in figure 2.

Translation from B∆ to CSP and emptiness check After building B∆, we use the
algorithm of section 4.1 for generating the corresponding CSP specification from B∆.
Also, we generate FDR code for the two refinement checks as explained in subsection
4.1; i.e. checking traces which generate infinite successes and checking for deadlock.

5 Implementation of the tool

The approach described in this paper has been implemented in a tool which translates
RSL specifications with temporal logic assertions into a CSPM specification and a
tester process.

In order to do so it is set up with two main components that we will call “RSL FDR2”
and “RSL LTL FDR2”.

RSL FDR2 takes an RSL specification as an input and performs two things. First,
the RSL is transformed into an AST (abstract syntax tree) by the RSL type checker;
then, applying many translation rules, the AST of RSL is transformed into an AST
of CSPM ; and finally this AST is unparsed into a new output script (a .fdr2 file)
in CSPM . Second, if one or more LTL assertions are specified (using RSL syntax),
RSL FDR2 translates them to the corresponding LTL∆ formulae and saves them in
.ltl files. These .ltl files are input to RSL LTL FDR2, an extension of ltl2ba,
which generates for each a TESTER process and some CSP refinement statements, and
appends them to the .fdr2 file.

For instance, when we give the VENDOR MACHINE example of Section 4 to the
tool, it produces the following CSPM script as output:

channel rich,coin,choc,toff,smile

Alph_in_Machine = {|coin|}
Alph_out_Machine = {|toff,choc|}
Machine = coin -> (choc -> (Machine) [] toff -> (Machine))

Alph_in_Customer = {|toff,choc,rich|}
Alph_out_Customer = {|smile,coin|}
Customer = rich -> (coin -> (choc -> (smile -> (Customer)) |˜|

toff -> (smile -> (Customer))))

Alph_in_SYS = {|rich|}



Alph_out_SYS = {|smile|}
SYS = (Machine [{|coin,toff,choc|}||

{|toff,choc,rich,smile,coin|}] Customer)\
{|coin,toff,choc|}

channel success0,deadlock0,k0
Alph_SYS0 = union(Alph_in_SYS,Alph_out_SYS)

TESTER0 = State0_0
State0_0 =
rich?x -> State1_0 [] rich?x -> State0_0 [] smile?x -> State0_0

State1_0 =
success0 -> ( rich?x -> State1_0 ) [] deadlock0 -> DEADLOCK0

DEADLOCK0 = rich?x -> k0 -> STOP [] smile?x -> k0 -> STOP
Composition0 =
(SYS [|Alph_SYS0|] TESTER0)\ union(Alph_SYS0,{deadlock0,k0})

DComposition0 =
(SYS [|Alph_SYS0|] TESTER0)\ union(Alph_SYS0,{success0})

SUC0 = success0 -> SUC0
assert Composition0 [T= SUC0
RealDeadlock0 = deadlock0 -> STOP
assert DComposition0 [F= RealDeadlock0

The Composition0 and DComposition0 assertions are checked using FDR to de-
termine if the property holds. Compostion0 checks for traces which generate infinite
successes and Dcompositon0 checks for deadlock. Since both assertions fail, it is estab-
lished that SYS satisfies the property G(rich ⇒ F(smile)).

5.1 Efficiency

As suggested by the fact that there is a bisimulation between the RSL description and
its translation, there is a one-to-one relation between the events in RSL and those in
CSP, and the translation is almost certainly as good and as efficient in model checking
as a hand translation would be. This has been borne out by trying the translator on a
number of standard examples: cyclic scheduler, dining philosophers, railway crossing,
producer-consumer, alternating bit protocol, multiplexed buffer [18].

6 Conclusions

We have shown an approach to translate a concurrent applicative subset of RSL into
CSPM , and shown the soundness of the translation through establishing a strong bisim-
ulation. We have analyzed the approach presented in [9] and [8] and we have observed
it is possible to take the general idea but it is necessary to extend it in order to translate
from RSL to CSP. Therefore, we have shown the whole translation of every LTL opera-
tor to LTL∆ operators, we have used ltl2ba algorithm to translate from LTL expressions
to Büchi automata and we have shown how to extend ltl2ba to build B∆.



Finally, we have developed a tool for the specification of concurrent systems that
allows us, first, to use the FDR tool on the CSPM scripts, and to draw sound conclusions
about the RSL descriptions and second, to translate LTL formulas from RSL to CSP that
helps us to express the specification of desired properties in a friendly way enabling the
model checking of LTL formulae about RSL descriptions with FDR.

A problem with this approach is that it needs failure of model checking to prove
success. So if the proposed property is not proved, there is only model checking success
and no trace to indicate what went wrong. By including a notion of fairness in the model
checking it may be possible to prove LTL properties more directly, as hinted by Roscoe
[15] and adopted in recent work in Singapore [11].
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