
Mining the Usage Patterns of ROS Primitives

André Santos, Alcino Cunha, and Nuno Macedo
INESC TEC & Universidade do Minho, Braga, Portugal

Rafael Arrais and Filipe Neves dos Santos
INESC TEC, Porto, Portugal

Abstract— The Robot Operating System (ROS) is nowadays
one of the most popular frameworks for developing robotic
applications. To ensure the (much needed) dependability and
safety of such applications we forecast an increasing demand for
ROS-specific coding standards, static analyzers, and tools alike.
Unfortunately, the development of such standards and tools can
be hampered by ROS modularity and configurability, namely
the substantial number of primitives (and respective variants)
that must, in principle, be considered. To quantify the severity
of this problem, we have mined a large number of existing
ROS packages to understand how its primitives are used in
practice, and to determine which combinations of primitives
are most popular. This paper presents and discusses the results
of this study, and hopefully provides some guidance for future
standardization efforts and tool developers.

I. INTRODUCTION

The Robot Operating System (ROS) has emerged as one of
the most popular frameworks for the development of robotic
software, with an explosion of applications and attempts
to port it into a fully-fledged industrial framework1. ROS
encourages an open-source policy, and there are currently over
one thousand publicly accessible GitHub ROS repositories,
officially indexed in the most recent distribution of ROS2.

However, this popularity growth has not been accom-
panied by effective support to promote the dependability
of the resulting robots. ROS systems are often developed
by a community that is not proficient in standard software
engineering practices. Despite attempts to enforce quality
metric thresholds3 and coding styles4, their adoption has
been negligible [1], not only because their benefits are not
evident to the ROS developer, but also due to the lack of
automated support. Developing a new robot requires the
integration of many complex subsystems, such as perception,
motion planning, reasoning, navigation, and grasping. Bohren
et al. [2] noticed that even with an extensive validation process
for each of these individual components, the subsequent step
of integrating them into a robust heterogeneous system is a
hard task which is not solved yet.

The research leading to these results has received funding from the
European Union’s Horizon 2020 - The EU Framework Programme for
Research and Innovation 2014-2020, under grant agreement No. 723658.
This work is also financed by the ERDF – European Regional Develop-
ment Fund through the Operational Programme for Competitiveness and
Internationalisation - COMPETE 2020 Programme within project «POCI-
01-0145-FEDER-006961», and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia as part of
project «UID/EEA/50014/2013».

1https://rosindustrial.org
2https://github.com/ros/rosdistro/
3http://wiki.ros.org/code_quality
4http://wiki.ros.org/CppStyleGuide

To push the quality of ROS systems forward, stricter coding
standards and more advanced analysis tools will undoubtedly
be required. Static analysis is one of the techniques that
could benefit this cause, given its suitability to find subtle
errors that are difficult to reproduce at runtime. ROS-specific
static analysis, in particular, should be able to analyze not
only the behavior of each particular subsystem, but also the
integration and interaction of such coexisting components.
However, the development of such tools tailored for ROS is
far from trivial, due to a few particular challenges. First, ROS
allows a high degree of freedom when it comes to design,
making it difficult to reverse engineer the architecture of
the system. In particular, the content of ROS launch files
– which are used to effectively deploy a robot – can be
fully customizable from environment variables, command-
line arguments or configuration files. Second, ROS provides
a myriad of primitives – used to essentially manage the
communication and synchronization between nodes. Such
primitives embody different communication paradigms, and
can be called freely by a ROS system throughout its lifeline.
Finally, there is the inherent complexity of the languages of
choice for developing ROS systems: C++, Python, JavaScript
and LISP. Consider as an example, the rosgraph tool, that
constructs the computation graph for a ROS system in runtime.
Determining such graph in static time would be extremely
useful, but would be exceedingly complex to implement for
an arbitrary ROS system, due to the potential complexity of
the source code and configuration files. Yet, under a controlled
subset of ROS features, that task could become feasible.

In order to more precisely quantify the impact of the first
two challenges, we have mined a considerable ROS repository
corpus of over 400 packages and 300 launchable applications
(see Section III-B for a definition of application), with the goal
of detecting common usage patterns of ROS functionalities
and primitives, both in configuration files and in the source
code. Concerning the third challenge, we have focused on
ROS robots implemented in C++. The analyzed components
are mainly building blocks for more complex robotic systems.
This paper presents and discusses the results of this work.

The main outcome of this study is a ranking of the most
frequent usage patterns, making it easier for future tool
developers to identify where to best invest their effort. In
particular, we expect to provide a glimpse of the potential
coverage of future static analysis tools depending on which
ROS functionalities would be supported. Hopefully, such
results will also provide the ROS community with novel
insights regarding their software development practices,

https://rosindustrial.org
https://github.com/ros/rosdistro/
http://wiki.ros.org/code_quality
http://wiki.ros.org/CppStyleGuide


promoting the development of better programming guidelines.
The paper is structured as follows. Section II presents

related work, followed by an overview of ROS in Section III.
Section IV describes the methodology employed to collect
the usage patterns, while Section V presents and discusses
the results of analyzing the collected data. Section VI wraps
the paper and points to future work directions.

II. RELATED WORK

Research on source code static analysis of robotic systems
is scarce, especially on techniques tailored for ROS. In [3] the
authors present and explore four static analysis techniques that
could be relevant for analyzing robotic software, but concrete
solutions on how to adapt them to ROS applications are not
proposed. This team has previously proposed HAROS [1], a
framework for the static analysis of ROS software5. Although
it was successful in collecting basic quality metrics, advanced
static analysis techniques were quickly encumbered by the
complexity of ROS applications. Alternatively, some authors
have proposed the (manual) translation of ROS C++ source
code into languages more amenable to being statically
analyzed, like SPARK [4]. A literature review on safety
certification practices [5] has not detected the application
of static analysis tools to standard robotic development
frameworks, but only the verification of robots implemented
in formal specification languages.

As far as we are aware, no studies on mining ROS
repositories for typical usage patterns have been published.
Techniques for mining software repositories, and in particular
for extracting typical API or call usage patterns, have received
considerable attention lately [6], borrowing data mining
techniques to detect frequent item-sets and sequences [7].
Besides not being tuned for C++ source code, they would
probably be overkill for our rather simple queries. Moreover,
our study focuses on ROS aspects that are too specific (e.g.,
launch files) to be analyzed using off-the-shelf techniques.
Certain functionalities of HAROS were used to ease this
process.

III. ROBOT OPERATING SYSTEM

This section presents the ROS concepts and features
targeted by this study. The main organization unit in ROS sys-
tems is the notion of package, containing several configuration
and source code files. Each package is defined by an XML
manifest file, specifying, besides meta-data, the building and
running dependencies. The official distribution defines a set
of packages, as well as their source GitHub repositories (each
repository may contain several packages). For the purpose of
this paper, the ROS Indigo Igloo distribution was considered.
The ROS computation graph is comprised by nodes that
communicate through topics under a publisher-subscriber
or client-server paradigm. Communication is provided by a
special node, the ROS Master, that also provides a shared
and central key-value parameter server. A more detailed
description of ROS can be found at the official wiki6.

5https://github.com/git-afsantos/haros
6http://wiki.ros.org

Fig. 1: Application features.

A. Feature Diagrams

ROS provides a myriad of flexible and configurable
functionalities and primitives, usable in various contexts.
This study aims to assess the potential to have ROS systems
statically analyzed, so it is relevant to know exactly how the
different variants of these primitives are used, for example,
whether they are invoked with literal (constant) arguments
or otherwise (e.g., values computed in runtime). To aid
visualizing this variety, we will characterize ROS applications
using feature models [8], diagrams initially developed with
the goal of modeling alternative configurations in software
product lines. Feature models are hierarchical: a child feature
may only be selected if the parent is as well. A feature may
be mandatory (filled circle), forcing its selection with its
parent, optional (empty circle), or arranged in or groups
(filled arcs), from which at least a feature must be selected,
and xor groups (empty arcs), from which exactly one feature
must be selected. Every feature model has a root feature that
is always present in every configuration, and may contain
reference features (ä) which point to other feature models.
Finally, requires (⇒) constraints allow the enforcement of
cross-tree dependencies. A software product is defined by a
selection of features according to these constraints.

B. ROS Applications

Robotic systems are deployed through the definition of
launch files, XML configurations used to deploy standalone
applications or components for more complex systems. In
particular, launch files define which nodes should be launched
from the packages, and with which arguments. For the purpose
of this paper, we consider a robotic application a top-level
launch file7 (ROS App, Fig. 1). The launch file/package
relationship is many-to-many: launch files may depend on
several packages to be deployed, and the same package may
be executed by several distinct launch files. By definition, a
ROS App contains at least one Launch File, it may contain
C++ source files that use ROS Primitives, and can declare
custom, context-specific Message and Service Types.

Launch files are highly parameterizable (Fig. 2), being
programmed with Tags. Tags define Nodes to be launched
in a given configuration. It is possible to define the host
machine (Machine Ref) and whether it is Required (if the
node fails, the whole launch fails) or it should Respawn
(if the node fails, it will be launched again). Additional

7In practice, nodes may be launched directly with the rosrun command,
but such ad hoc applications are not amenable to be statically analyzed.

https://github.com/git-afsantos/haros
http://wiki.ros.org


Fig. 2: Launch files.

Node Arguments can also be passed directly to nodes.
Another relevant feature is the Nodelet, a special kind of
node designed for high-performance intra-process commu-
nications. Topic Remappings can be used to modify the
communication between nodes, while Machine Def declares
different machines on which to deploy nodes. Other launch
files can also be Included. Values can be assigned to the
Parameter server, that can be later retrieved by the nodes
in runtime. Such bindings can be for individual parameters
(Param), through various mechanisms, or in bulk through a
YAML configuration file (Rosparam).

Local arguments can also be defined and freely referenced
throughout the launch file (Arg Def and Arg Ref). They can be
declared with a constant value (which can not be overridden),
or left Unbound, in which case a value can be defined as
default (Default Arg), and be overridden by a parent launch
file or from the command-line. Environment variables (Env
Ref) and paths to other packages (Package Ref) can also be
referenced. Finally, every tag can be conditionally executed
depending on a variable being true (If) or false (Unless).

C. ROS Primitives

The ROS C++ libraries provide many different overloads
for advertising and subscribing topics that allow for some
degree of customization. When using the publisher-subscriber
paradigm (PubSub, Fig. 3), nodes Advertise topics (which
may be Latching, saving previously sent messages, and
be notified regarding Subscriber Status) prior to Pub-
lishing messages. Other nodes may Subscribe to topics
(and optionally specify the transport layer with Transport
Hints) by providing a Callback procedure that takes the
shape of a Function, class Method or Functor object. For
these primitives, message queue sizes must also be provided
(Queue Size, Fig. 5), with size 0 denoting Infinite. Topic
Names must also be provided for all these primitives (Fig. 5).
Message types for these topics may belong to the ROS
core (defined in common_msgs and std_msgs) or be
context-specific (Non-std Type). Alternatively, client-server
communication is performed through Services (Fig. 3).
When nodes Advertise Services, the callback methods to be
invoked by Service Clients must be provided. Topic names
must also be defined for service primitives. Since we are

interested in determining the impact of the usage patterns of
these primitives in potential static analysis techniques, we
also collect whether they occur Nested in a control structure.

ROS provides primitives to control loop frequency
(Spinners, Fig. 4). Nodes may wish to work at a given
frequency and thus declare a Spin Rate, or have a finer
control over the exact amount of sleeping time by declaring
a Duration. Regarding the Parameter Server (Fig. 4),
primitives allow nodes to Get and Set the value of parameters
in runtime. Since one may attempt to get a value not
previously set, a default can be provided (Default Param).

The arguments for all these primitives (topics, queue
sizes and spinners) may be assigned values through different
mechanisms. We are interested in determining whether these
are just Literals or any Other kind (Arguments, Fig. 5).

IV. RESEARCH METHODOLOGY

This section describes the methodology followed in this
empirical study, including what kind of information we
collected and how the process was operationalized.

A. Research Questions

The main goal of this work is to detect common usage
patterns for ROS functionalities. Concretely, this study focuses
on answering the following questions.

RQ1 Which ROS communication primitives are actually
used, and how frequently?

RQ2 In which context are these primitives used and how
are their arguments defined?

RQ3 What kind of features are typically used in ROS
launch files to deploy applications?

RQ4 How is the ROS parameter server used?
RQ5 How frequently are custom message and service

types used in ROS communications?

From a code quality and analysis standpoint, the answers
to these questions dictate how "knowledgeable" a person or
tool must be. Knowing which primitives are most used can
help prioritize their support in tools. For static analysis, it is
also very relevant to know in which context such primitives
appear (namely, whether they are within control flow) and
how are they parameterized. Analyses scale to new heights
when arguments are anything other than literals, and more
so when ROS parameters are involved. How to predict in
static time the effect of a primitive that is invoked with a
value fetched from the server? Does a parameter hold the
value defined in a launch file, or has it been redefined in
runtime? Finally, the usage and definition of non-standard
message types limits the domain-specific knowledge tools
can leverage.

To answer these questions, for each analyzed application,
we collected which features of the feature models presented
in Section III were used. Besides feature usage, additional
information concerning concrete values for some of the
attributes was also collected, in order to better characterize
the applications (see Section IV-C).



Fig. 3: Communication primitives.

Fig. 4: Spinner & parameter server primitives.
Fig. 5: Argument configuration.

B. Repository Selection

Our perspective is for future static analysis tools to be
application-centric: a ROS developer would ideally provide
a launch file defining the package dependencies and source
code of the robotic system to be analyzed. Thus, in this
study we targeted complete ROS robotic systems for which
the source code is available online, rather than arbitrary,
potentially unrelated packages. We analyzed 13 such systems,
listed in Table I, ranging from domestic to field and industrial
applications, distributed over hundreds of packages. These
systems are highly modular, each providing several ROS
applications amounting to different launch configurations.

Some repositories were discarded, amounting to about 100
packages, because their contents were composed mostly by
Python scripts, configuration files, 3D models of robots, or
applications to enable Android compatibility. While these
packages could increase our coverage, they would have no
real influence on the results, due to the scarce amounts of
C++ code. In the end, we settled with 481 unique packages.
From these, 62 were meta-packages that only aggregated
other packages (not counted in Table I), and 175 effectively
contained C++ code. 207 packages contained launch files,
totaling 365 launchable ROS applications (i.e., top-level
launch files, as defined in Section III-B); as expected, the
package/application relationship is many-to-many. Table I
also discriminates how many of these components belong
to the ROS Indigo Igloo official distribution or the ROS
Industrial repositories.

C. Tool Overview

The analysis tool is composed of two families of com-
ponents, implemented as Python scripts, focusing on the
analysis of ROS launch files and ROS C++ source code,
respectively. The former distinguishes our tool from other
generic C++ source mining tools. The choice of Python as
the programming language was made out of convenience,
since it provides a number of libraries and tools helpful
for the intended analysis, such as Clang’s Python bindings

Name Packages Apps C++ LOC
Aubo 11 9 4 773
Fraunhofer IPA Care-O-Bot 97 49 783 120
Clearpath Grizzly 12 15 1 912
Kinova MICO 8 5 4 101
Yaskawa Motoman 10 16 8 376
Robotiq Adaptive Gripper 15 3 3 224
Robotnik AGVS 7 9 2 068
Robotnik GUARDIAN 13 19 5 430
Robotnik RB-1 17 23 502
Robotnik RBCAR 9 11 900
Robotnik SUMMIT 15 7 2 773
Shadow Dexterous Hand 61 41 37 978
Turtlebot 100 136 38 061
Indigo Igloo distribution 319 274 771 994
ROS-Industrial 39 37 27 068
Unique packages and apps 419 343 928 579

TABLE I: Summary of analyzed repositories.

to extract an Abstract Syntax Tree (AST) from C++ source
files, and the roslaunch tool, which provided a basis for
our launch file analyzer. Furthermore, it allowed integration
with the HAROS framework in the form of analysis plug-ins,
letting HAROS automate the fetching of files and packages.

To mine C++ source code we implemented a module that
traverses the AST and converts it to an internal, simplified,
model of the language that makes the handling of functions
and other language constructs more manageable. This struc-
ture is then passed to another module whose responsibility is
to traverse the structure and collect the desired statistics
regarding communication primitives (RQ1), spinners and
parameter server primitives (RQ4). This module registers
additional context information, such as the level of control
flow nesting of the occurrences and how the parameters are
defined (RQ2). Message and service types are also collected
and associated with these primitives and their arguments
(RQ5). The results are exported in CSV format, to ease
inspection and manipulation in a spreadsheet editor.

To analyze launch files (RQ3), we have essentially repli-
cated the functionalities of the widely used roslaunch
tool, with a twist. Instead of parsing the files and actually



launching ROS nodes, our tool stores and processes the
information. From this, we are able to gather various simple
statistics, including every used tag, as well as the usage
of variable references and conditionals. Since launch files
can have variability – a consequence of dynamic values and
allowing conditional expressions – the analysis includes an
interpretation and substitution of the dynamic values. As
a result, we are able to determine, e.g., which nodes and
topic remappings will be in effect during runtime, as well as
arguments left unbound. For those situations, we are also able
to identify which variables caused said alteration. Parameter
definitions provide insights regarding RQ4.

Our tool also joins the results from both analyses. For
each application (i.e., top-level launch file), we extract its
direct and transitive package dependencies. This allows us to
aggregate the C++ statistics by application. A final statistic,
for RQ5, regards the occurrence of message and service types
definition files.

D. Threats to Validity

The main threat is the representativity of the selected
packages. The ROS Indigo Igloo distribution features 2106
packages where a source code repository has been declared.
Of those, at least 907 have C++ source code (43%), at least
390 Python source code (18.5%), and at least 757 launch
files (36%). Our analysis sample features a total of 481
packages. C++ source code, Python source code and launch
files are present in 36.5%, 15% and 43% of these packages,
respectively. Moreover, 366 out of the 481 packages are
indexed in the official distribution. This means that, even
though our sample only covers about 15% of the distribution,
the ratios of C++, Python and launch files follow approximately
the same pattern, which gives us some confidence that it is
representative of typical ROS repositories and applications.
On the other hand, we acknowledge that nearly half of the
packages come from just two development groups, a fact that
may skew the results towards the practices they adopted.

V. RESULTS

This section presents the results of our study, along with an
elementary analysis from the perspective of potential static
analysis techniques. While many of these results may be
within expectations (for someone already familiar with ROS),
it is important to have the necessary data to back up any
assumptions. Furthermore, despite being impossible for a tool
to completely analyze an arbitrary ROS system (due to the
reasons mentioned before), these data give us an idea of how
many existing systems fit within a group where analysis is
feasible. Given the amount of collected data, we can only
present some relevant results. However, a repository featuring
the complete data set is freely available online8.

A. Package Overview

A first step to extract relevant information out of the
collected data is to look at the global (aggregated) values,
from a package by package analysis. The most immediate and

8https://github.com/git-afsantos/ros_data

Fig. 6: Usage of literals versus other values in ROS primitives.

clear result, addressing RQ1, is that the publisher-subscriber
paradigm is more widely used than the client-server paradigm,
with 613 occurrences of the former primitives against 135 of
the latter. The community guidelines also support this picture.

Looking at the difference between publishers versus
subscribers, or servers versus clients (still on RQ1), it is
clear that these systems advertise more information than they
consume. Our data show that the publisher to subscriber
ratio is 62%/38%, while for client-server communications we
registered 90%/10% in favor of the servers. This discrepancy
might arise from the fact that robotic systems are typically
designed in pyramidal hierarchical approaches, and some of
the analyzed repositories are meant to be generic building
blocks for more complex robotic systems.

Despite the various primitive overloads, our data show that
some of these features are seldom used. We registered 88%
of all callback functions as being member functions of a
C++ class, as opposed to other variants, and no subscriber
specifies the preferred transport protocol (defaults to TCP).
Only 5% of publishers latch messages, and a mere 2% are
notified when new subscribers join.

Moving to RQ2, it is evident from our data that over half
of all values passed to primitives are declared as literals on
the spot. These values reveal no big surprises, and fortunately
make analysis easier. Most examples in tutorials and other
resources use literals to define values, and the community
tends to follow this pattern. Fig. 6 shows the usage ratio of
literals versus other methods. Additionally, we found that
primitives do not occur within loops or conditionals for the
majority of registered occurrences.

ROS discourages the use of global topic names and infinite
queue sizes and, as expected, they rarely occur. Perhaps the
most unexpected among the inspected values is the frequency
of publisher-subscriber queues of size 1 (54% of all literals).
Singleton queues should only be used when there is no interest
in processing all messages, but rather only the most recent
ones – ROS discards old messages when a queue is full.

Regarding the exchanged messages, and to answer RQ5,
only 15% of the analyzed packages define custom message
types. However, 32% of all publishers and subscribers make
use of such messages, making this kind of analysis a feature
of significance.

The last note of this global overview, in part answering
RQ4, regards the ROS parameter server. Its documentation
states that it is not designed for high performance, making it

https://github.com/git-afsantos/ros_data


better suited for shared storage of static values, or values that
rarely need to be changed. The data support this, given that
only 38 parameters are set during runtime, compared to 705
readings. Out of these readings, 83% declare a default value.

B. Launch File Overview

Launch files feature a number of things worth considering
for RQ3. In our sample we registered 365 launch files
deploying a total of 1418 nodes. Out of these, there are
only 275 unique nodes (19.4%), confirming that, indeed,
many launch files are just variations of specific applications
and scenarios. Nodelets are seldom used, amounting to 119
out of the 1418 nodes. Other node-related features are also
uncommon. Only 46 nodes are marked as required, and a
mere 16 are launched on specific machines (defaulting to
localhost). The only relatively common feature, affecting
39.5% of all nodes, is to make a node be able to respawn.

Regarding the parameter server, and concerning RQ4 as
well, on average, each launch file defines more than 10
parameters. And, while parameters, by themselves, would
not be too challenging to inspect, problems start to arise
when their values are defined not by static values, but from
configuration files or by capturing the output of an arbitrary
shell command – both allowed by ROS. Out of 3735 parameter
definitions, 26% come from configuration files, and 6.4%
come from shell commands.

Other aspects worth mentioning about RQ3 are the number
of remappings (1009), the number of environment variables
read (652), and the number of conditionals (1179). On
average, each launch file remaps between two and three
names (topics or parameters), reads about two environment
variables, and declares over three entities conditionally. These
numbers may not be alarming, but they require additional
analysis steps. For remappings, a tool must be able to resolve
and correctly redirect ROS names and namespaces. For
environment variables, user input is required. Finally, for
conditionals, a tool has to be able to resolve arbitrary values,
which may come, e.g., from environment variables.

C. Combined Feature Usage

While feature-wise statistics are interesting, from a static
analysis perspective it is more relevant to consider the
combined usage of different features, namely, what would
be the expected coverage of a static analysis tool if only a
given set of features is supported.

Two prominent and problematic usages of primitives,
concerning RQ2, are conditional occurrences and non-literal
arguments, especially for arguments served from ROS pa-
rameters. Our study shows that 69% of the 175 packages
containing C++ code and 24% of the applications do not use
these features at all, and thus could be handled by a relatively
straightforward static analyser. The coverage discrepancy is
due to the fact that applications, being composed by many
packages, typically end up using at least one package that
relies on one of these features.

Unfortunately, our study shows that the gains of supporting
just one of these features, that is, either non-literal arguments

or nested occurrences, would hardly be noticeable: the former
would improve coverage to 80%/30%, and the latter to
71%/31%. Moreover, the parameter server is abundantly used
in packages (89%), which means that most likely its effect
had to be considered also. Essentially this means that in
order to achieve a high coverage of applications it would be
necessary to consider a comprehensive set of ROS features.

VI. CONCLUSION

This paper presents some preliminary results on the usage
patterns of ROS primitives, thus shedding some light on how
ROS software is being developed and used in practice. This
understanding could prove useful to the community in various
ways. For instance, it could lead to updates in the current
programming style guidelines and tutorials in order to clarify
less used (or misused) features. It can also help future (static
analysis) tool developers to identify where to best invest their
effort, namely which features to support in order to maximize
their coverage.

Regarding the latter, our main conclusion is that a straight-
forward static analysis tool for ROS would be able to address a
considerable amount of individual packages, but unfortunately
a relatively small amount of applications. To increase this
coverage, sophisticated static analysis techniques will need
to be developed. Another option would be for the ROS
community to issue more strict ROS coding guides, namely
discouraging the usage of the problematic usage patterns.

In the near future we intend to perform more sophisticated
analysis over the collected data, in order to detect other
interesting usage patterns and correlations between them.
Adding more repositories and applications to our database, to
validate the results found so far, and thus increase the online
data set, is a priority as well. Finally, we are aware that our
analysis should extend to the remaining ROS primitives, such
as Actions and the Dynamic Reconfigure service. We expect
their inclusion to be relatively straightforward.

REFERENCES

[1] A. Santos, A. Cunha, N. Macedo, and C. Lourenço, “A framework for
quality assessment of ROS repositories,” in IROS. IEEE, 2016, pp.
4491–4496.

[2] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru,
M. Wise, L. Mösenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the PR2,” in ICRA.
IEEE, 2011, pp. 5568–5575.

[3] A. Cortesi, P. Ferrara, and N. Chaki, “Static analysis techniques for
robotics software verification,” in ISR. IEEE, 2013, pp. 1–6.

[4] P. Trojanek and K. Eder, “Verification and testing of mobile robot
navigation algorithms: A case study in SPARK,” in IROS. IEEE, 2014,
pp. 1489–1494.

[5] J. Ingibergsson, U. Schultz, and M. Kuhrmann, “On the use of safety
certification practices in autonomous field robot software development: A
systematic mapping study,” in PROFES, ser. LNCS, vol. 9459. Springer,
2015, pp. 335–352.

[6] S. Khatoon, G. Li, and A. Mahmood, “Comparison and evaluation of
source code mining tools and techniques: A qualitative approach,” Intell.
Data Anal., vol. 17, no. 3, pp. 459–484, 2013.

[7] H. H. Kagdi, M. L. Collard, and J. I. Maletic, “Comparing approaches
to mining source code for call-usage patterns,” in MSR. IEEE, 2007,
p. 20.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, 1990.


	Introduction
	Related Work
	Robot Operating System
	Feature Diagrams
	ROS Applications
	ROS Primitives

	Research Methodology
	Research Questions
	Repository Selection
	Tool Overview
	Threats to Validity

	Results
	Package Overview
	Launch File Overview
	Combined Feature Usage

	Conclusion
	References

