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Abstract. Service-oriented architectures aim at the assemblance of ser-
vice compositions out of independent, small services. In a model-based
design, such service compositions first of all exist as formal models, de-
scribing the employed services with their interfaces plus their assem-
blance. Such formal models allow for an early analysis with respect to
user requirements. While a large number of such analysis methods exist
today, this is less so for techniques localizing faults in erroneous service
compositions.

In this paper, we extend an existing technique for fault localization in
software to the model-based domain. The approach employs maximum
satisfiability solving (MAX-SAT) of trace formulae encoding faulty pro-
gram runs. Contrary to software, we can, however, not use testing as a
way of determining such faulty runs, but instead employ SMT solving.
Moreover, due to the usage of undefined function symbols encoding con-
cepts of domain ontologies, the trace formula also needs an encoding of
the logical structure producing the fault. We furthermore show how to
use weights on soft constraints in the MAX-SAT instance to steer the
solver to particular types of faults.

1 Introduction

Service-oriented architectures (SOA) aim at the configuration of service compo-
sitions out of existing, independently deployable services. With micro services,
this fundamental principle has recently found new impetus. In a formal model-
based design, the employed services are equipped with well-defined interface
descriptions, and the composition can hence be checked with respect to user
requirements before assemblance. Many such analysis methods for service com-
positions exist today (e.g. [10,20,5,9,21,17]), using a variety of formalisms for
modelling.

While formal analysis techniques are numerous, this is less so for techniques
localizing the cause of faults in erroneous compositions. Analysis techniques
building on model checking return counter examples, but they do not give hints
on whether to change the way of composition or to change services, and in case
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of the latter which service to change. For software, this is a more frequently stud-
ied question. Techniques like delta debugging [25,7], slicing [24,1] or statistical
methods [16] all aim at localizing the cause of faults in programs. Performance
blame analysis [6] targets the identification of software components causing long
runtimes.

In [15], Krämer and Wehrheim studied the applicability of software error
localization techniques to service compositions. It turned out that it is in general
difficult to transfer such techniques to a model-based setting: Software fault
localization typically requires the executability of the entity under examination,
i.e., requires code or requires entities with some accompanied interpretation,
compilation or simulation tool as to execute them. Programs are being run on
one or – in case of statistical methods – even a large number of test cases, and
the outcome of these tests is used to determine potential error locations. Models
of service compositions, however, typically cannot be executed as no concrete
service implementations might exist yet, and modelling languages often do not
come with interpreters providing some form of execution.

A notable exception to the requirement of executability in fault localization
is the work of Jose et al. [13]. While they also study programs and make use of
testing, they in addition employ bounded model checking for test input genera-
tion. This is similar to the SMT-based verification technique which we already
employ for service compositions [23]. The basic principle of Jose et al. is the
encoding of faulty program runs as trace formulae, and the localization of likely
fault causes (in the faulty program trace) via maximum satisfiability solving
(MAX-SAT).

In this paper, we transfer this concept to the model-based setting. The main
challenge for this is directly the fact that we work on the level of models: in-
stead of (only) using the typical programming language types, service interfaces
are formulated via the concepts of domain ontologies, and service assemblance
uses predicates and rules of these ontologies. Semantically, such concepts and
predicates have no fixed interpretation; only ontology rules sometimes slightly
restrict their meaning. A faulty test input (as required by Jose et al.) can thus
not simply be an input variable of the program with its value. A trace formula
encoding a faulty run cannot simply accumulate the concrete statements in the
run, but needs to incorporate service calls of which just the interfaces are known.
Technically, concepts and predicates of ontologies will in our approach be en-
coded as undefined function symbols, and a test input is then a complete logical
structure fixing an interpretation of these symbols together with a valuation of
variables in this logical structure. On this basis, we construct (1) logical formulae
encoding the query for correctness of the whole service composition based on a
given domain ontology and (2) trace formulae encoding faulty runs in case of
errors based on the logical structure used for the fault. Satisfiability of these for-
mulae are solved using the SMT solver Z3 [18]. Out of the trace formula, we can
derive fault sets via maximum satisfiability solving, i.e., locations in the service
composition which – when changed – correct errors. We furthermore allow to
prioritize fault types, e.g., when we prefer to see faults in service calls over faults



in the structure of the service composition. To this end, we impose weights on
constraints in the MAX-SAT instance. Finally, we suggest a technique for find-
ing more likely faults by identifying service composition entities which are the
cause of faults in several cases.

The technique we propose here identifies single entities in service composi-
tions as faults. It thus complements the techniques introduced by Krämer and
Wehrheim [14] which aim at a repair of faulty service compositions via the re-
placement of large parts of the composition.

The paper is structured as follows. In the next section, we introduce some
necessary background in logic and introduce the model of service compositions
we employ in this paper. Section 3 describes correctness checking for service
composition which is the basis for identifying faulty service compositions. The
following section then introduces our technique for fault localization, for prior-
itization of fault types and the computation of likely faults. The last section
concludes. Our description of the employed techniques is almost always given in
terms of Z3 syntax, i.e., we give logical formulae in the SMT-Lib format [4].

2 Background

We start with describing the necessary background in logics, services and service
composition. For the latter, we follow the definitions of Walther and Wehrheim [23].

A service composition describes the assemblance of services from a specific
domain (e.g., tourism or health domain). The concepts occurring in such a do-
main and their interrelations are typically fixed in an ontology. Ontologies can
be given in standardized languages, like for instance OWL [2]. Here, we simply
fix the ingredients of ontologies1.

Definition 1. A rule-enhanced ontology K = (T ,P,F , R) consists of a finite
set of type (or concept) symbols T together with constants of these types, a finite
set of predicate symbols P, where every p ∈ P denotes an n-ary relation on types,
a finite set of function symbols F and a set R of rules which are predicate logic
formulae over some variables Var and the constants using P and F . We use
ΦK(Var) to describe the set of such formulae.

Here, we implicitly assume the types to contain integers and booleans with the
usual constants. Rules, which are not part of every ontology language, are used
to describe relationships between concepts or properties of predicates (e.g., com-
mutativity). An example of a rule language for ontologies can for instance be
found in [12].

The running example of our paper operates in the tourism domain, containing
types like Restaurant ,Rating and Location and a constantR0 of type Restaurant .

1 For simplicity, subconcept relations of ontologies are not considered here.



On these, the ontology contains two predicates and two functions:

isHigh : Rating → bool

isVegan : Restaurant → bool

ratOf : Restaurant → Rating

locOf : Restaurant → Location

For simplicity, the knowledge base contains just two rules specifying properties
of the constant R0: isHigh(ratOf (R0 )) and isVegan(R0).

With its types, an ontology defines – in a logical sense – a large number of
undefined function symbols. It remains undefined what a Restaurant really is; it
is just a name. The interpretation of these symbols and the universes of the types
are not defined. A logical structure (or logical model) fixes this interpretation.

Definition 2. Let K = (T ,P,F , R) be an ontology. A logical structure over K,
SK = (U , I), consists of

– U =
⋃
T∈T UT the universe of values,

– I an interpretation of the predicate and function symbols, i.e., for every
p ∈ P of type T1× . . .×Tn → bool and every f ∈ F of type T1× . . .×Tn → T
we have a predicate

I(p) : UT1
× . . .× UTn

→ Ubool

and a function
I(f) : UT1 × . . .× UTn → UT ,

respectively, and
– we require the logical structure to satisfy all rules of the ontology.

Ontologies provide the concepts which can be used to describe the functionality
of services. A service signature (Svc, Tin, Tout) over an ontology K first of all
specifies the name Svc of the service as well as the type of its input Tin ∈ T
and the type of its output Tout ∈ T . We restrict ourselves to services with
single inputs and outputs. A service description in addition adds semantical
information to this interface.

Definition 3. A service description (sig , I, O, preSvc , postSvc) of a service named
Svc over an ontology K consists of a service signature sig = (Svc, Tin, Tout),
input variable i and output variable o, a precondition preSvc over the input vari-
able and a postcondition postSvc over input and output variable, both elements
of ΦK({i, o}).

The interface of a service thus states what the service requires to hold true upon
calling it (preconditions) and what it guarantees when it has finished (post-
condition). Services can be assembled by means of a workflow language. While
there are different languages in use (e.g. WS-BPEL [19]), we simply employ a
programming language like notation here.



Name : RestaurantChecker
Inputs : in with type(in) = Restaurant
Outputs : out with type(out) = Restaurant ,

loc with type(loc) = Location
Services : GetRating : Restaurant → Rating ,

GetLocation : Restaurant → Location
Precondition : true
Postcondition: isHigh(ratOf (out)) ∧ isVegan(out)

1 if isVegan(in) then
2 r := GetRating(in);
3 if ¬isHigh(r) then
4 out := in;
5 else
6 out := R0 ;
7 fi

8 else
9 out := R0 ;

10 fi
11 loc := GetLocation(out);

Fig. 1. Service composition RestaurantChecker

Definition 4. Let K = (T ,P,F , R) be an ontology and Var a set of variables
typed over T . The syntax of a workflow W over K is given by the following rules:

W ::= Skip | u := t |W1;W2 | u := Svc(v)

| if B then W1 else W2 fi | while B do W od

with variables u, v ∈ Var, expression t of type type(u), B ∈ ΦK(Var), and Svc
a service name.

Herein, we allow for standard expressions on integers and booleans. A complete
service composition then consists of such a workflow together with a name, its
inputs and outputs, a list of the employed services and their pre- and postcon-
dition.

Figure 1 shows our running example of a service composition. In this, we use
two services: GetRating with precondition true and postcondition r = ratOf (in)
and GetLocation with precondition true and postcondition loc = locOf (out) (al-
ready instantiated to the variables used in the workflow).

A service composition is furthermore equipped with an overall pre- and post-
condition. These pre- and postconditions constitute requirements on the service
composition: whenever the whole composition is started with an input satisfying
the precondition, it should terminate and at the end satisfy the postcondition.
Our example service composition is not correct in that sense: whenever the in-
put to the composition is a vegan restaurant (satisfying isVegan(in)) with a low
rating (satisfying ¬isHigh(r) for r being the rating of in), the service composi-



tion will output the value of in which does not satisfy the (first clause of the)
postcondition.

For defining this in a more formal way, we furthermore need the definition
of a state: given a logical structure S, a state in S is a mapping from variables
to values of the universe, σ : Var → U . In [23], a semantics for workflows is
given which is parameterised in a logical structure: for a workflow W , JW KS
is a mapping from a set of states in S to sets of states. We will not repeat the
definition here, instead we concentrate on verification and fault localization. The
semantics of service calls of Walther and Wehrheim [23] fixes (a) a service to be
executable only when the precondition holds in the current state, otherwise it
blocks, and (b) the after-state to satisfy the postcondition. As the postcondition
is just a logical expression, there may be more than one after-state satisfying
the postcondition. A service call thus introduces nondeterminism. The property
(a) will play no role in the following; for a technique for computing precondition
violations on service calls see [14].

Definition 5. A service composition with workflow W is correct with respect
to pre- and postconditions pre and post if the following holds for all logical
structures S for K:

JW KS(JpreKS) ⊆ JpostKS ,

where for a formula p ∈ ΦK without free variables, we let JpKS denote the set of
states in S satisfying p.

This is a standard partial correctness2 definition: whenever we start the service
composition in a state satisfying the precondition, the state reached when the
service composition is completed should satisfy the postcondition. The task of
fault localization now requires finding the locations in the workflow which are
the cause of incorrectness.

3 Correctness checking

In our setting, fault localization directly builds on the results of correctness
checking. Therefore, we next present our technique for checking correctness of
service compositions. In its basic approach, we follow Walther and Wehrheim [22]
here, however, with some adaptation to fit the approach to the later fault local-
ization. The main adaptation concerns naming: while Walther and Wehrheim [22]
build one formula for the whole service composition, we build separate formu-
lae for the parts of the composition (i.e. one formula for a condition in an if
statement, one for a service call and so on). The formulae are assigned different
names, and we can later use these names for the hard and soft constraints in the
MAX-SAT instance.

2 Total correctness would involve defining termination functions for loops.



1 if isVegan(in) then
2 r := GetRating(in);
3 if ¬isHigh(r) then
4 out1 := in;
5 else
6 out2 := R0 ;
7 end
8 out3 := φ(out1, out2)

9 else
10 out4 := R0 ;
11 end
12 out := φ(out3, out4);
13 loc := GetLocation(out);

Fig. 2. Service composition RestaurantChecker in SSA-form

3.1 Brief introduction to Z3 syntax

We start with a very brief description of the Z3 syntax which we employ.

Declarations We use three types of declarations: (1) Declaring new sorts (types),
written as (declare-sort <name>), (2) declaring function symbols, written
as (declare-fun <name> <signature>), and (3) declaring constants, writ-
ten as (declare-const <name> <sort>). The declared sorts, functions and
constants can from then on be used. Note that we do not fix the interpreta-
tion of these new concepts.

Definitions Definitions, written as (define-fun <name> <sig> <def>), allow
to give an interpretation to functions.

Assertions Assertions fix the facts that we would like to hold true. When asked
for satisfiability, Z3 checks whether all assertions jointly can be made true.
This involves trying to find an interpretation for the unknown (but declared
and used) concepts.

Logic Z3 uses standard predicate logic for writing logical expressions (e.g.,
quantifiers, boolean connectives). The connective ite stands for a condi-
tional expression (if-then-else).

3.2 Encoding the service composition

Checking the correctness of a service composition proceeds in two steps: in a
first step, we bring the service composition into static-single-assignment (SSA)
form. Second, we translate the workflow, its precondition, the ontology and the
negation of the postcondition into a logical formula which is then checked for
satisfiability. We thereby check whether it is possible to start in a state satisfying
the precondition but end in a state not satisfying the postcondition.

SSA forms require a variable to be assigned to at most once in the program
text (for a technique for computing SSA forms see [8]). Our service composition



Statement Z3 code

k: Skip –

k: u := t (define-fun ak () Bool (= u t))

(assert ak)

k: u := Svc(v) (define-fun ak () Bool postSvc(u,v))

(assert ak)

k: if B then W1 else W2 fi; (declare-const condk Bool)

u := φ(v1, v2) (define-fun ck () Bool (= condk B))

(define-fun branchk () Bool (= u (ite condk v1 v2)))

(assert ck)

(assert branchk)

k: inv : while B do W od; (declare-const condk Bool)

u := φ(v1, v2) (define-fun ck () Bool (= condk B))

(define-fun loopk () Bool (= u (ite condk v1 v2)))

(assert ck)

(assert loopk)

(define-fun invk () Bool (and inv(u) (not B(u))))

(assert invk)

Table 1. Translation of workflow statements

is not yet in SSA form, as it for instance has three assignments to out. Figure
2 shows its SSA form. At merges of control flow (if, while) so called φ-nodes
(assignments) are inserted in order to unite variables assigned to in different
branches.

Given such an SSA-form, the translation next proceeds as follows. Table 1
shows the translation of the workflow (directly given in Z3 syntax, the solver
we use). Every statement of the workflow is translated to a function declaration
and this declaration is asserted to hold true. The thereby introduced names for
statements will later prove helpful for fault localization. For assignments, we
assert the variable to be equal to the assigned expression. For service calls, we
assert the postcondition of the service to be true (as said before, precondition
violations are not checked here). In the definition, the term postSvc(u,v)) refers
to the logical formula as specified for the postcondition in the service description.

For if statements, we get two function declarations: one giving a name to
the condition and the other setting variables to the correct version according
to the condition and the φ-nodes. In the table, we assume every if and while
statement to be followed by just one φ-node. The translation can, however,
easily be generalized to more than one such node. The φ-nodes are translated to
assertions equating the assigned variable to one of the parameters, based on the
condition in the if and while statement, respectively. For loops, we assume a loop
invariant to be given (see [23]). The invariant together with the negation of the
loop condition acts like a postcondition of the whole loop block. The invariant is
checked to actually be an invariant in a separate step. The assertion for a loop
thus states that the invariant and the negation of the loop condition holds after



Entity Z3 code

type T ∈ T (declare-sort T)

constant c : T (declare-const c T)

predicate p : T1 × . . .× Tn → bool ∈ P (declare-fun p (T1 ... Tn) Bool)

function f : T1 × . . .× Tn → T ∈ F (declare-fun f (T1 ... Tn) T)

rule r ∈ R (assert r)

Table 2. Translation of ontology K = (T ,P,F , R)

the loop, where the variables in both formulae have to be instantiated to the
current variable version as given by the φ-node after the loop.

In addition, we need a translation of the ontology. This requires declaring all
types, constants, predicates and functions and asserting the rules to hold true.
Table 2 gives this translation.

In summary, this translation gives us a formula ϕSC for the workflow, a for-
mula ϕK for the ontology and two formulae pre and post for the translation
of the service composition’s pre- and postcondition. The translation for service
composition RestaurantChecker is given in the appendix. The solver is now
queried about the satisfiability of

pre ∧ ϕSC ∧ ϕK ∧ ¬post (1)

(plus about the satisfiability of inv ∧ ϕW ∧ ¬inv′ for all loops with invariant
inv, loop body W and SSA form tagging variables after the loop with primes).
In case of our example service composition, the answer to (1) is “sat”, i.e.,
it is possible that the composition’s postcondition is not fulfilled at the end.
Together with this answer, the solver returns a logical structure (which we call
fault structure), i.e., universes for all sorts (types) and interpretations of the
undefined predicate and function symbols, plus a state σ mapping all variables
in the service composition to values of the universe. This state can be seen as the
final state of the service composition, i.e., the state in which the negation of the
postcondition is satisfied. Since the service composition is in SSA-form, the state
of a variable is, however, never changed anyway (loops are summarized in the
loop invariant). For our running example, Figure 3 shows this information; the
appendix contains it in the form returned by Z3. The fault structure constitutes
our input to fault localization.

4 Fault localization

Fault localization now proceeds by taking the “faulty” input to the service com-
position, i.e., the universe, interpretation and the state of the input to the service
composition, together with the service composition and ontology, and solving a
partial maximum satisfiability problem. Essentially, we are determining which



URestaurant = {Res!val!0, Res!val!1}
URating = {Rat!val!0, Rat!val!1}
ULocation = {Loc!val!0}

isVegan(Res!val !0 ) = true

isVegan(Res!val !1 ) = true

isHigh(Rat !val !0 ) = true

isHigh(Rat !val !1 ) = false

ratOf (Res!val !0 ) = Rat!val!0

ratOf (Res!val !1 ) = Rat!val!1

σ(in) = Res!val!1

Fig. 3. “Fault structure” for example service composition

parts of the service composition plus non-negated postcondition can simulta-
neously be satisfied on the faulty input. The complementary part contains the
potential faults.

4.1 Computing fault sets

A partial maximum satifiability problem pMAX-SAT takes as input a predi-
cate logic formula in conjunctive normal form. In this, some clauses are marked
hard (definitely need to be satisfied) and others are marked as soft (need not
necessarily be satisfied). The pMAX-SAT solver determines a maximum num-
ber of clauses which satisfies these constraints. In addition, Z3 – when used as
pMAX-SAT solver [11] – allows to give weights to soft clauses. A weight sets
a penalty for not making a clause satisfied, and Z3 determines solutions with
minimal penalties. We will make use of this for prioritizing certain faults over
others.

For fault localization, we build a trace formula encoding the faulty “run”
of the service composition. In our model-based setting, the trace formula needs
to contain the whole (logical) fault structure S and the state σ of the fault.
Table 3 shows the translation of this to Z3 input. For the universe, we declare
all values of a type and state all variables of that type to just take values of the
universe. For predicates and functions, we enumerate all cases of argument and
result values. Out of the state, we just fix the value of the input to the service
composition. This translation gives us two more formulae: ϕS and ϕσ. These
two formulae describe a structure and state on which the postcondition cannot
be satisfied.

Proposition 1. Let SC be a service composition with pre- and postcondition
pre and post, respectively, and K an ontology. Let pre ∧ ϕSC ∧ ϕK ∧ ¬post be
satisfiable and (S, σ) be the logical structure and state making the formula true.



Entity Z3 code

universe (declare-fun v1 T) ... (declare-fun vn T)

UT = {v1, . . . , vn} (assert (forall ((x T)) (or (= x v1) ... (= x vn))))

predicate
I(p)(v1, . . . , vn) = true (assert (p v1 ... vn))

I(p)(v1, . . . , vn) = false (assert (not (p v1 ... vn)))

function
I(f)(v1, . . . , vn) = v (assert (= v (f v1 ... vn)))

input i, σ(i) = v (assert (= i v))

Table 3. Translation of logical structure S and state σ

Then
pre ∧ ϕSC ∧ ϕK ∧ post ∧ ϕS ∧ ϕσ

is unsatisfiable.

For fault localization, we next ask for partial maximum satisfiability, making all
assertions hard except for those of the service composition (the fault is in the
service composition). The query thus is (underlining all hard constraints)

pre ∧ ϕSC ∧ ϕK ∧ post ∧ ϕS ∧ ϕσ

For every clause in this formula, the solver can tell us whether the clause has
or has not been made true. Let F = {c1, . . . , cn} be the set of (soft) clauses not
made true. F constitutes (one) fault set. By changing all assertions (and hence
statements) in F , the service composition can be corrected. Similarly to Jose et
al. [13], we can also find different fault sets (for the same fault) by adding a new
hard constraint c1 ∨ . . . ∨ cn to our formula.

In case of our example service composition, the solver is always returning a
singleton fault set. The fault sets we get by repeatedly starting the solver and
adding new hard clauses are F1 = {branch3} (the if statement in line 3 itself),
F2 = {cond3} (condition of if statement in line 3), F3 = {cond1} (condition
of if statement in line 1), F4 = {a4} (assignment in line 4) and F5 = {a2}
(assignment in line 2). A correction of any one of these can make the service
composition correct. The easiest way for correction is to change the condition in
line 3 to isHigh(r).

4.2 Prioritizing fault types

The MAX-SAT solver typically returns the fault sets in any order, not giving
preferences to any soft clause. If we are interested in certain types of faults and
prefer to see these first, we need to assign weights to soft clauses. Z3 then solves
an optimization problem: it tries to find a maximum satisfiability solution which
minimizes penalties. A weight therein incurs a penality on not making the clause
true (with penalty 1 being standard).



Name : RestaurantChecker2
Inputs : in with type(in) = Restaurant
Outputs : out with type(out) = Restaurant
Precondition : true
Postcondition: isVegan(out) ∧ (isCheap(out) ∨ isHAcc(out))

1 if ¬(isVegan(in)) then
2 if isCheap(in) then
3 out := in;
4 fi
5 if isHAcc(in) then
6 out := in;
7 fi

8 else
9 out := R0 ;

10 fi

Fig. 4. Service composition RestaurantChecker2

If our interest is thus in localizing faults in conditions or service calls first
and delaying more difficult faults in if- or while-statements to later phases, we
could tag the corresponding clauses with higher penalties. For our translation
we could replace the assertions for if-statements and loops by

(assert-soft branchk :weight 2)

(assert-soft invk :weight 3)

This gives high penalities to if- and even higher to while-statements. The solver
would then first return fault sets with assignments, service calls and conditions.
In our case, the fault set F1 would then be returned as the last set.

4.3 Finding faults occuring multiple times

The previous technique helps to prioritize certain fault types over others. For
narrowing down the number of faults to look at, we can also determine the
statements occuring as faults in more than one “faulty run”, i.e., in our case in
more than one logical structure S making formula (1) true. For this, consider
the example service composition in Figure 4.

The service composition RestaurantChecker2 is supposed to check whe-
ther the restaurant of input parameter in is vegan plus either cheap (isCheap)
or accessible to handicapped persons (isHAcc). We assume the knowledge base
to specify isCheap(R0 ). Again, the service composition is not correct. Fault
localization gives us – now phrased in terms of the service composition, not its
translation to SMT code – the two fault sets F 1

1 = {¬(isVegan(in))} and F 1
2 =

{isHAcc(in)}, both based on the same logical structure and state invalidating
the postcondition. The state σ with its valuation of the input in describes a
“test run” of the service composition passing through lines 1, 2 and 3. We call



F1 = F 1
1 ∪F 1

2 a test-specific fault set. The idea is now to generate different “test
inputs” and compute their fault sets.

To this end, we add an assertion forcing the current value of the input to take
a different interpretation via predicate complementation. Let I be the interpre-
tation and σ the state returned by query (1). Let i be the input to the service
composition and T its type. We now choose a unary predicate p : T → Bool
from our ontology. If I(p)(σ(i)) is true, we add an assertion ¬(p(i), otherwise
p(i). For our example, we add

(assert (not (isHAcc in)))

If formula (1) together with this assertion is still satisfiable, we repeat the fault
localization procedure thereby getting new fault sets. If the formula is not satis-
fiable, we choose a different predicate to be complemented and retry. This way,
we get several test-specific fault sets F1,F2, . . .. The intersection of these test-
specific fault sets gives us faults which – when corrected – can correct more than
one faulty test input at the same time.

In our case, we get a second test-specific fault set

F2 = {¬(isVegan(in)), isCheap(in)} .

Intersection with F1 gives us ¬(isVegan(in)), which is where the correction
should be applied.

In general, predicates to be complemented should not be arbitrarily chosen.
Predicates occuring in boolean conditions of the service composition are to be
preferred over others (as they steer the execution to different branches). If none
of the unary predicates bring us new fault sets, arbitrary n-ary predicates can
be considered as well.

5 Conclusion

In this paper, we have introduced a fault localization technique for service com-
positions. It builds on an existing method for software fault localization via
maximum satisfiability solving. Due to our setting of model-based development,
our approach needs to account for several additional aspects: (1) In contrast
to software, models are not executable and hence faulty test inputs cannot be
derived via testing but only via SMT solving; (2) concepts of ontologies are
undefined function symbols in a logical sense and hence have no fixed interpre-
tation; (3) faulty inputs alone are not sufficient for fault localization when no
interpretation is known. In addition to plain fault localization, we furthermore
provide a method for prioritizing fault types and for finding faults occurring in
multiple runs.

This fault localization technique is currently implemented within the mod-
elling and verification tool SeSAME [3]. First experiments show that fault local-
ization can be done within seconds and often just proposes singleton faults which
can easily be corrected. However, more experiments are needed to see whether
this observation can be generalized to more cases.
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A Z3 code

Encoding of the correctness check for RestaurantChecker:

; types of the ontology

(declare-sort Res)

(declare-sort Loc)

(declare-sort Rat)

; constants and functions of the ontology

(declare-const R0 Res)

(declare-fun ratOf (Res) Rat)

(declare-fun isHigh (Rat) Bool)

(declare-fun isVegan (Res) Bool)

(declare-fun locOf (Res) Loc)

; variables used in SSA form of service composition

(declare-const r Rat)

(declare-const in Res)

(declare-const out Res)

(declare-const out1 Res)

(declare-const out2 Res)

(declare-const out3 Res)

(declare-const out4 Res)

(declare-const loc Loc)

; variables used for conditions in if’s

(declare-const cond1 Bool)

(declare-const cond2 Bool)

; two rules of the knowledge base: restaurant R0 has a high rating and is vegan

(assert (isHigh (ratOf R0)))

(assert (isVegan R0))

; the service composition

(define-fun c1 () Bool (= cond1 (isVegan in)))

(define-fun c2 () Bool (= cond2 (not (isHigh r))))

(assert c1)

(assert c2)

(define-fun a1 () Bool (= r (ratOf in)))

(define-fun a2 () Bool (= out1 in))

(define-fun a3 () Bool (= out2 R0))

(define-fun a4 () Bool) (= out4 R0))

(define-fun a5 () Bool (= loc (locOf out)))

(assert a1) (assert a2) (assert a3) (assert a4) (assert a5)

(define-fun branch2 () Bool (= out3 (ite cond2 out1 out2)))

(define-fun branch1 () Bool (= out (ite cond1 out3 out4)))

(assert branch1) (assert branch2)

; the negated postcondition

(assert (or (not (isHigh (ratOf out))) (not (isVegan out))))

; checking for satisfiability of all asserts



(check-sat)

; getting an interpretation if it exists

(get-model)

Fault structure returned as model of above query:

;; universe for Res:

;; Res!val!1 Res!val!0

;; -----------

;; definitions for universe elements:

(declare-fun Res!val!1 () Res)

(declare-fun Res!val!0 () Res)

;; cardinality constraint:

(forall ((x Res)) (or (= x Res!val!1) (= x Res!val!0)))

;; -----------

;; universe for Rat:

;; Rat!val!1 Rat!val!0

;; -----------

;; definitions for universe elements:

(declare-fun Rat!val!1 () Rat)

(declare-fun Rat!val!0 () Rat)

;; cardinality constraint:

(forall ((x Rat)) (or (= x Rat!val!1) (= x Rat!val!0)))

;; -----------

;; universe for Loc:

;; Loc!val!0

;; -----------

;; definitions for universe elements:

(declare-fun Loc!val!0 () Loc)

;; cardinality constraint:

(forall ((x Loc)) (= x Loc!val!0))

;; -----------

(define-fun R0 () Res Res!val!0)

(define-fun out1 () Res Res!val!1)

(define-fun out2 () Res Res!val!0)

(define-fun out () Res Res!val!1)

(define-fun out4 () Res Res!val!0)

(define-fun in () Res Res!val!1)

(define-fun cond2 () Bool true)

(define-fun cond1 () Bool true)

(define-fun out3 () Res Res!val!1)

(define-fun loc () Loc Loc!val!0)

(define-fun r () Rat Rat!val!1)

(define-fun isHigh ((x!0 Rat)) Bool

(ite (= x!0 Rat!val!0) true (ite (= x!0 Rat!val!1) false true)))

(define-fun ratOf ((x!0 Res)) Rat



(ite (= x!0 Res!val!0) Rat!val!0

(ite (= x!0 Res!val!1) Rat!val!1 Rat!val!0)))

(define-fun isVegan ((x!0 Res)) Bool

(ite (= x!0 Res!val!0) true (ite (= x!0 Res!val!1) true true)))

(define-fun locOf ((x!0 Res)) Loc

(ite (= x!0 Res!val!1) Loc!val!0 Loc!val!0)))
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