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Abstract. We introduce and investigate a weighted propositional con-
figuration logic over a commutative semiring. Our logic, which is proved
to be sound and complete, is intended to serve as a specification lan-
guage for software architectures with quantitative features. We extend
the weighted configuration logic to its first-order level and succeed in
describing architecture styles equipped with quantitative characteristics.
We provide interesting examples of weighted architecture styles. Surpris-
ingly, we can construct a formula, in our logic, which describes a classical
problem of a different nature than that of software architectures.
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1 Introduction

Architecture is a critical issue in design and development of complex software
systems. Whenever the construction of a software system is based on a “good”
architecture, then the system satisfies most of its functional and quality require-
ments. But what are the characteristics of a “good” architecture and how one can
design it? Despite the huge progress on software architecture, over almost three
decades, the field remains relatively immature (cf. [5] for an excellent presenta-
tion of the progress of software architecture). Several fundamental matters still
remain open, for instance the distinction between architectures and their prop-
erties. Recently in [11], the relation among architectures and architecture styles
has been studied. An architecture style describes a family of “similar” archi-
tectures, i.e., architectures with the same types of components and topologies.
The authors introduced the propositional configuration logic (PCL for short)
which was proved sufficient to describe architectures: the meaning of every PCL
formula is a configuration set, and every architecture can be represented by a
configuration on the set of its components. The first-order and second-order ex-
tensions of PCL described perfectly the concept of architecture styles. Therefore,
PCL and its first- and second-order extensions constitute logics for the specifi-
cation of architecture styles and hence, an important contribution to rigorous
systems design (cf. [14]).

In this paper we introduce and investigate a weighted PCL over a commu-
tative semiring (K,⊕,⊗, 1, 0). Our work is motivated as follows. PCL and its



first- and second-order extensions of [11] describe qualitative features of archi-
tectures and architecture styles. Weighted PCL describes quantitative features
of architectures, and weighted first-order configuration logic describes quanti-
tative features of architecture styles. For instance, the costs of the interactions
among the components of an architecture, the time needed, the probability of
the implementation of a concrete interaction, etc. Our weighted PCL consists of
the PCL of [11] which is interpreted in the same way, and a copy of it which is
interpreted quantitatively. This formulation has the advantage that practitioners
can use the PCL exactly as they are used to, and the copy of it for the quanti-
tative interpretation. The semantics of weighted PCL formulas are polynomials
with values in the semiring K. The semantics of (unweighted) PCL formulas take
only the values 1 and 0 corresponding to true and false, respectively. Weighted
logics have been considered so far in other set-ups. More precisely, the weighted
MSO logic over words, trees, pictures, nested words, timed words, and graphs
(cf. [1]), the weighted FO logic [8–10], the weighted LTL (cf. for instance [3] and
the references in that paper), the weighted LDL [3], as well as the weighted MSO
logic and LDL over infinite alphabets [13], and the weighted µ-calculus and CTL
[7].

The main contributions of our work are the following. We prove that for
every weighted PCL formula we can effectively construct an equivalent one in
full normal form which is unique up to the equivalence relation. Furthermore,
our weighted PCL is sound and complete. Both the aforementioned results hold
also for PCL and this shows the robustness of the theory of PCL. We prove
several properties for the weighted first-order configuration logic and in addi-
tion for its Boolean counterpart of [11]. We present as an example the weighted
PCL formula describing the Master/Slave architecture with quantitative fea-
tures. According to the underlying semiring, we get information for the cost,
probability, time, etc. of the implementation of an interaction between a Mas-
ter and a Slave. We construct a weighted first-order configuration logic formula
for the Publish/Subscribe architecture style with additional quantitative char-
acteristics. Surprisingly, though PCL was mainly developed as a specification
language for architectures, we could construct a weighted PCL formula describ-
ing the well-known travelling salesman problem.

Apart from this introduction the paper contains 5 sections. In Section 2
we present preliminary background needed in the sequel. In Section 3 we in-
troduce the weighted proposition interaction logic which describes quantitative
interactions among the components of an architecture. Then, in Section 4 we
introduce the weighted PCL and investigate the main properties of the seman-
tics of weighted PCL formulas. Section 5 is devoted to the construction of the
unique full normal form (modulo the equivalence relation) equivalent to a given
weighted PCL formula. Furthermore, it contains the results for the soundness
and completeness of the weighted PCL. In Section 6, we extend the weighted
PCL to its first-order level. We prove several properties for weighted first-order
configuration logic formulas as well as for first-order configuration logic formulas
of [11]. Finally, in the conclusion, we list several open problems for future re-



search. Due to space limitations we skip detailed proofs of our results. We refer
the interested reader to the full version of our paper on arXiv [12].

2 Preliminaries

A semiring (K,⊕,⊗, 0, 1) consists of a set K, two binary operations ⊕ and
⊗ and two constant elements 0 and 1 such that (K,⊕, 0) is a commutative
monoid, (K,⊗, 1) is a monoid, multiplication distributes over addition, and
0 ⊗ k = k ⊗ 0 = 0 for every k ∈ K. If the monoid (K,⊗, 1) is commuta-
tive, then the semiring is called commutative. The semiring is denoted simply
by K if the operations and the constant elements are understood. The result
of the empty product as usual equals to 1. The semiring K is called (addi-
tively) idempotent if k ⊕ k = k for every k ∈ K. The following algebraic struc-
tures are well-known semirings: the semiring (N,+, ·, 0, 1) of natural numbers,
the Boolean semiring B = ({0, 1},+, ·, 0, 1), the tropical or min-plus semiring
Rmin = (R+ ∪ {∞},min,+,∞, 0) where R+ = {r ∈ R | r ≥ 0}, the arc-
tical or max-plus semiring Rmax = (R+ ∪ {−∞},max,+,−∞, 0), the Viterbi
semiring ([0, 1] ,max, ·, 0, 1) used in probability theory, and every bounded dis-
tributive lattice with the operations sup and inf, especially the fuzzy semiring
F = ([0, 1],max,min, 0, 1). Trivially all the previous semirings are commutative,
and all but the first one are idempotent.

Let Q be a set. A formal series (or simply series) over Q and K is a mapping
s : Q → K. The support of s is the set supp(s) = {q ∈ Q | s(q) 6= 0}. A series
with finite support is called also a polynomial. We denote by K 〈〈Q〉〉 the class
of all series over Q and K, and by K 〈Q〉 the class of all polynomials over Q and
K. Let s, r ∈ K 〈〈Q〉〉 and k ∈ K. The sum s ⊕ r, the products with scalars ks
and sk, and the Hadamard product s⊗r are defined elementwise, respectively by
s⊕ r(v) = s(v)⊕ r(v), ks(v) = k⊗ s(v), sk(v) = s(v)⊗ k, s⊗ r(v) = s(v)⊗ r(v)
for every v ∈ Q. Trivially, if the series s, r are polynomials, then the series
s⊕ r, ks, sk, s⊗ r are also polynomials.

Throughout the paper K will denote a commutative semiring.

3 Weighted propositional interaction logic

In this section, we introduce the weighted propositional interaction logic. For
this, we need to recall first the propositional interaction logic [11].

Let P be a nonempty finite set of ports. We let I(P ) = P(P ) \ {∅}, where
P(P ) denotes the power set of P . Every set a ∈ I(P ) is called an interaction.
The syntax of propositional interaction logic (PIL for short) formulas over P is
given by the grammar

φ ::= true | p | φ | φ ∨ φ

where p ∈ P . As usual, we set φ = φ for every PIL formula φ and false = true.

Then, the conjunction of two PIL formulas φ, φ′ is defined by φ∧ φ′ =
(
φ ∨ φ′

)
.



A PIL formula of the form p1 ∧ . . . ∧ pn where n > 0 and pi ∈ P or pi ∈ P
for every 1 ≤ i ≤ n, is called a monomial. We shall simply denote a monomial
p1 ∧ . . . ∧ pn by p1 . . . pn.

Let φ be a PIL formula and a an interaction. We write a |=i φ iff the formula
φ evaluates to true by letting p = true for every p ∈ a, and p = false otherwise.
It should be clear that a 6|=i false for every a ∈ I(P ). For every interaction a
we define its characteristic monomial ma =

∧
p∈a p ∧

∧
p/∈a p. Then, for every

interaction a′ we trivially get a′ |=i ma iff a′ = a.

Throughout the paper P will denote a nonempty finite set of ports.

Definition 1. The syntax of formulas of the weighted PIL over P and K is
given by the grammar

ϕ ::= k | φ | ϕ⊕ ϕ | ϕ⊗ ϕ
where k ∈ K and φ denotes a PIL formula.

We denote by PIL(K,P ) the set of all weighted PIL formulas ϕ over P and
K. Next, we represent the semantics of formulas ϕ ∈ PIL(K,P ) as polynomials
‖ϕ‖ ∈ K 〈I(P )〉1. For the semantics of PIL formulas φ we use the satisfaction
relation as defined above. In this way, we ensure that the semantics of PIL
formulas φ gets only the values 0 and 1.

Definition 2. Let ϕ ∈ PIL(K,P ). The semantics of ϕ is a polynomial ‖ϕ‖ ∈
K 〈I(P )〉. For every a ∈ I(P ) the value ‖ϕ‖ (a) is defined inductively as follows:
‖k‖ (a) = k, ‖ϕ⊕ ψ‖ (a) = ‖ϕ‖ (a)⊕ ‖ψ‖ (a),

‖φ‖ (a) =

{
1 if a |=i φ
0 otherwise

, ‖ϕ⊗ ψ‖ (a) = ‖ϕ‖ (a)⊗ ‖ψ‖ (a).

A polynomial s ∈ K 〈I(P )〉 is called PIL-definable if there is a formula ϕ ∈
PIL(K,P ) such that s = ‖ϕ‖.
Remark 1. The reader should note that the semantics of the weighted PIL for-
mulas φ ∨ φ and φ ⊕ φ, where φ is a PIL formula, are different. Indeed assume
that a ∈ I(P ) is such that a |=i φ. Then, by our definition above, we get
‖φ ∨ φ‖ (a) = 1 whereas ‖φ⊕ φ‖ (a) = 1⊕ 1.

Next we present an example of a weighted PIL formula.

Example 1. We recall from [11] the Master/Slave architecture for two masters
M1,M2 and two slaves S1, S2 with ports m1,m2 and s1, s2, respectively. The
monomial

φi,j = si ∧mj ∧ si′ ∧mj′

for every 1 ≤ i, i′, j, j′ ≤ 2 with i 6= i′ and j 6= j′, defines the binary interaction
between the ports si and mj .

For every 1 ≤ i, j ≤ 2 we consider the weighted PIL formula ϕi,j = ki,j⊗φi,j
where ki,j ∈ K. Hence, ki,j can be considered, according to the underlying semir-
ing, as the ”cost” for the implementation of the interaction φi,j . For instance if
K is the Viterbi semiring, then the value ki,j ∈ [0, 1] represents the probability
of the implementation of the interaction between the ports si and mj .

1 Since P is finite, the domain of ‖ϕ‖ is finite and in turn its support is also finite.



M1 M2 M1 M2 M1 M2 M1 M2

m1 m2 m1 m2 m1 m2 m1 m2

S1 S2 S1 S2 S1 S2 S1 S2

s1 s2 s1 s2 s1 s2 s1 s2

k1,1 k2,2 k1,1 k2,1 k2,1 k1,2 k2,2k1,2

Fig. 1. Weighted Master/Slave architecture.

4 Weighted propositional configuration logic

In this section, we introduce and investigate the weighted propositional configu-
ration logic. Firstly, we recall the propositional configuration logic of [11]. More
precisely, the syntax of propositional configuration logic (PCL for short) formulas
over P is given by the grammar

f ::= true | φ | ¬f | f t f | f + f

where φ denotes a PIL formula. The operators ¬, t, and + are called complemen-
tation, union, and coalescing, respectively. We define also the intersection u and
implication =⇒ operators, respectively as follows: f1u f2 := ¬(¬f1t¬f2), and
f1 =⇒ f2 := ¬f1 t f2. To avoid any confusion, every PCL formula which is a
PIL formula will be called an interaction formula. We let C(P ) = P(I(P ))\{∅}.
For every PCL formula f and γ ∈ C(P ) we define the satisfaction relation γ |= f
inductively on the structure of f as follows:

γ |= true, γ |= f1 t f2 iff γ |= f1 or γ |= f2,
γ |= φ iff a |=i φ for every a ∈ γ, γ |= ¬f iff γ 6|= f,

γ |= f1 + f2 iff there exist γ1, γ2 ∈ C(P ) such that
γ = γ1 ∪ γ2, and γ1 |= f1 and γ2 |= f2.

The closure ∼f of every PCL formula f , and the disjunction f1 ∨ f2 of
two PCL formulas f1 and f2 are defined, respectively by ∼f := f + true and
f1 ∨ f2 := f1 t f2 t (f1 + f2). Two PCL formulas f, f ′ are called equivalent, and
we denote it by f ≡ f ′, whenever γ |= f iff γ |= f ′ for every γ ∈ C(P ). We shall
need the following lemma.

Lemma 1. Let φ be a PIL formula. Then φ+ φ ≡ φ.

Next we introduce our weighted PCL.

Definition 3. The syntax of formulas of the weighted PCL over P and K is
given by the grammar

ζ ::= k | f | ζ ⊕ ζ | ζ ⊗ ζ | ζ ] ζ

where k ∈ K, f denotes a PCL formula, and ] denotes the coalescing operator
among weighted PCL formulas.



Again, as for PCL formulas, to avoid any confusion, every weighted PCL
formula which is a weighted PIL formula will be called a weighted interaction
formula. We denote by PCL(K,P ) the set of all weighted PCL formulas over P
and K. We represent the semantics of formulas ζ ∈ PCL(K,P ) as polynomials
‖ζ‖ ∈ K 〈C(P )〉. For the semantics of PCL formulas we use the satisfaction
relation as defined previously.

Definition 4. Let ζ ∈ PCL(K,P ). The semantics of ζ is a polynomial ‖ζ‖ ∈
K 〈C(P )〉. For every γ ∈ C(P ) the value ‖ζ‖ (γ) is defined inductively as follows:
‖k‖ (γ) = k, ‖ζ1 ⊕ ζ2‖ (γ) = ‖ζ1‖ (γ)⊕ ‖ζ2‖ (γ),

‖f‖ (γ) =

{
1 if γ |= f
0 otherwise

, ‖ζ1 ⊗ ζ2‖ (γ) = ‖ζ1‖ (γ)⊗ ‖ζ2‖ (γ),

‖ζ1 ] ζ2‖ (γ) =
⊕

γ=γ1∪γ2 (‖ζ1‖ (γ1)⊗ ‖ζ2‖ (γ2)) .

Since the semantics of every weighted PCL formula is defined on C(P ), the
sets γ1 and γ2 in ‖ζ1 ] ζ2‖ (γ) are nonempty. A polynomial s ∈ K 〈C(P )〉 is
called PCL-definable if there is a formula ζ ∈ PCL(K,P ) such that s = ‖ζ‖.
Two weighted PCL formulas ζ1, ζ2 are called equivalent, and we write ζ1 ≡ ζ2
whenever ‖ζ1‖ = ‖ζ2‖.

The closure ∼ζ of every weighted PCL formula ζ ∈ PCL(K,P ), and the
disjunction ζ1 g ζ2 of two weighted PCL formulas ζ1, ζ2 ∈ PCL(K,P ) are
determined, respectively, by the following macros:

- ∼ζ := ζ ] 1,
- ζ1 g ζ2 := ζ1 ⊕ ζ2 ⊕ (ζ1 ] ζ2).

Trivially, ‖∼ζ‖ (γ) =
⊕

γ′⊆γ ‖ζ‖ (γ′) for every γ ∈ C(P ).
For every PCL formula f over P and every weighted PCL formula ζ ∈

PCL(K,P ), we consider also the macro:

- f =⇒ ζ := ¬f ⊕ (f ⊗ ζ).

Then for γ ∈ C(P ), we get ‖f =⇒ ζ‖ (γ) = ‖ζ‖ (γ) if γ |= f , and ‖f =⇒ ζ‖ (γ) =
1 otherwise.

Example 2 (Example 1 continued). The four possible configurations of the Mas-
ter/Slave architecture for two masters M1,M2 and two slaves S1, S2 with ports
m1,m2 and s1, s2, respectively, are given by the PIL formula

(φ1,1 t φ1,2) + (φ2,1 t φ2,2) .

We consider the weighted PCL formula

ζ = ∼ ((ϕ1,1 ⊕ ϕ1,2) ] (ϕ2,1 ⊕ ϕ2,2)) .

Then for γ ∈ C ({m1,m2, s1, s2}) we get that ‖ζ‖ (γ) equals to

⊕
γ′⊆γ

 ⊕
γ′=γ1∪γ2

((‖ϕ1,1‖ (γ1)⊕ ‖ϕ1,2‖ (γ1))⊗ (‖ϕ2,1‖ (γ2)⊕ ‖ϕ2,2‖ (γ2)))

 .



Let us assume that γ = {{s1,m1}, {s1,m2}, {s2,m1}, {s2,m2}}. Then for K =
Rmin the value ‖ζ‖ (γ) gets the form

min
γ′⊆γ

(
min

γ′=γ1∪γ2
(min (‖ϕ1,1‖(γ1), ‖ϕ1,2‖(γ1)) + min (‖ϕ2,1‖(γ2), ‖ϕ2,2‖(γ2)))

)
which is the minimum ”cost” of all the implementations of the Master/Slave
architecture.

If K = Rmax, then ‖ζ‖ (γ) equals to

max
γ′⊆γ

(
max

γ′=γ1∪γ2
(max (‖ϕ1,1‖(γ1), ‖ϕ1,2‖(γ1)) + max (‖ϕ2,1‖(γ2), ‖ϕ2,2‖(γ2)))

)
which is the maximum ”cost” of all the implementations of the Master/Slave
architecture.

Finally assume K to be the Viterbi semiring. Then the value ki,j in ϕi,j for
every 1 ≤ i, j ≤ 2, can be considered as the probability of the implementation
of the interaction φi,j . Hence, ‖ζ‖ (γ) equals to

max
γ′⊆γ

(
max

γ′=γ1∪γ2
(max (‖ϕ1,1‖(γ1), ‖ϕ1,2‖(γ1)) ·max (‖ϕ2,1‖(γ2), ‖ϕ2,2‖(γ2)))

)
and represents the maximum probability of all the implementations of the Mas-
ter/Slave architecture.

The next proposition summarizes several properties of our weighted PCL
formulas.

Proposition 1. Let ζ1, ζ2, ζ3 ∈ PCL(K,P ). Then
(i) (ζ1 ] ζ2) ] ζ3 ≡ ζ1 ] (ζ2 ] ζ3) . (iv) ζ1 ] (ζ2 ⊕ ζ3) ≡ (ζ1 ] ζ2)⊕ (ζ1 ] ζ3).
(ii) ζ1 ] 0 ≡ 0. (v) ∼(ζ1 ⊕ ζ2) ≡ ∼ζ1 ⊕∼ζ2.
(iii) ζ1 ] ζ2 ≡ ζ2 ] ζ1. (vi) ∼(ζ1 ] ζ2) ≡ ∼ζ1 ⊗∼ζ2.
If in addition K is idempotent, then
(vii) ∼(ζ1 ] ζ2) ≡ ∼ζ1 ] ∼ζ2. (viii) ∼∼ζ1 ≡ ∼ζ1.
(ix) ζ1 g (ζ2 ⊕ ζ3) ≡ (ζ1 g ζ2)⊕ (ζ1 g ζ3).

We aim to show that ⊗ does not distribute, in general, over ]. For this,
we consider the semiring (N,+, ·, 0, 1) of natural numbers, the set of ports P =
{p, q} and the formulas ζ, ζ1, ζ2 ∈ PCL(N, P ) determined, respectively by ζ =
5⊕ pq, ζ1 = pq⊗ 6, and ζ2 = pq⊗ 3. We let γ = {{p, q}} and by straightforward
computations we get ‖ζ⊗ (ζ1 ] ζ2)‖(γ) = 108 and ‖(ζ⊗ ζ1)] (ζ⊗ ζ2)‖(γ) = 648.
Hence ζ⊗(ζ1]ζ2) 6≡ (ζ⊗ζ1)](ζ⊗ζ2). Nevertheless, this is not the case whenever
ζ is a PIL formula. More precisely, we state the subsequent proposition.

Proposition 2. Let φ be a PIL formula over P and ζ1, ζ2 ∈ PCL(K,P ). Then

φ⊗ (ζ1 ] ζ2) ≡ (φ⊗ ζ1) ] (φ⊗ ζ2).



As it is already mentioned (cf. [11]), configuration logic has been developed
as a fundamental platform to describe architecture styles. In the next example
we show that weighted PCL in fact can formulate other types of problems.

Example 3. We consider the travelling salesman problem for 5 cities C1, C2, C3,
C4, C5, and assume C1 to be the origin city. We aim to construct a weighted
PCL formula, whose semantics computes the shortest distance of all the routes
that visit every city exactly once and return to the origin city. We consider a
port ci for every city Ci (1 ≤ i ≤ 5), hence P = {ci | 1 ≤ i ≤ 5}. For every
1 ≤ i, j, k,m, n ≤ 5 which are assumed to be pairwise disjoint, we define the
monomials φi,j over P by

φi,j = cicjckcmcn.

The interaction formulas φi,j represent the connection between the cities Ci and
Cj . It should be clear that φi,j = φj,i for every 1 ≤ i 6= j ≤ 5. Assume that
K = Rmin and for every 1 ≤ i 6= j ≤ 5 we consider the weighted interaction
formula

ϕi,j = ki,j ⊗ φi,j
with ki,j ∈ R+, where the values ki,j represent the distance between the cities Ci
and Cj . Now we define the weighted PCL formula ζ ∈ PCL(Rmin, P ) as follows:

ζ ≡ ∼


(ϕ1,2 ] ϕ2,3 ] ϕ3,4 ] ϕ4,5 ] ϕ5,1)⊕ (ϕ1,2 ] ϕ2,3 ] ϕ3,5 ] ϕ5,4 ] ϕ4,1)⊕
(ϕ1,2 ] ϕ2,4 ] ϕ4,5 ] ϕ5,3 ] ϕ3,1)⊕ (ϕ1,2 ] ϕ2,5 ] ϕ5,4 ] ϕ4,3 ] ϕ3,1)⊕
(ϕ1,2 ] ϕ2,5 ] ϕ5,3 ] ϕ3,4 ] ϕ4,1)⊕ (ϕ1,2 ] ϕ2,4 ] ϕ4,3 ] ϕ3,5 ] ϕ5,1)⊕
(ϕ1,3 ] ϕ3,2 ] ϕ2,4 ] ϕ4,5 ] ϕ5,1)⊕ (ϕ1,3 ] ϕ3,2 ] ϕ2,5 ] ϕ5,4 ] ϕ4,1)⊕
(ϕ1,3 ] ϕ3,5 ] ϕ5,2 ] ϕ2,4 ] ϕ4,1)⊕ (ϕ1,3 ] ϕ3,4 ] ϕ4,2 ] ϕ2,5 ] ϕ5,1)⊕
(ϕ1,4 ] ϕ4,2 ] ϕ2,3 ] ϕ3,5 ] ϕ5,1)⊕ (ϕ1,4 ] ϕ4,3 ] ϕ3,2 ] ϕ2,5 ] ϕ5,1)

 .

Then for γ = {{ci, cj} | 1 ≤ i 6= j ≤ 5}, it is not difficult to see that the value
‖ζ‖(γ) is the shortest distance of all the routes starting at C1, visit every city
exactly once, and return to C1.

A weighted PCL formula can be constructed for the travelling salesman prob-
lem for any number n of cities. Indeed, assume the cities C1, . . . , Cn with origin
C1. By preserving the above notations, we consider, for every 1 ≤ i 6= j ≤ n, the
interaction formula

φi,j = cicj ∧
∧

k∈[n]\{i,j}

ck

where [n] = {1, . . . , n}, and the weighted interaction formula

ϕi,j = ki,j ⊗ φi,j

with ki,j ∈ R+, where the value ki,j represents the distance between the cities Ci
and Cj . The required weighted PCL formula ζ ∈ PCL(Rmin, P ) is determined
now as follows:

ζ ≡ ∼
⊕

{i1,...,in}∈CSn

⊎
1≤j≤n−1

ϕij ,ij+1



where CSn denotes the set of all cyclic permutations of the first n positive
integers such that clock-wise and anti-clock-wise cyclic permutations have been
identified. It should be noted that card(CSn) = (n − 1)!/2. Then for γ ∈ C(P )
defined similarly as above, i.e., γ = {{ci, cj} | 1 ≤ i 6= j ≤ n}, the value ‖ζ‖(γ)
is the shortest distance of all the routes starting at C1, visit every city exactly
once, and return to C1.

5 A full normal form for weighted PCL formulas

In the present section, we show that for every weighted PCL formula ζ ∈
PCL(K,P ) we can effectively compute an equivalent formula of a special form.
For this, we will use a corresponding result from [11]. More precisely, in that
paper the authors proved that for every PCL formula f over P there exists a
unique equivalent PCL formula of the form

⊔
i∈I
∑
i∈Ji mi,j which is called full

normal form (cf. Thm. 4.43. in [11]). The index sets I and Ji, for every i ∈ I,
are finite and mi,j ’s are full monomials, i.e., monomials involving all ports from
P . Hence, a full monomial is a monomial of the form

∧
p∈P+

p ∧
∧
p∈P p where

P+ ∪ P = P and P+ ∩ P = ∅. We show that we can also effectively build a
unique full normal form for every weighted PCL formula. Uniqueness is up to
the equivalence relation. Then we will use this result to state that our weighted
PCL is complete.

Definition 5. A weighted PCL formula ζ ∈ PCL(K,P ) is said to be in full
normal form if there are finite index sets I and Ji for every i ∈ I, ki ∈ K
for every i ∈ I, and full monomials mi,j for every i ∈ I and j ∈ Ji such that

ζ =
⊕

i∈I

(
ki ⊗

∑
j∈Ji mi,j

)
.

By our definition above, for every full normal form we can construct an
equivalent one satisfying the following statements:

i) j 6= j′ implies mi,j 6≡ mi,j′ for every i ∈ I, j, j′ ∈ Ji, and
ii) i 6= i′ implies

∑
j∈Ji mi,j 6≡

∑
j∈Ji′

mi′,j for every i, i′ ∈ I.

Indeed, for the first one, if mi,j ≡ mi,j′ for some j 6= j′, then since mi,j ,mi,j′

are interaction formulas, by Lemma 1, we can replace the coalescing mi,j +mi,j′

with mi,j . For (ii), let us assume that
∑
j∈Ji mi,j ≡

∑
j∈Ji′

mi′,j for some i 6= i′.

Then, we can replace the sum
(
ki ⊗

∑
j∈Ji mi,j

)
⊕
(
ki′ ⊗

∑
j∈Ji′

mi′,j

)
with

the equivalent one (ki ⊕ ki′)⊗
∑
j∈Ji mi,j . Hence, in the sequel, we assume that

every full normal form satisfies Statements (i) and (ii).
We intend to show that for every weighted PCL formula ζ ∈ PCL(K,P ) we

can effectively construct an equivalent weighted PCL formula ζ ′ ∈ PCL(K,P )
in full normal form. Moreover, ζ ′ will be unique up to the equivalence relation.
We shall need a sequence of preliminary results. All index sets occurring in the
sequel are finite.



Lemma 2. Let k1, k2 ∈ K and ζ1, ζ2 ∈ PCL(K,P ). Then

(k1 ⊗ ζ1) ] (k2 ⊗ ζ2) ≡ (k1 ⊗ k2)⊗ (ζ1 ] ζ2) .

Lemma 3. Let J be an index set and mj a full monomial for every j ∈ J .
Then, there exists a unique γ ∈ C(P ) such that for every γ ∈ C(P ) we have∥∥∥∑j∈J mj

∥∥∥ (γ) = 1 if γ = γ and
∥∥∥∑j∈J mi

∥∥∥ (γ) = 0 otherwise.

Proposition 3. Let f be a PCL formula over P . Then there exist finite index
sets I and Ji for every i ∈ I, and full monomials mi,j for every i ∈ I and j ∈ Ji
such that

f ≡
⊕
i∈I

∑
j∈Ji

mi,j ≡
⊕
i∈I

1⊗
∑
j∈Ji

mi,j

 .

In particular

true ≡
⊕

∅6=N⊆M

∑
m∈N

m

where M is the set of all full monomials over P such that for every m,m′ ∈M ,
if m 6= m′, then m 6≡ m′.

Lemma 4. Let mi,m
′
j be full monomials for every i ∈ I and j ∈ J . Then(∑

i∈I
mi

)
⊗

∑
j∈J

m′j

 ≡ {∑i∈Imi if
∑
i∈I
mi ≡

∑
j∈J

m′j

0 otherwise.

Theorem 1. Let K be a commutative semiring and P a set of ports. Then for
every weighted PCL formula ζ ∈ PCL(K,P ) we can effectively construct an
equivalent weighted PCL formula ζ ′ ∈ PCL(K,P ) in full normal form. Further-
more, ζ ′ is unique up to the equivalence relation.

Proof (Sketch). We prove our theorem by induction on the structure of weighted
PCL formulas ζ over P and K. Firstly, we show our claim for ζ = k with
k ∈ K and ζ = f where f is a PCL formula, using Proposition 3. Next, we
consider weighted PCL formulas ζ1, ζ2 ∈ PCL(K,P ) and assume that ζ ′1 =⊕

i1∈I1

(
ki1 ⊗

∑
j1∈Ji1

mi1,j1

)
, ζ ′2 =

⊕
i2∈I2

(
ki2 ⊗

∑
j2∈Ji2

mi2,j2

)
are respec-

tively their equivalent full normal forms. Then, we prove our claim for the case
ζ = ζ1 ⊕ ζ2, ζ = ζ1 ⊗ ζ2, and ζ = ζ1 ] ζ2 using Lemmas 2-4. Finally, it remains
to show that ζ ′ is unique up to the equivalence relation. This is proved in a
straightforward way using Statements (i) and (ii). ut

A construction of the full normal form ζ ′ ∈ PCL(K,P ) of every weighted
PCL formula ζ ∈ PCL(K,P ) can be done using our Theorem 1, and the Abstract
Syntax Tree (AST)2, in a similar way as it is done in [11]. More precisely, in our

2 We refer the reader to [11] for the definition of the Abstract Syntax Tree.



case the leaves are labelled also by elements of the semiring K, and the nodes
are labelled by additional symbols, namely the operators ⊕, ⊗, and ]. Whenever
a node w of the AST is labelled by a symbol k, ⊕, ⊗, or ], with k ∈ K, then
every node of the path from the root to w is labelled by a symbol ⊕, ⊗, or ].

Example 4 (Example 1 continued). We shall compute the full normal form of
the weighted PCL formula

ζ = ∼ ((ϕ1,1 ⊕ ϕ1,2) ] (ϕ2,1 ⊕ ϕ2,2))

which formalizes the weighted Master/Slave architecture for two masters M1,M2

and two slaves S1, S2 with ports m1,m2 and s1, s2, respectively. We have

ζ = ∼ ((ϕ1,1 ⊕ ϕ1,2) ] (ϕ2,1 ⊕ ϕ2,2))

≡ (((k1,1 ⊗ k2,1)⊗ (φ1,1 + φ2,1))⊕ ((k1,2 ⊗ k2,1)⊗ (φ1,2 + φ2,1))

⊕ ((k1,1 ⊗ k2,2)⊗ (φ1,1 + φ2,2))⊕ ((k1,2 ⊗ k2,2)⊗ (φ1,2 + φ2,2))) ] 1

≡

 ⊕
∅6=N⊆M

(k1,1 ⊗ k2,1)⊗

(
φ1,1 + φ2,1 +

∑
m∈N

m

)
⊕

 ⊕
∅6=N⊆M

(k1,2 ⊗ k2,1)⊗

(
φ1,2 + φ2,1 +

∑
m∈N

m

)
⊕

 ⊕
∅6=N⊆M

(k1,1 ⊗ k2,2)⊗

(
φ1,1 + φ2,2 +

∑
m∈N

m

)
⊕

 ⊕
∅6=N⊆M

(k1,2 ⊗ k2,2)⊗

(
φ1,2 + φ2,2 +

∑
m∈N

m

)
since 1 ≡

⊕
∅6=N⊆M

(
1⊗

∑
m∈N m

)
, where M is the set of all full monomials

over P such that for every m,m′ ∈M , if m 6= m′, then m 6≡ m′.
In the sequel, we intend to show that our weighted PCL is sound and com-

plete. For this, we need firstly to introduce the notions of soundness and com-
pleteness for the weighted PCL. Let Σ = {ζ1, . . . , ζn} be a set of weighted
PCL formulas. Then we say that Σ proves the weighted PCL formula ζ and we
write Σ ` ζ if ζ is derived by the formulas in Σ, using the axioms of PCL [11]
and the equivalences of Propositions 1 and 2. Furthermore, we write Σ |= ζ if
ζ1 ≡ . . . ≡ ζn ≡ ζ.

Definition 6. Let K be a commutative semiring and P a set of ports.

(i) The weighted PCL over P and K is sound if Σ ` ζ implies Σ |= ζ for every
set of weighted PCL formulas Σ and weighted PCL formula ζ.

(ii) The weighted PCL over P and K is complete if Σ |= ζ implies Σ ` ζ for
every set of weighted PCL formulas Σ and weighted PCL formula ζ.

Theorem 2. Let K be a commutative semiring and P a set of ports. Then the
weighted PCL over P and K is sound and complete.



6 Weighted first-order configuration logic

In this section, we equip our weighted PCL with first-order quantifiers and inves-
tigate the weighted first-order configuration logic. For this, we need to recall the
first-order configuration logic from [11] for which, in addition, we prove several
properties. We assume that T = {T1, . . . , Tn} is a finite set of component types
such that instances of a component type have the same interface and behav-
ior. We denote by CT the set of all the components of type T ∈ T , and we let
CT =

⋃
T∈T CT . A component c of type T ∈ T is denoted by c : T . The interface

of every component type T has a distinct set of ports PT . We set PT =
⋃
T∈T PT .

For every B ⊆ CT we write PB for the sets of ports of all the components in B.
We denote by c.p (resp. c.P ) the port p (resp. the set of ports P ) of component c.
Furthermore, we assume that there is a universal component type U , such that
every component or component set is of this type. Therefore, the set CU is the
set of all components of a model. Then, the syntax of first-order configuration
logic (FOCL for short) formulas over T is given by the grammar

F ::= true | φ | ¬F | F t F | F + F | ∃c : T (Φ(c)).F |
∑
c : T (Φ(c)).F

where φ denotes an interaction formula, c a component variable and Φ(c) a set-
theoretic predicate on c. We omit Φ, in an FOCL formula, whenever Φ = true.

Let B ⊆ CT be a set of component instances of types from T and γ ∈ C(PB).
Let also F be an FOCL formula without free variables (i.e., variables that are
not in the scope of any quantifier). We define the satisfaction relation (B, γ) |= F
inductively on the structure of F as follows:
(B, γ) |= true, (B, γ) |= F1 t F2 iff (B, γ) |= F1 or (B, γ) |= F2,
(B, γ) |= φ iff γ |= φ, (B, γ) |= ¬F iff (B, γ) 6|= F,

(B, γ) |= F1 + F2 iff there exist γ1, γ2 ∈ C(PB) such that γ = γ1 ∪ γ2, and
(B, γ1) |= F1 and (B, γ2) |= F2,

(B, γ) |= ∃c : T (Φ(c)).F iff (B, γ) |=
⊔
c′:T∈B∧Φ(c′) F [c′/c],

(B, γ) |=
∑
c : T (Φ(c)).F iff {c′ : T ∈ B | Φ(c′)} 6= ∅ and

(B, γ) |=
∑
c′:T∈B∧Φ(c′) F [c′/c]

where F [c′/c] is obtained by F , by replacing all occurrences of c by c′. We let

- ∀c : T (Φ(c)).F := ¬∃c : T (Φ(c)).¬F .

The subsequent results refer to properties of the FOCL formulas.

Proposition 4. Let F, F1, F2 be FOCL formulas. Then the following statements
hold true.
(i) ∼∼F = ∼F. (iv) ∼ (F1 t F2) ≡ ∼F1 t ∼F2.
(ii) F =⇒ ∼F. (v) ∼ (F1 + F2) ≡ ∼F1 +∼F2.
(iii) ¬∼¬F =⇒ F. (vi) ∼∃c : T (Φ(c)).F ≡ ∃c : T (Φ(c)). (∼F ) .

(vii) ∼
∑
c : T (Φ(c)).F ≡

∑
c : T (Φ(c)). (∼F ) ≡ ∀c : T (Φ(c)). (∼F ) .

(viii) ∃c : T (Φ(c)).(F1 t F2) ≡ ∃c : T (Φ(c)).F1 t ∃c : T (Φ(c)).F2.
(ix) ∀c : T (Φ(c)).(F1 ∧ F2) ≡ ∀c : T (Φ(c)).F1 ∧ ∀c : T (Φ(c)).F2.
(x)

∑
c : T (Φ(c)).(F1 + F2) ≡

∑
c : T (Φ(c)).F1 +

∑
c : T (Φ(c)).F2.

(xi) (∼
∑
c : T (Φ(c)).F1) ∧ (∼

∑
c : T (Φ(c)).F2) ≡ ∀c : T (Φ(c)). (∼ (F1 + F2)) .



Proposition 5. Let F1, F2 be two FOCL formulas over T . Then
(i) ∀c : T (Φ(c)).(F1 + F2) =⇒

∑
c : T (Φ(c).F1 +

∑
c : T (Φ(c).F2.

(ii)
∑
c : T (Φ(c)).(F1 ∧ F2)⇒ (

∑
c : T (Φ(c)).F1) ∧ (

∑
c : T (Φ(c)).F2) .

The converse implications of both (i) and (ii) in Proposition 5 above do not
in general hold.

Now we are ready to introduce the weighted FOCL.

Definition 7. The syntax of formulas of the weighted FOCL over T and K is
given by the grammar

Z ::= k | F | Z ⊕ Z | Z ⊗ Z | Z ] Z |
⊕

c : T (Φ(c)).Z |⊗
c : T (Φ(c)).Z |

⊎
c : T (Φ(c)).Z

where k ∈ K and F denotes an FOCL formula.

We denote by FOCL(K, T ) the class of all weighted FOCL formulas over T
and K. We represent the semantics of formulas Z ∈ FOCL(K, T ) as polynomials
‖Z‖ ∈ K 〈P(CT )× C(PT )〉. For the semantics of FOCL formulas we use the
satisfaction relation as defined previously.

Definition 8. Let Z ∈ FOCL(K, T ). The semantics ‖Z‖ is a polynomial in
K 〈P(CT )× C(PT )〉. For every B ∈ P(CT ) and γ ∈ C(PT ) we let ‖Z‖ (B, γ) =
0 if γ /∈ C(PB). Otherwise, the value ‖Z‖ (B, γ) is defined inductively as follows:
‖k‖ (B, γ) = k, ‖Z1 ⊕ Z2‖ (B, γ) = ‖Z1‖ (B, γ)⊕ ‖Z2‖ (B, γ),

‖F‖ (B, γ) =

{
1 if (B, γ) |= F
0 otherwise

, ‖Z1 ⊗ Z2‖ (B, γ) = ‖Z1‖ (B, γ)⊗ ‖Z2‖ (B, γ),

‖Z1 ] Z2‖ (B, γ) =
⊕

γ=γ1∪γ2 (‖Z1‖ (B, γ1)⊗ ‖Z2‖ (B, γ2)) ,

‖
⊕
c : T (Φ(c)).Z‖ (B, γ) =

⊕
c′:T∈B∧Φ(c′) ‖Z[c′/c]‖ (B, γ),

‖
⊗
c : T (Φ(c)).Z‖ (B, γ) =

⊗
c′:T∈B∧Φ(c′) ‖Z[c′/c]‖ (B, γ),

‖
⊎
c : T (Φ(c)).Z‖ (B, γ) =

⊕
γ=∪γc′ ,c′:T∈B∧Φ(c′)(⊗

c′:T∈B∧Φ(c′) ‖Z[c′/c]‖ (B, γc′)
)
.

In the next proposition we establish the main properties of the weighted
FOCL formulas.

Proposition 6. Let Z,Z1, Z2 ∈ FOCL(K, T ). Then the following statements
hold.
(i) ∼

⊕
c : T (Φ(c)).Z ≡

⊕
c : T (Φ(c)). (∼Z) .

(ii)
⊕
c : T (Φ(c)).(Z1 ⊕ Z2) ≡

⊕
c : T (Φ(c)).Z1 ⊕

⊕
c : T (Φ(c)).Z2.

(iii)
⊗
c : T (Φ(c)).(Z1 ⊗ Z2) ≡

⊗
c : T (Φ(c)).Z1 ⊗

⊗
c : T (Φ(c)).Z2.

(iv)
⊎
c : T (Φ(c)). (Z1 ] Z2) ≡ (

⊎
c : T (Φ(c)).Z1) ] (

⊎
c : T (Φ(c)).Z2) .

The subsequent examples constitute interesting applications of weighted FOCL.
More precisely, in Example 5 we construct a weighted FOCL formula for the
Master/Slave architecture for two Masters and three Slaves. In Example 2 we



presented a weighted PCL formula for that architecture for two Masters and two
Slaves. Nevertheless, that formula gets very complicated for several Masters and
Slaves. On the contrary, the weighted FOCL formula of the next example can be
easily modified for arbitrary numbers of Masters and Slaves and it is relatively
simple. In Example 6 we built a formula for the Publish/Subscribe architecture
style equipped with quantitative features.

Example 5 (Master/Slave architecture style). We intend to construct a weighted
FOCL formula for two Masters and three Slaves. For this we need two types
of components, namely M and S, for Masters and Slaves, respectively. Thus
T = {M,S}. We assume that every component of type M has only one port
denoted by m and every component of type S has one port denoted by s, and
we let CT = {b1 : M, b2 : M,d1 : S, d2 : S, d3 : S}. We consider the weighted
FOCL formula (with free variables c, c1)

Z ′ = c.s ∧ c1.m⊗

 ⊗
i=1,2,3
j=1,2

((c.s ≡ di.s ∧ c1.m ≡ bj .m) =⇒ ki,j)

⊗
⊗

c2 : M(c2 6= c1).
⊗

c3 : S(c3 6= c).(c2.m ∧ c3.s)

and the weighted FOCL formula

Z = ∼
⊎
c : S.

(⊕
c1 : M.Z ′

)
.

Let B = {b1 : M, b2 : M,d1 : S, d2 : S, d3 : S} and γ ∈ C(PB). Then, by a
straightforward computation, we can show that ‖Z‖ (B, γ) equals to

⊕
γ′⊆γ


⊕

γ′=γ1∪γ2∪γ3



(
k1,1 ⊗

∥∥d1.s ∧ b1.m ∧ b2.m ∧ d2.s ∧ d3.s∥∥ (γ1)⊕
k1,2 ⊗

∥∥d1.s ∧ b2.m ∧ b1.m ∧ d2.s ∧ d3.s∥∥ (γ1)

)
⊗(

k2,1 ⊗
∥∥d2.s ∧ b1.m ∧ b2.m ∧ d1.s ∧ d3.s∥∥ (γ2)⊕

k2,2 ⊗
∥∥d2.s ∧ b2.m ∧ b1.m ∧ d1.s ∧ d3.s∥∥ (γ2)

)
⊗(

k3,1 ⊗
∥∥d3.s ∧ b1.m ∧ b2.m ∧ d1.s ∧ d2.s∥∥ (γ3)⊕

k3,2 ⊗
∥∥d3.s ∧ b2.m ∧ b1.m ∧ d1.s ∧ d2.s∥∥ (γ3)

)



 .

Assume for instance thatK = Rmax and let γ = {{d1.s, b1.m}, {d1.s, b2.m}, {d2.s,
b1.m}, {d2.s, b2.m}, {d3.s, b1.m}, {d3.s, b2.m}}. Then the semantics ‖Z‖ (B, γ)
firstly computes the weights of all the patterns that occur according to the
set B, and finally returns the maximum of those weights. The weighted FOCL
formula Z can be easily modified for any number of Masters and Slaves. Indeed,
one has just to change accordingly the weighted formula Z ′.

Example 6 (Publish/Subscribe architecture style). Publish/Subscribe is a soft-
ware architecture, relating publishers who send messages and receivers, called
subscribers (cf. for instance [4, 6]). The main characteristics of this architecture
are as follows. The publishers characterize messages according to classes/topics



but they do not know whether there is any subscriber who is interested in a
concrete topic. Subscribers, on the other hand, express their interest in one or
more topics and receive messages according to their interests in case such topics
exist.

Publisher

p

Publisher

p

Publisher

p

Topic

t1 t2

Topic

t1 t2

Subscriber

s

Subscriber

s

Subscriber

s

Subscriber

s

k

k′

Fig. 2. Weighted Publish/Subscribe architecture.

There are three approaches to develop the Publish/Subscribe architecture,
namely the list-based, the broadcast-based, and the content-based. Broadcast-
based Publish/Subscribe and list-based Publish/Subscribe implementations can
be broadly categorized as topic-based since they both use predefined subjects as
many-to-many channels. More precisely, in a topic-based implementation, sub-
scribers receive all messages published to the topics to which they subscribe,
and all subscribers to a topic will receive the same messages. On the other hand,
the publisher defines the topics of messages to which subscribers can subscribe.
We intend to construct a weighted FOCL formula which formalizes the topic-
based Publish/Subscribe architecture style. For this, we consider three types of
components, the publishers, the topics and the subscribers denoted by the let-
ters P, T, S, respectively. Hence, the set of component types is T = {P, T, S}.
The component P has one port p, T has two ports t1 and t2, and S has the
port s. As it is mentioned above, the publishers do not have any knowledge of
who and how many the subscribers are, and the same situation holds for the
subscribers. In other words the publishers and the subscribers do not have any
connection. Furthermore, a subscriber can receive a message from a topic, if at
least one publisher has sent a message to that particular topic. The architecture
is illustrated in Figure 2. Moreover, we should avoid interactions that trans-
fer empty messages. The weights in our formula will represent the “priorities”
that one subscriber gives to the topics. Next, we describe the required weighted
FOCL formula for the Publish/Subscribe architecture. Assume that we have a
component of type P namely c3 : P and a component c2 : T of type T . If the



publisher c3 : P will send a message to that topic c2 : T , then this interaction is
represented by the formula c3.p ∧ c2.t1. However, we must ensure that no other
components of type P , type T , or type S will interact. This case is obtained by
the formula Z1 below:

Z1 = ∀d1 : P (d1 6= c3).

(
∀d2 : T (d2 6= c2).(

∀d3 : S.
(
d1.p ∧ d2.t1 ∧ d2.t2 ∧ d3.s ∧ c2.t2

))) .
Then the FOCL formula

Z2 = ∼ (c3.p ∧ c2.t1 ∧ Z1)

characterizes interactions between a publisher and a topic. Assume now that a
message has been sent to the component c2 : T . Then this message can be sent to
a subscriber c1 : S who has expressed interest in the same topic. This interaction
is represented by the FOCL formula c2.t2 ∧ c1.s. Similarly, as in the previous
case, in this interaction there must participate not any other subscribers, topics,
or publishers. This case is implemented by the formula

Z3 = ∀d1 : P.

(
∀d2 : T (d2 6= c2).

(
∀d3 : S(d3 6= c1).(

d1.p ∧ d2.t1 ∧ d2.t2 ∧ d3.s ∧ c2.t1
)))

,

and thus we get
∼ (c2.t2 ∧ c1.s ∧ Z3) .

However, the formula that characterizes an interaction between a topic and a
subscriber is not yet complete. As it is mentioned above, each subscriber gives
a certain priority to every topic that is interested in. So, in the last formula
above we have also to “add” the corresponding weights. Therefore, we derive the
weighted FOCL formula Z4 containing the priorities of two subscribers s1 : S,
s2 : S to the topics r1 : T , r2 : T , and r3 : T as follows:3

Z4 =
⊗
i=1,2,3
j=1,2

((c2.t2 ≡ ri.t2 ∧ c1.s ≡ sj .s) =⇒ ki,j) .

We conclude to the following weighted FOCL formula Z5 which characterizes an
interaction between a subscriber and a topic with its corresponding weight

Z5 = (∼ (c2.t2 ∧ c1.s ∧ Z3))⊗ Z4.

Finally, in order to complete the formula that formalizes the Publish/Subscribe
architecture style, we have to generalize the above procedure for every subscriber.
Indeed, the required formula must check for every subscriber whether there exists
a topic that the subscriber is interested in, and also if there exists a publisher
that has sent a message to that topic, so that the subscriber can receive it.
Therefore, we define the weighted FOCL formula

Z =
⊗

c1 : S.
(⊕

c2 : T.
(⊕

c3 : P. (Z2 ] Z5)
))

3 For simplicity we consider concrete numbers of subscribers and topics. Trivially, one
can modify the weighted FOCL formula Z4 for arbitrarily many subscribers and
topics.



which characterizes the Publish/Subscribe architecture style. Clearly Z can de-
scribe the Publish/Subscribe architecture for any number of subscribers by mod-
ifying accordingly the weighted FOCL formula Z4.

Assume, for instance, that CT = {p1 : P, p2 : P, p3 : P, p4 : P, r1 : T, r2 :
T, r3 : T, s1 : S, s2 : S} is the set of all the components, and K is the Viterbi
semiring. Let also B = {p1 : P, p2 : P, r1 : T, r2 : T, r3 : T, s1 : S, s2 : S} ⊆ CT .
Then for every γ ∈ C(PB) we get

‖Z‖(B, γ)

=
∥∥∥⊗ c1 : S.

(⊕
c2 : T.

(⊕
c3 : P. (Z2 ] Z5)

))∥∥∥ (B, γ)

=
∏

c′1:S∈B

∥∥∥⊕ c2 : T.
(⊕

c3 : P.(Z2 ] Z5)[c′1/c1]
)∥∥∥ (B, γ)

=
∏

c′1:S∈B

(
max
c′2:T∈B

(∥∥∥⊕ c3 : P.(Z2 ] Z5)[c′1/c1, c
′
2/c2]

∥∥∥)) (B, γ)

=
∏

c′1:S∈B

(
max
c′2:T∈B

(
max
c′3:P∈B

(‖(Z2 ] Z5)[c′1/c1, c
′
2/c2, c

′
3/c3]‖ (B, γ))

))

=

max


max

(
‖(Z2 ] Z5)[s1/c1, r1/c2, p1/c3]‖ (B, γ),
‖(Z2 ] Z5)[s1/c1, r1/c2, p2/c3]‖ (B, γ)

)
,

max

(
‖(Z2 ] Z5)[s1/c1, r2/c2, p1/c3]‖ (B, γ),
‖(Z2 ] Z5)[s1/c1, r2/c2, p2/c3]‖ (B, γ)

)
,

max

(
‖(Z2 ] Z5)[s1/c1, r3/c2, p1/c3]‖ (B, γ),
‖(Z2 ] Z5)[s1/c1, r3/c2, p2/c3]‖ (B, γ)

)



 ·

·

max


max

(
‖(Z2 ] Z5)[s2/c1, r1/c2, p1/c3]‖ (B, γ),
‖(Z2 ] Z5)[s2/c1, r1/c2, p2/c3]‖ (B, γ)

)
,

max

(
‖(Z2 ] Z5)[s2/c1, r2/c2, p1/c3]‖ (B, γ),
‖(Z2 ] Z5)[s2/c1, r2/c2, p2/c3]‖ (B, γ)

)
,

max

(
‖(Z2 ] Z5)[s2/c1, r3/c2, p1/c3]‖ (B, γ),
‖(Z2 ] Z5)[s2/c1, r3/c2, p2/c3]‖ (B, γ)

)



 .

Let γ = {{p1.p, r1.t1}, {p1.p, r3.t1}, {p2.p, r1.t1}, {r1.t2, s1.s}, {r2.t2, s2.s},
{r3.t2, s2.s}}. By straightforward computations we get ‖Z‖ (B, γ) = k1,1 · k3,2,
which represents the greatest combination of priorities of the subscribers accord-
ing to γ.

Conclusion

We introduced a weighted PCL over a commutative semiring K and investigated
several properties of the class of polynomials obtained as semantics of this logic.
For some of that properties we required our semiring to be idempotent. We
proved that for every weighted PCL formula ζ we can effectively construct an
equivalent one ζ ′ in full normal form. Furthermore, ζ ′ is unique up to the equiv-
alence relation. This result implied that our logic is complete, and we showed



that it is also sound. Weighted PCL describes nicely, architectures with quan-
titative characteristics. We extended the weighted PCL to weighted first-order
configuration logic with which we could represent architecture styles equipped
with quantitative features. We proved several properties for the class of poly-
nomials definable by weighted first-order configuration logic. We also provided
examples of weighted architecture styles. In our future work we will study de-
cidability results and weighted second-order configuration logic. It is an open
problem whether we can develop the theory of this paper by relaxing the com-
mutativity property of the semiring K and thus obtaining our results for a larger
class of semirings. Furthermore, it should be very interesting to investigate the
weighted PCL and its first-order extension over more general weight structures
which can describe further properties like average, limit inferior, limit superior,
and discounting (cf. for instance [2]).

Acknowledgements. We should like to express our gratitude to Joseph Sifakis
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