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This talk in a nutshell
• Setting:  Quantitative Information Flow. Inference 

attacks using correlation between secret observables 

• Defense:  The system designer can reduce the 
correlation secret-observables via protocol 
composition (typically randomized)

• Active Adversary: may interact with the system and 
increase the correlation secret-observables

• We formalize the interplay between defender and 
attacker in Game Theory

• Optimal strategy for composition: Saddle 
points / Nash equilibria. Convex analysis



Quantitative Information Flow

• General problem: security and privacy


• Access control and encryption are not always sufficient: systems 
may leak sensitive information through their correlation with 
information available to the adversary (observables) 

• Observables: output of the system, public information, side 
information, physical aspects of the implementation,  etc.    

• QIF studies measures to assess the threats and techniques to 
mitigate the leakage due to correlation

Blood type:
Birth date:    
HIV:

AB
9/5/46
positive



Examples of Leakage via correlated observables

Election tabulation 
(Sicilian attack)

Execution time 
side channel attack

De-anonymization 
attackAlgorithm 

to link 
informationPublic 

voter list

Anonymized
Medical records

John Smith HIV



• A set of nodes with some 
communication channels (edges).

• One of the nodes (source) wants to 
broadcast one bit b of information

• The source (broadcaster) must 
remain anonymous

Example
Dining Cryptographers

(DC) [Chaum’88] 
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• Associate to each edge a binary 
coin

• Toss the coins

• Each node computes the binary 
sum of the incident edges.  The 
source adds b. They all broadcast 
their results

• Achievement of the goal:                             
Compute the total binary sum:       
it coincides with b 

b=1



• If the graph is connected and the coins 
are fair,  then for an external observer 
(who observes the declarations of the 
nodes, but cannot see the value of the 
coins),  the protocol satisfies strong 
anonymity: 

the a posteriori probability that a 
certain node is the source is equal to 
its a priori probability

• A priori / a posteriori =  before / after 
observing the declarations

• Note the use of randomization to 
obfuscate the link between secret and 
observables 

Strong anonymity (Chaum)
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Anonymity of DC Nets

Questions:  

What if the coins are biased ?  

- Does the protocol still protect the 
anonymity of the source ? To what extent ? 

- How to measure the leakage ?
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The basic model: 
Systems = Information-Theoretic channels

Observables

......

o1

on

System

Secret Information

Input Output

s1

sm



Probabilistic systems are noisy channels:   
an output can correspond to different inputs, and  
an input can generate different outputs, according to a prob. distribution 

p(oj|si):   the conditional probability to observe oj given the secret si

 

...

s1 o1

on

......
sm

p(o1|s1)

p(on|s1)



A channel is characterized by its matrix: the array of conditional probabilities 

In a information-theoretic channel these conditional probabilities are 
independent from the input distribution 

This means that we can model systems abstracting from the input 
distribution

......

s1

sm

o1 on

p(on|s1)p(o1|s1)

p(o1|sm) p(on|sm)

...

...

p(o|s) = p(o and s)

p(s)



Example: DC nets (ring of 3 nodes, b=1)
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Example: DC nets (ring of 3 nodes, b=1)

n2 111

Secret Information Observables
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Example: DC nets (ring of 3 nodes, b=1)

fair coins: Pr(0) = Pr(1) = ½
strong anonymity

biased coins:  Pr(0) = ⅔ , Pr(1) = ⅓
The source is more likely to declare 1 than 0
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010 100 111

¼ ¼ ¼ ¼
¼¼¼¼

¼ ¼ ¼ ¼
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Quantitative Information Flow

• Intuitively, the leakage is the (probabilistic) 
information that the adversary gains about the 
secret through the observables

• Each observable changes the prior probability 
distribution on the secret values into a posterior 
probability distribution according to the Bayes 
theorem (Bayesian update)

• In average, the information content (about the actual 
secret value)  of the posterior probability is more 
than or equal to the one of the prior



Bayesian update:  prior ⇒ posterior

26



Bayesian update:  prior ⇒ posterior
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Bayesian update:  prior ⇒ posterior
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Bayesian update:  prior ⇒ posterior
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If the raws are identical the distribution does not change
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Formal measures of leakage
Vulnerability  !(p) of a secret with prior p  

• Represents the “expected damage” the adversary can inflict by 
making his best guess about the secret value

• The exact definition depends on the operational model of adversary

• Common feature:  ! is convex on p 

• Convexity is a consequence of Data Processing Inequality

  Examples: 

1. (Converse of) Shannon entropy

repeated guesses

1. Bayes vulnerability:  !(p) = maxs p(s)

one guess (one-try attack)
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Posterior Vulnerability  !(p,C) of a secret with prior 
p  observed through a channel C

• Vulnerability of the secret after the adversary observes the output: 
the expected vulnerability of the posterior distributions

!(p,C) = ∑o p(o) !(p(·|o))

• Convex in p

Examples

Formal measures of leakage
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Convexity 

The defender may lower the vulnerability by randomly combining 
different channels 

Important: random protocols can always be seen as a random 
combination of deterministic protocols

!(p,C) is also convex in C  
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Convexity 
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Convexity 

The defender may lower the vulnerability by randomly combining 
different channels 

Important: random protocols can always be seen as a random 
combination of deterministic protocols

!(p,C) is also convex in C  

Example:  DC with 2 nodes,  2 biased coins
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The completely 
opaque channel



Active adversary

• The adversary may interfere with the system
• For instance, in the DC, the adversary may control one or 

more coins

• More typically, the adversary influences the system by 
changing the value of some inputs (low inputs)

• As a result, the adversary may change the 
channel matrix as well



Example: the two millionaires problem
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Reducing the vulnerability
Jeeves can run two different programs, both serving the 
purpose. 

Don sends to Jeeves a bit d indicating which program 
he should run 



Depending on the choices a (adversary) and d (defender), 
we get the following channel matrices:

This can be modeled as a 0-sum game, where the actions 
a and d are the pure strategies, and the payoff is the 
leakage (or equivalently, the posterior vulnerability). 

The adversary wants to maximize the vulnerability, while 
the defender wants to minimize it



Example: Posterior Bayes Vulnerability
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Payoff table
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Payoff table
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Similar to the 
game of the 
matching pennies

Example: Posterior Bayes Vulnerability



We want to find the optimal strategy (min !) for the defender, 
taking into account that the adversary will also try to optimize 
his strategy (max !)  

Nash Equilibrium:  we have a NE when neither player has any 
interest to change his strategy unilaterally
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We want to find the optimal strategy (min !) for the defender, 
taking into account that the adversary will also try to optimize 
his strategy (max !)  

Nash Equilibrium:  we have a NE when neither player has any 
interest to change his strategy unilaterally

Usually there is no pure NE, 
but there is always a mixed NE 
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V(p, q) = 2pq � p� q + 1
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The NE coincides with the Saddle Point 

When the partial derivatives exist,  
the  Saddle Point can be computed 
by imposing   @ V(p, q)
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In the example, the Saddle Point is for p = q = 1/2 
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Non-standard games

Assume now that Don wants to know the binary sum

Again, Jeeves has two programs and Don sends to 
Jeeves a bit d indicating which program he should run 



Corresponding channel matrices:

Payoff table From standard game theory the 
utility would be 1 and all strategies 
would be equivalent

However, in the case of our 
games,  the saddle point is   
( ½, ½ ), and the Utility is 1/2



In fact, if the probability of d = 0 is p (strategy of 
the defender), from the point of view of the 
adversary the channels are as follows

Clearly, the optimal strategy of the defender is for  
p = 1/2, which gives perfectly opaque channels 
whatever action the attacker chooses



Explanation
• The reason why we get different results than in 

standard game theory is because the standard 
utility function is defined as expectation, hence it is 
affine on the strategies of both players 

• In contrast, our games are convex on the strategy 
of the defender (and affine in that of the attacker)

• Van Neumann minimax theorem is still applicable

• Unfortunately, in general the partial derivatives do 
not exist

• However the saddle point can still be computed by 
convex analysis 



Conclusion

• Probabilistic composition of protocols can be useful 
to mitigate the Information leakage

• If the attacker is active, then the attacker also has 
interest to use a probabilistic strategy

• We can model the interplay defender-attacker in 
Game Theory

• The games are non-standard, but the optimal 
strategies still exist and can be computed by convex 
analysis



Future work
• Explore the relation with risk-adverse players

• The goals of the adversary and of the defender may 
be different  => non 0-sum games

• Both adversary and defender may have multiple 
goals => multiple utility games

• Repeated attacks (repeated runs of the protocol) 
=> repeated games

• Other kinds of interaction => Simultaneous vs 
alternate games

• Develop the theory of protocol composition 
(choice and sequential composition)



Thank you !

Questions?


