
A Component-oriented Framework
for Autonomous Agents

Tobias Kappé1(�), Farhad Arbab2,3, and Carolyn Talcott4

1 University College London, London, United Kingdom
tkappe@cs.ucl.ac.uk

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
3 LIACS, Leiden University, Leiden, The Netherlands

4 SRI International, Menlo Park, USA

Abstract. The design of a complex system warrants a compositional
methodology, i.e., composing simple components to obtain a larger system
that exhibits their collective behavior in a meaningful way. We propose
an automaton-based paradigm for compositional design of such systems
where an action is accompanied by one or more preferences. At run-time,
these preferences provide a natural fallback mechanism for the component,
while at design-time they can be used to reason about the behavior of the
component in an uncertain physical world. Using structures that tell us
how to compose preferences and actions, we can compose formal represen-
tations of individual components or agents to obtain a representation of
the composed system. We extend Linear Temporal Logic with two unary
connectives that reflect the compositional structure of the actions, and
show how it can be used to diagnose undesired behavior by tracing the
falsification of a specification back to one or more culpable components.

1 Introduction

Consider the design of a software package that steers a crop surveillance drone.
Such a system (in its simplest form, a single drone agent) should survey a field
and relay the locations of possible signs of disease to its owner. There are a
number of concerns at play here, including but not limited to maintaining an
acceptable altitude, keeping an eye on battery levels and avoiding birds of prey. In
such a situation, it is best practice to isolate these separate concerns into different
modules — thus allowing for code reuse, and requiring the use of well-defined
protocols in case coordination between modules is necessary. One would also like
to verify that the designed system satisfies desired properties, such as “even on a
conservative energy budget, the drone can always reach the charging station”.

In the event that the designed system violates its verification requirements or
exhibits behavior that does not conform to the specification, it is often useful to
have an example of such behavior. For instance, if the surveillance drone fails to
maintain its target altitude, an example of behavior where this happens could
tell us that the drone attempted to reach the far side of the field and ran out of
energy. Additionally, failure to verify an LTL-like formula typically comes with a

counterexample — indeed, a counterexample arises from the automata-theoretic
verification approach quite naturally [27]. Taking this idea of diagnostics one step
further in the context of a compositional design, it would also be useful to be
able to identify the components responsible for allowing a behavior that deviates
from the specification, whether this behavior comes from a run-time observation
or a design-time counterexample to a desired property. The designer then knows
which components should be adjusted (in our example, this may turn out to be
the route planning component), or, at the very least, rule out components that
are not directly responsible (such as the wildlife evasion component).

In this paper, we propose an automata-based paradigm based on Soft Con-
straint Automata [1,18], called Soft Component Automata (SCAs5). An SCA is a
state-transition system where transitions are labeled with actions and preferences.
Higher-preference transitions typically contribute more towards the goal of the
component; if a component is in a state where it wants the system to move
north, a transition with action north has a higher preference than a transition
with action south. At run-time, preferences provide a natural fallback mechanism
for an agent: in ideal circumstances, the agent would perform only actions with
the highest preferences, but if the most-preferred actions fail, the agent may be
permitted to choose a transition of lower preference. At design-time, preferences
can be used to reason about the behavior of the SCA in suboptimal conditions,
by allowing all actions whose preference is bounded from below by a threshold. In
particular, this is useful if the designer wants to determine the circumstances (i.e.,
threshold on preferences) where a property is no longer verified by the system.

Because the actions and preferences of an SCA reside in well-defined mathe-
matical structures, we can define a composition operator on SCAs that takes into
account the composition of actions as well as preferences. The result of composi-
tion of two SCAs is another SCA where actions and preferences reflect those of
the operands. As we shall see, SCAs are amenable to verification against formulas
in Linear Temporal Logic (LTL). More specifically, one can check whether the
behavior of an SCA is contained in the behavior allowed by a formula of LTL.

Soft Component Automata are a generalization of Constraint Automata [3].
The latter can be used to coordinate interaction between components in a
verifiable fashion [2]. Just like Constraint Automata, the framework we present
blurs the line between computation and coordination — both are captured by the
same type of automata. Consequently, this approach allows us to reason about
these concepts in a uniform fashion: coordination is not separate in the model, it
is effected by components which are inherently part of the model.

We present two contributions in this paper. First, we propose an compositional
automata-based design paradigm for autonomous agents that contains enough
information about actions to make agents behave in a robust manner — by which
we mean that, in less-than-ideal circumstances, the agent has alternative actions
available when its most desired action turns out to be impossible, which help it
achieve some subset of goals or its original goals to a lesser degree. We also put
forth a dialect of LTL that accounts for the compositional structure of actions

5 Here, we use the abbreviation SCA exclusively to refer to Soft Component Automata.

and can be used to verify guarantees about the behavior of components, as well as
their behavior in composition. Our second contribution is a method to trace errant
behavior back to one or more components, exploiting the algebraic structure
of preferences. This method can be used with both run-time and design-time
failures: in the former case, the behavior arises from the action history of the
automaton, in the latter case it is a counterexample obtained from verification.

In Section 2, we mention some work related to this paper; in Section 3 we
discuss the necessary notation and mathematical structures. In Section 4, we
introduce Soft Component Automata, along with a toy model. We discuss the
syntax and semantics of the LTL-like logic used to verify properties of SCAs in
Section 5. In Section 6, we propose a method to extract which components bear
direct responsibility for a failure. Our conclusions comprise Section 7, and some
directions for further work appear in Section 8. To save space, the proofs appear
in the technical report accompanying this paper [17]

Acknowledgements The authors would like to thank Vivek Nigam and the
anonymous FACS-referees for their valuable feedback. This work was partially
supported by ONR grant N00014–15–1–2202.

2 Related Work

The algebraic structure for preferences called the Constraint Semiring was pro-
posed by Bistarelli et al. [5,4]. Further exploration of the compositionality of such
structures appears in [10,13,18]. The structure we propose for modeling actions
and their compositions is an algebraic reconsideration of static constructs [14].

The automata formalism used in this paper generalizes Soft Constraint Au-
tomata [3,1]. The latter were originally proposed to give descriptions of Web
Services [1]; in [18], they were used to model fault-tolerant, compositional au-
tonomous agents. Using preference values to specify the behavior of autonomous
agents is also explored from the perspective of rewriting logic in the Soft Agent
Framework [25,26]. Recent experiments with the Soft Agent Framework show
that behavior based on soft constraints can indeed contribute robustness [20].

Sampath et al. [24] discuss methods to detect unobservable errors based
on a model of the system and a trace of observable events; others extended
this approach [9,22] to a multi-component setting. Casanova et al. [8] wrote
about fault localisation in a system where some components are inobservable,
based on which computations (tasks involving multiple components) fail. In these
paradigms, one tries to find out where a runtime fault occurs; in contrast, we try
to find out which component is responsible for undesired behavior, i.e., behavior
that is allowed by the system but not desired by the specification.

A general framework for fault ascription in concurrent systems based on
counterfactuals is presented in [11,12]. Formal definitions are given for failures in
a given set of components to be necessary and/or sufficient cause of a system
violating a given property. Components are specified by sets of sets of events

(analogous to actions) representing possible correct behaviors. A parallel (asyn-
chronous) composition operation is defined on components, but there is no notion
of composition of events or explicit interaction between components. A system is
given by a global behavior (a set of event sets) together with a set of system com-
ponent specifications. The global behavior, which must be provided separately,
includes component events, but may also have other events, and may violate
component specifications (hence the faulty components). In our approach, global
behavior is obtained by component composition. Undesired behavior may be
local to a component or emerge as the result of interactions.

In LTL, a counterexample to a negative result arises naturally if one em-
ploys automata-based verification techniques [21,27]. In this paper, we further
exploit counterexamples to gain information about the component or components
involved in violating the specification. The application of LTL to Constraint
Automata is inspired by an earlier use of LTL for Constraint Automata [2].

Some material in this paper appeared in the first author’s master’s thesis [16].

3 Preliminaries

If Σ is a set, then 2Σ denotes the set of subsets of Σ, i.e., the powerset of Σ. We
write Σ∗ for the set of finite words over Σ, and if σ ∈ Σ∗ we write |σ| for the
length of σ. We write σ(n) for the n-th letter of σ (starting at 0). Furthermore, let
Σω denote the set of functions from N to Σ, also known as streams over Σ [23].
We define for σ ∈ Σω that |σ| = ω (the smallest infinite ordinal). Concatenation
of a stream to a finite word is defined as expected. We use the superscript ω to
denote infinite repetition, writing σ = 〈0, 1〉ω for the parity function; we write Σπ

for the set of eventually periodic streams in Σω, i.e., σ ∈ Σω such that there exist
σh, σt ∈ Σ∗ with σ = σh · σωt . We write σ(k) with k ∈ N for the k-th derivative
of σ, which is given by σ(k)(n) = σ(k + n).

If S is a set and � : S × S → S a function, we refer to � as an operator on S
and write p� q instead of �(p, q). We always use parentheses to disambiguate
expressions if necessary. To model composition of actions, we need a slight
generalization. If R ⊆ S × S is a relation and � : R→ S is a function, we refer
to � as a partial operator on S up to R; we also use infix notation by writing
p� q instead of �(p, q) whenever pRq. If � : R→ S is a partial operator on S
up to R, we refer to � as idempotent if p � p = p for all p ∈ S such that pRp,
and commutative if p� q = q � p whenever p, q ∈ S, pRq and qRp. Lastly, � is
associative if for all p, q, r ∈ S, pRq and (p�q)Rr if and only if qRr and pR(q�r),
either of which implies that (p�q)�r = p� (q�r). When R = S×S, we recover
the canonical definitions of idempotency, commutativity and associativity.

A constraint semiring, or c-semiring, provides a structure on preference
values that allows us to compare the preferences of two actions to see if one
is preferred over the other as well as compose preference values of component
actions to find out the preference of their composed action. A c-semiring [5,4] is
a tuple 〈E,

⊕
,⊗,0,1〉 such that (1) E is a set, called the carrier, with 0,1 ∈ E,

(2)
⊕

: 2E → E is a function such that for e ∈ E we have that
⊕
∅ = 0 and

⊕
E = 1, as well as

⊕
{e} = e, and for E ⊆ 2E, also

⊕
{
⊕

(E) : E ∈ E} =
⊕⋃

E
(the flattening property), and (3) ⊗ : E×E→ E is a commutative and associative
operator, such that for e ∈ E and E ⊆ E, it holds that e⊗ 0 = 0 and e⊗ 1 = e
as well as e⊗

⊕
E =

⊕
{e⊗ e′ : e′ ∈ E}. We denote a c-semiring by its carrier; if

we refer to E as a c-semiring, associated symbols are denoted
⊕

E,0E, et cetera.
We drop the subscript when only one c-semiring is in context.

The operator
⊕

of a c-semiring E induces an idempotent, commutative and
associative binary operator ⊕ : E× E→ E by defining e⊕ e′ =

⊕
({e, e′}) The

relation ≤E ⊆ E×E is such that e ≤E e
′ if and only if e⊕ e′ = e′; ≤E is a partial

order on E, with 0 and 1 the minimal and maximal elements [4]. All c-semirings
are complete lattices, with

⊕
filling the role of the least upper bound operator [4].

Furthermore, ⊗ is intensive, meaning that for any e, e′ ∈ E, we have e⊗e′ ≤ e [4].
Lastly, when ⊗ is idempotent, ⊗ coincides with the greatest lower bound [4].

Models of a c-semiring include W =
〈
R≥0 ∪ {∞}, inf, +̂,∞, 0

〉
(the weighted

semiring), where inf is the infimum and +̂ is arithmetic addition generalized
to R≥0 ∪ {∞}. Here, ≤W coincides with the obvious definition of the order ≥
on R≥0 ∪ {∞}. Composition operators for c-semirings exist, such as product
composition [6] and (partial) lexicographic composition [10]. We refer to [18] for
a self-contained discussion of these composition techniques.

4 Component Model

We now discuss our component model for the construction of autonomous agents.

4.1 Component Action Systems

Observable behavior of agents is the result of the actions put forth by their
individual components; we thus need a way to talk about how actions compose.
For example, in our crop surveillance drone, the following may occur:

– The component responsible for taking pictures wants to take a snapshot,
while the routing component wants to move north. Assuming the camera is
capable of taking pictures while moving, these actions may compose into the
action “take a snapshot while moving north”. In this case, actions compose
concurrently, and we say that the latter action captures the former two.

– The drone has a single antenna that can be used for GPS and communications,
but not both at the same time. The component responsible for relaying
pictures has finished its transmission and wants to release its lock on the
antenna, while the navigation component wants to get a fix on the location
and requests use of the antenna. In this case, the actions “release privilege”
and “obtain privilege” compose logically, into a “transfer privilege” action.

– The routing component wants to move north, while the wildlife avoidance
component notices a hawk approaching from that same direction, and thus
wants to move south. In this case, the intentions of the two components are
contradictory; these component actions are incomposable, and some resolution
mechanism (e.g., priority) will have to decide which action takes precedence.

All of these possibilities are captured in the definition below.

Definition 1. A Component Action System (CAS) is a tuple 〈Σ,},�〉, such
that Σ is a finite set of actions, } ⊆ Σ×Σ is a reflexive and symmetric relation
and � : }→ Σ is an idempotent, commutative and associative operator on Σ up
to } (i.e., � is an operator defined only on elements of Σ related by }). We call
} the composability relation, and � the composition operator.

Every CAS 〈Σ,},�〉 induces a relation v on Σ, where for a, b ∈ Σ, a v b if and
only if there exists a c ∈ Σ such that a and c are composable (a} c) and they
compose into b (a� c = b). One can easily verify that v is a preorder; accordingly,
we call v the capture preorder of the CAS.

As with c-semirings, we may refer to a set Σ as a CAS. When we do, its
composability relation, composition operator and preorder are denoted by }Σ ,
�Σ and vΣ . We drop the subscript when there is only one CAS in context.

We model incomposability of actions by omitting them from the composability
relation; i.e., if south is an action that compels the agent to move south, while
north drives the agent north, we set south 6} north. Note that } is not necessarily
transitive. This makes sense in the scenarios above, where snapshot is composable
with south as well as north, but north is incomposable with south. Moreover,
incomposability carries over to compositions: if south} snapshot and south 6}
north, also (south� snapshot) 6} north. This is formalized in the following lemma.

Lemma 1. Let 〈Σ,},�〉 be a CAS and let a, b, c ∈ Σ. If a} b but a 6} c, then
(a� b) 6} c. Moreover, if a 6} c and a v b, then b 6} c.

The composition operator facilitates concurrent as well as logical composition.
Given actions obtain, release and transfer, with their interpretation as in the sec-
ond scenario, we can encode that obtain and release are composable by stipulating
that obtain} release, and say that their (logical) composition involves an exchange
of privileges by choosing obtain� release = transfer. Furthermore, the capture pre-
order describes our intuition of capturing: if snapshot and move are the actions of
the first scenario, with snapshot} north, then snapshot, north v snapshot� north.

Port Automata [19] contain a model of a CAS. Here, actions are sets of
symbols called ports, i.e., elements of 2P for some finite set P . Actions α, β ∈ 2P

are compatible when they agree on a fixed set γ ⊆ P , i.e., if α ∩ γ = β ∩ γ, and
their composition is α ∪ β. Similarly, we also find an instance of a CAS in (Soft)
Constraint Automata [3,1]; see [16] for a full discussion of this correspondence.

4.2 Soft Component Automata

Having introduced the structure we impose on actions, we are now ready to
discuss the automaton formalism that specifies the sequences of actions that are
allowed, along with the preferences attached to such actions.

Definition 2. A Soft Component Automaton (SCA) is a tuple
〈
Q,Σ,E,→, q0, t

〉
where Q is a finite set of states, with q0 ∈ Q the initial state, Σ is a CAS and

E is a c-semiring with t ∈ E, and → ⊆ Q×Σ × E×Q is a finite relation called
the transition relation. We write q a, e−−→ q′ when 〈q, a, e, q′〉 ∈ →.

An SCA models the actions available in each state of the component, how much
these actions contribute towards the goal and the way actions transform the state.
The threshold value restricts the available actions to those with a preference
bounded from below by the threshold, either at run-time, or at design-time when
one wants to reason about behaviors satisfying some minimum preference.

We stress here that the threshold value is purposefully defined as part of an
SCA, rather than as a parameter to the semantics in Section 4.4. This allows us
to speak of the preferences of an individual component, rather than a threshold
imposed on the whole system; instead, the threshold of the system arises from
the thresholds of the components, which is especially useful in Section 6.

We depict SCAs in a fashion similar to the graphical representation of finite
state automata: as a labeled graph, where vertices represent states and the edges
transitions, labeled with elements of the CAS and c-semiring. The initial state is
indicated by an arrow without origin. The CAS, c-semiring and threshold value
will always be made clear where they are germane to the discussion.

An example of an SCA is Ae, drawn in Figure 1; its CAS contains the
incomposable actions charge, discharge1 and discharge2, and its c-semiring is the
weighted semiring W. This particular SCA can model the component of the
crop surveillance drone responsible for keeping track of the amount of energy
remaining in the system; in state qn (for n ∈ {0, 1, . . . , 4}), the drone has n units
of energy left, meaning that in states q1 to q4, the component can spend one
unit of energy through discharge1, and in states q2 to q4, the drone can consume
two units of energy through discharge2. In states q0 to q3, the drone can try
to recharge through charge.6 Recall that, in W, higher values reflect a lower
preference (a higher weight); thus, charge is preferred over discharge1.

q0 q1 q2 q3 q4

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

discharge2, 5 discharge2, 5 discharge2, 5

Fig. 1. A component modeling energy management, Ae.

Here, Ae is meant to describe the possible behavior of the energy management
component only. Availability of the actions within the total model of the drone
(i.e., the composition of all components) is subject to how actions compose

6 This is a rather simplistic description of energy management. We remark that a more
detailed description is possible by extending SCAs with memory cells [15] and using a
memory cell to store the energy level. In such a setup, a state would represent a range
of energy values that determines the components disposition regarding resources.

with those of other components; for example, the availability of charge may
depend on the state of the component modelling position. Similarly, preferences
attached to actions concern energy management only. In states q0 to q3, the
component prefers to top up its energy level through charge, but the preferences
of this component under composition with some other component may cause
the composed preferences of actions composed with charge to be different. For
instance, the total model may prefer executing an action that captures discharge2
over one that captures charge when the former entails movement and the latter
does not, especially when survival necessitates movement.

Nevertheless, the preferences of Ae affect the total behavior. For instance,
the weight of spending one unit of energy (through discharge1) is lower than
the weight of spending two units (through discharge2). This means that the
energy component prefers to spend a small amount of energy before re-evaluating
over spending more units of energy in one step. This reflects a level of care: by
preferring small steps, the component hopes to avoid situations where too little
energy is left to avoid disaster.

4.3 Composition

Composition of two SCAs arises naturally, as follows.

Definition 3. Let Ai =
〈
Qi, Σ,E,→i, q

0
i , ti

〉
be an SCA for i ∈ {0, 1}. The

(parallel) composition of A0 and A1 is the SCA
〈
Q,Σ,E,→, q0, t0 ⊗ t1

〉
, denoted

A0 ./ A1, where Q = Q0 ×Q1, q0 =
〈
q00 , q

0
1

〉
, ⊗ is the composition operator of E,

and → is the smallest relation satisfying

q0 a0, e0−−−−→0
q′0 q1 a1, e1−−−−→1

q′1 a0} a1
〈q0, q1〉 a0 � a1, e0⊗e1−−−−−−−−−→ 〈q

′
0, q
′
1〉

In a sense, composition is a generalized product of automata, where composition
of actions is mediated by the CAS: transitions with composable actions manifest
in the composed automaton, as transitions with composed action and preference.

Composition is defined for SCAs that share CAS and c-semiring. Absent a
common CAS, we do not know which actions compose, and what their com-
positions are. However, composition of SCAs with different c-semirings does
make sense when the components model different concerns (e.g., for our crop
surveillance drone, “minimize energy consumed” and “maximize covering of
snapshots”), both contributing towards the overall goal. Earlier work on Soft
Constraint Automata [18] explored this possibility. The additional composition
operators proposed there can easily be applied to Soft Component Automata.

A state q of a component may become unreachable after composition, in
the sense that no state composed of q is reachable from the composed initial
state. For example, in the total model of our drone, it may occur that any state
representing the drone at the far side of the field is unreachable, because the
energy management component prevents some transition for lack of energy.

To discuss an example of SCA composition, we introduce the SCA As in
Figure 2, which models the concern of the crop surveillance drone that it should

take a snapshot of every location before moving to the next. The CAS of As

includes the pairwise incomposable actions pass, move and snapshot, and its c-
semiring is the weighted c-semiring W. We leave the threshold value ts undefined
for now. The purpose of As is reflected in its states: qY (respectively qN) represents
that a snapshot of the current location was (respectively was not) taken since
moving there. If the drone moves to a new location, the component moves to qN ,
while qY is reached by taking a snapshot. If the drone has not yet taken a snapshot,
it prefers to do so over moving to the next spot (missing the opportunity).7

qY qN

move, 0

snapshot, 0

move, 2
pass, 1

pass, 1

Fig. 2. A component modeling the desire to take a snapshot at every location, As.

We grow the CAS of Ae and As to include the actions move, move2, snapshot
and snapshot1 (here, the action αi is interpreted as “execute action α and account
for i units of energy spent”), and } is the smallest reflexive, commutative and
transitive relation such that the following hold: move} discharge2 (moving costs
two units of energy), snapshot} discharge1 (taking a snapshot costs one unit of
energy) and pass} charge (the snapshot state is unaffected by charging). We
also choose move� discharge2 = move2, snapshot� discharge1 = snapshot1 and
pass� charge = charge. The composition of Ae and Ae is depicted in Figure 3.

q0,N q1,N q2,N q3,N q4,N

q0,Y q1,Y q2,Y q3,Y q4,Y

charge, 1 charge, 1 charge, 1 charge, 1

charge, 1 charge, 1 charge, 1 charge, 1

move2 , 5
move2 , 5

move2 , 5
sn
ap
sh
ot 1

, 2

sn
ap
sh
ot 1

, 2

sn
ap
sh
ot 1

, 2

sn
ap
sh
ot 1

, 2

move2, 7 move2, 7 move2, 7

Fig. 3. The composition of the SCAs Ae and As, dubbed Ae,s: a component modeling
energy and snapshot management. We abbreviate pairs of states 〈qi, qj〉 by writing qi,j .

The structure of Ae,s reflects that of Ae and As; for instance, in state q2,Y
two units of energy remain, and we have a snapshot of the current location. The
same holds for the transitions of Ae,s; for example, q2,N

snapshot1, 2−−−−−−−→ q1,Y is the

result of composing q2
discharge1, 2−−−−−−−→ q1 and qN snapshot, 0−−−−−−→ qY .

7 A more detailed description of such a component could count the number of times
the drone has moved without taking a snapshot first, and assign the preference of
doing so again accordingly.

Also, note that in Ae,s the preference of the move2-transitions at the top of
the figure is lower than the preference of the diagonally-drawn move2-transitions.
This difference arises because the component transition in As of the former is
qN move, 2−−−−−→ qN , while that of the latter is qY move, 0−−−−−→ qN . As such, the preferences
of the component SCAs manifest in the preferences of the composed SCA.

The action snapshot1 is not available in states of the form qi,Y , because the
only action available in qY is pass, which does not compose into snapshot1.

4.4 Behavioral semantics

The final part of our component model is a description of the behavior of
SCAs. Here, the threshold determines which actions have sufficient preference for
inclusion in the behavior. Intuitively, the threshold is an indication of the amount
of flexibility allowed. In the context of composition, lowering the threshold of a
component is a form of compromise: the component potentially gains behavior
available for composition. Setting a lower threshold makes a component more
permissive, but may also make it harder (or impossible) to achieve its goal.

The question of where to set the threshold is one that the designer of the
system should answer based on the properties and level of flexibility expected
from the component; Section 5 addresses the formulation of these properties,
while Section 6 talks about adjusting the threshold.

Definition 4. Let A =
〈
Q,Σ,E,→, q0, t

〉
be an SCA. We say that a stream

σ ∈ Σω is a behavior of A when there exist streams µ ∈ Qω and ν ∈ Eω such
that µ(0) = q0, and for all n ∈ N, t ≤ ν(n) and µ(n) σ(n), ν(n)−−−−−−−→ µ(n + 1). The
set of behaviors of A, denoted by L(A), is called the language of A.

We note the similarity between the behavior of an SCA and that of Büchi-
automata [7]; we elaborate on this in the accompanying technical report [17].

To account for states that lack outgoing transitions, one could include implicit
transitions labelled with halt (and some appropriate preference) to an otherwise
unreachable “halt state”, with a halt self-loop. Here, we set for all α ∈ Σ that
halt}α and halt�α = halt. To simplify matters, we do not elaborate on this.

Consider σ = 〈snapshot,move,move〉ω and τ = 〈snapshot,move, pass〉ω. We
can see that when ts = 2, both are behaviors of As; when ts = 1, τ is a behavior
of As, while σ is not, since every second move-action in σ has preference 2.
More generally, if A and A′ are SCAs over c-semiring E that only differ in their
threshold values t, t′ ∈ E, and t ≤ t′, then L(A′) ⊆ L(A). In the case of Ae, the
threshold can be interpreted as a bound on the amount of energy to be spent in
a single action; if te < 5, then behaviors with discharge2 do not occur in L(Ae).

Interestingly, if A1 and A2 are SCAs, then L(A1 ./ A2) is not uniquely deter-
mined by L(A1) and L(A2). For example, suppose that te = 4 and ts = 1, and con-
sider L(Ae,s), which contains 〈snapshot〉 · 〈move, snapshot, charge, charge, charge〉ω
even though the corresponding stream of component actions in Ae, i.e., the stream
〈discharge1〉 · 〈discharge2, discharge1, charge, charge, charge〉

ω
is not contained in

L(Ae). This is a consequence of a more general observation for c-semirings, namely
that t ≤ e and t′ ≤ e′ is sufficient but not necessary to derive t⊗ t′ ≤ e⊗ e′.

5 Linear Temporal Logic

We now turn our attention to verifying the behavior of an agent, by means of a
simple dialect of Linear Temporal Logic (LTL). The aim of extending LTL is to
reflect the compositional nature of the actions. This extension has two aspects,
which correspond roughly to the relations v and }: reasoning about behaviors
that capture (i.e., are composed of) other behaviors, and about behaviors that are
composable with other behaviors. For instance, consider the following scenarios:

(i) We want to verify that under certain circumstances, the drone performs
a series of actions where it goes north before taking a snapshot. This is
useful when, for this particular property, we do not care about other actions
that may also be performed while or as part of going north, for instance,
whether or not the drone engages in communications while moving.

(ii) We want to verify that every behavior of the snapshot-component is com-
posable with some behavior that eventually recharges. This is useful when
we want to abstract away from the action that allows recharging, i.e., it is
not important which particular action composes with charge.

Our logic aims to accommodate both scenarios, by providing two new connectives:
�φ describes every behavior that captures a behavior validating φ, while }φ
holds for every behavior composable with a behavior validating φ.

5.1 Syntax and semantics

The syntax of the LTL dialect we propose for SCAs contains atoms, conjunctions,
negation, and the “until” and “next” connectives, as well as the unary connectives
} and �. Formally, given a CAS Σ, the language LΣ is generated by the grammar

φ, ψ ::= > | a ∈ Σ | φ ∧ ψ | φU ψ | X φ | ¬φ | �φ | }φ

As a convention, unary connectives take precedence over binary connectives.
For example, �φU ¬ψ should be read as (�φ)U(¬ψ). We use parentheses to
disambiguate formulas where this convention does not give a unique bracketing.

The semantics of our logic is given as a relation |=Σ between Σω and LΣ ; to
be precise, |=Σ is the smallest such relation that satisfies the following rules

σ ∈ Σω

σ |=Σ >
σ ∈ Σω

σ |=Σ σ(0)

σ |=Σ φ σ |=Σ ψ

σ |=Σ φ ∧ ψ

n ∈ N ∀k < n. σ(k) |=Σ φ σ(n) |=Σ ψ

σ |=Σ φU ψ

σ(1) |=Σ φ

σ |=Σ X φ

σ 6|=Σ φ

σ |=Σ ¬φ
σ |=Σ φ σ vω τ

τ |=Σ �φ
σ |=Σ φ σ}ω τ

τ |=Σ }φ

in which vω and }ω are the pointwise extensions of the relations v and }, i.e.,
σ vω τ when, for all n ∈ N, it holds that σ(n) v τ(n), and similarly for }ω.

Although the atoms of our logic are formulas of the form φ = a ∈ Σ that
have an exact matching semantics, in general one could use predicates over Σ.
We chose not to do this to keep the presentation of examples simple.

The semantics of } and � match their descriptions: if σ ∈ Σω is described
by φ (i.e., σ |=Σ φ) and τ ∈ Σω captures this σ at every action (i.e., σ vω τ),
then τ is a behavior described by �φ (i.e., τ |=Σ �φ). Similarly, if ρ ∈ Σω is
described by φ (i.e., ρ |=Σ φ), and this ρ is composable with σ ∈ σω at every
action (i.e., σ}ω ρ), then ρ is described by }φ (i.e., ρ |=Σ }φ).

As usual, we obtain disjunction (φ ∨ ψ), implication (φ→ψ), “always” (�φ)
and “eventually” (♦φ) from these connectives. For example, ♦φ is defined as

>U φ, meaning that, if σ |=Σ ♦φ, there exists an n ∈ N such that σ(n) |=Σ φ.
The operator } has an interesting dual that we shall consider momentarily.

We can extend |=Σ to a relation between SCAs (with underlying c-semiring
E and CAS Σ) and formulas in LΣ , by defining A |=Σ φ to hold precisely when
σ |=Σ φ for all σ ∈ L(A). In general, we can see that fewer properties hold as the
threshold t approaches the lowest preference in its semiring, as a consequence of
the fact that decreasing the threshold can only introduce new (possibly undesired)
behavior. Limiting the behavior of an SCA to some desired behavior described
by a formula thus becomes harder as the threshold goes down, since the set of
behaviors exhibited by that SCA is typically larger for lower thresholds.

We view the tradeoff between available behavior and verified properties as
essential and desirable in the design of robust autonomous systems, because it
represents two options available to the designer. On the one hand, she can make
a component more accommodating in composition (by lowering the threshold,
allowing more behavior) at the cost of possibly losing safety properties. On the
other hand, she can restrict behavior such that a desired property is guaranteed,
at the cost of possibly making the component less flexible in composition.

Example: no wasted moves Suppose we want to verify that the agent never misses
an opportunity to take a snapshot of a new location. This can be expressed by

φw = ��(move→X(¬moveU snapshot))

This formula reads as “every behavior captures that, at any point, if the cur-
rent action is a move, then it is followed by a sequence where we do not
move until we take a snapshot”. Indeed, if te ⊗ ts = 5, then Ae,s |=Σ φw,
since in this case every behavior of Ae,s captures that between move-actions
we find a snapshot-action. However, if te ⊗ ts = 7, then Ae,s 6|=Σ φw, since
〈move2,move2, charge, charge, charge, charge〉ω would be a behavior of Ae,s that
does not satisfy φw, as it contains two successive actions that capture move.8

This shows the primary use of �, which is to verify the behavior of a component
in terms of the behavior contributed by subcomponents.

Example: verifying a component interface Another application of the operator }
is to verify properties of the behavior composable with a component. Suppose we

8 Recall that move2 is the composition of move and discharge2, i.e., move v move2.

want to know whether all behaviors composable with a behavior of A validate φ.
Such a property is useful, because it tells us that, in composition, A filters out
the behaviors of the other operand that do not satisfy φ. Thus, if every behavior
that composes with a behavior of A indeed satisfies φ, we know something about
the behavior imposed by A in composition. Perhaps surprisingly, this use can be
expressed using the }-connective, by checking whether A |=Σ ¬}¬φ holds; for
if this is the case, then for all σ, τ ∈ Σω with σ a behavior of A and σ}ω τ , we
know that σ 6|=Σ }¬φ, thus in particular τ 6|=Σ ¬φ and therefore τ |=Σ φ.

More concretely, consider the component Ae. From its structure, we can tell
that the action charge must be executed at least once every five moves. Thus,
if τ is composable with a behavior of Ae, then τ must also execute some action
composable with charge once every five moves. This claim can be encoded by

φc = ¬}¬�
(
X } charge ∨X2} charge ∨ · · · ∨X5} charge

)
where Xn denotes repeated application of X. If Ae |=Σ φc, then every behavior
of Ae is incomposable with behavior where, at some point, one of the next five
actions is not composable with with charge. Accordingly, if σ ∈ Σω is composable
with some behavior of Ae, then, at every point in σ, one of the next five actions
must be composable with charge. All behaviors that fail to meet this requirement
are excluded from the composition.

5.2 Decision procedure

We developed a procedure to decide whether A |=Σ φ holds for a given SCA A
and φ ∈ LΣ . To save space, the details of this procedure, which involve relating
SCAs to Büchi-automata, appear in the accompanying technical report; the main
results are summarized below.

Proposition 1. Let φ ∈ LΣ. Given an SCA A and CAS Σ, the question whether
A |=Σ φ is decidable. In case of a negative answer, we obtain a stream σ ∈ Σπ

such that σ ∈ L(A) but σ 6|=Σ φ. The total worst-case complexity is bounded by

a stack of exponentials in |φ|, i.e., 2.
..
|φ|

, whose height is the maximal nesting
depth of � and } in φ, plus one.

This complexity is impractical in general, but we suspect that the nesting depth
of � and } is at most two for almost all use cases. We exploit the counterexample
in Section 6.

6 Diagnostics

Having developed a logic for SCAs as well as its decision procedure, we investigate
how a designer can cope with undesirable behavior exhibited by the agent, either
as a run-time behavior σ, or as a counterexample σ to a formula found at design-
time (obtained through Proposition 1). The tools outlined here can be used by
the designer to determine the right threshold value for a component given the
properties that the component (or the system at large) should satisfy.

6.1 Eliminating undesired behavior

A simple way to counteract undesired behavior is to see if the threshold can
be raised to eliminate it — possibly at the cost of eliminating other behavior.
For instance, in Section 5.1, we saw a formula φw such that Ae,s 6|=Σ φw, with
counterexample σ = 〈move2,move2, charge, charge, charge, charge〉ω, when te ⊗
ts = 7. Since all move2-labeled transitions of Ae,s have preference 7, raising9

te ⊗ ts to 5 ensures that σ is not present in L(Ae,s); indeed, if te ⊗ ts = 5,
then Ae,s |=Σ φw. We should be careful not to raise the threshold too much: if
te ⊗ ts = 0, then L(Ae,s) = ∅, since every behavior of Ae,s includes a transition
with a non-zero weight — with threshold te ⊗ ts = 0, Ae,s |=Σ ψ holds for any ψ.

In general, since raising the threshold does not add new behavior, this does
not risk adding additional undesired behavior. The only downside to raising
the threshold is that it possibly eliminates desirable behavior. We define the
diagnostic preference of a behavior as a tool for finding such a threshold.

Definition 5. Let A =
〈
Q,Σ,E,→, q0, t

〉
be an SCA, and let σ ∈ Σπ ∪Σ∗. The

diagnostic preference of σ in A, denoted dA(σ), is calculated as follows:

1. Let Q0 be {q0}, and for n < |σ| set Qn+1 = {q′ : q ∈ Qn, q σ(n), e−−−−→ q′}.
2. Let ξ ∈ Eπ ∪ E∗ be the stream such that ξ(n) =

⊕
{e : q ∈ Qn, q σ(n), e−−−−→ q′}.

3. dA(σ) =
∧
{ξ(n) : n ≤ |σ|}, with

∧
the greatest lower bound operator of E.

Since σ is finite or eventually periodic, and Q is finite, ξ is also finite or
eventually periodic. Consequently, dA(σ) is computable.

Lemma 2. Let A =
〈
Q,Σ,E,→, q0, t

〉
be an SCA, and let σ ∈ Σπ ∪ Σ∗. If

σ ∈ L(A), or σ is a finite prefix of some τ ∈ L(A), then t ≤E dA(σ).

Since dA(σ) is a necessary upper bound on t when σ is a behavior of A, it
follows that we can exclude σ from L(A) if we choose t such that t 6≤E dA(σ). In
particular, if we choose t such that dA(σ) <E t, then σ 6∈ L(A). Note that this
may not always be possible: if dA(σ) is 1 then such a t does not exist.

Note that there may be another threshold (i.e., not obtained by Lemma 2),
which may also eliminate fewer desirable behaviors. Thus, while this lemma gives
helps to choose a threshold to exclude some behaviors, it is not a definitive guide.
The accompanying technical report [17] contains a concrete example.

6.2 Localizing undesired behavior

One can also use the diagnostic preference to identify the components that are
involved in allowing undesired behavior. Let us revisit the first example from
Section 5.1, where we verified that every pair of move-actions was separated by
at least one snapshot action, as described in φw. Suppose we choose te = 10 and
ts = 1; then te ⊗ ts = 11, thus σ = 〈move2, charge, charge〉ω ∈ L(As), meaning
Ae,s 6|=Σ φw. By Lemma 2, we find that 11 = te,s = te ⊗ ts ≤W dAe,s(σ) = 7. Even

9 Recall that 7 ≤W 5, so 5 is a “higher” threshold in this context.

if As’s threshold were as strict as possible (i.e., ts = 0 = 1W), we would find that
te ⊗ ts ≤W dAe,s(σ), meaning that we cannot eliminate σ by changing ts only. In
some sense, we could say that te is responsible for σ.10

More generally, let (Ai)i∈I be a finite family of automata over the c-semiring
E with thresholds (ti)i∈I . Furthermore, let A = ./i∈IAi and let ψ be such that
A 6|=Σ ψ, with counterexample behavior σ. Suppose now that for some J ⊆ I,
we have

⊗
i∈J ti ≤E dA(σ). Since ⊗ is intensive, we furthermore know that⊗

i∈I ti ≤E
⊗

i∈J ti. Therefore, at least one of ti for i ∈ J must be adjusted to
exclude the behavior σ from the language of ./i∈IAi.

We call (ti)i∈J suspect thresholds: some ti for i ∈ I must be adjusted to
eliminate σ; by extension, we refer to J as a suspect subset of I. Note that I may
have distinct and disjoint suspect subsets. If J ⊆ I is disjoint from every suspect
subset of I, then J is called innocent. If J is innocent, changing tj for some j ∈ J
(or even tj for all j ∈ J) alone does not exclude σ. Finding suspect and innocent
subsets of I thus helps in finding out which thresholds need to change in order
to exclude a specific undesired behavior.

Function FindSuspect (I):
M := ∅;
foreach i ∈ I do

if I \ {i} is suspect then
M := M ∪ FindSuspect(I \ {i});

end

end
if M = ∅ then

return {I};
else

return M ;
end

end
Algorithm 1: Algorithm to find minimal suspect subsets.

Algorithm 1 gives pseudocode to find minimal suspect subsets of a suspect
set I; we argue correctness of this algorithm in Theorem 1; for a proof, see [17].

Theorem 1. If I is suspect and dA(σ) < 1, then FindSuspect(I) contains
exactly the minimal suspect subsets of I.

In the case where dA(σ) = 1, it is easy to see that {{i} : i ∈ I} is the set of
minimal suspect subsets of I.

10 Arguably, Ae as a whole may not be responsible, because modifying the preference of
the move-loop on qN in As can help to exclude the undesired behavior as well. In our
framework, however, the threshold is a generic property of any SCA, and so we use
it as a handle for talking about localizing undesired behaviors to component SCAs.

In the worst case, every subset of I is suspect, and therefore the only minimal
suspect subsets are the singletons; in this scenario, there are O(|I|!) calculations
of a composed threshold value. Using memoization to store the minimal suspect
subsets of every J ⊆ I, the complexity can be reduced to O(2|I|).

While this complexity makes the algorithm seem impractical (I need not
be a small set), we note that the case where all components are individually
responsible for allowing a certain undesired behavior should be exceedingly rare in
a system that was designed with the violated concern in mind: it would mean that
every component contains behavior that ultimately composes into the undesired
behavior — in a sense, facilitating behavior that counteracts their interest.

7 Discussion

In this paper, we proposed a framework that facilitates the construction of
autonomous agents in a compositional fashion. We furthermore considered an
LTL-like logic for verification of the constructed models that takes their composi-
tional nature into account, and showed the added value of operators related to
composition in verifying properties of the interface between components. We also
provided a decision procedure for the proposed logic.

The proposed agents are “soft”, in that their actions are given preferences,
which may or may not make the action feasible depending on the threshold
preference. The designer can decrease this threshold to allow for more behavior,
possibly to accommodate the preferences of another component, or increase it to
restrict undesired behavior observed at run-time or counterexamples to safety
assertions found at design-time. We considered a simple method to raise the
threshold enough to exclude a given behavior, but which may overapproximate in
the presence of partially ordered preferences, possibly excluding desired behavior.

In case of a composed system, one can also find out which component’s
thresholds can be thought of as suspect for allowing a certain behavior. This
information can give the designer a hint on how to adjust the system — for
example, if the threshold of an energy management component turns out to
be suspect for the inclusion of undesired behavior, perhaps the component’s
threshold needs to be more conservative with regard to energy expenses to avoid
the undesired behavior. We stress that responsibility may be assigned to a set of
components as a whole, if their composed threshold is suspect for allowing the
undesired behavior, which is possible when preferences are partially ordered.

8 Further Work

Throughout our investigation, the tools for verification and diagnosis were driven
by the compositional nature of the framework. As a result, they apply not only
to the “grand composition” of all components of the system, but also to subcom-
ponents (which may themselves be composed of sub-subcomponents). What is
missing from this picture is a way to “lift” verified properties of subcomponents
to the composed system, possibly with a side condition on the interface between

the subcomponent where the property holds and the subcomponent representing
the rest of the system, along the lines of the interface verification in Section 5.1.

If we assume that agents have low-latency and noiseless communication
channels, one can also think of a multi-agent system as the composition of SCAs
that represent each agent. As such, our methods may also apply to verification
and diagnosis of multi-agent systems. However, this assumption may not hold.
One way to model this could be to insert “glue components” that mediate the
communication between agents, by introducing delay or noise. Another method
would be to introduce a new form of composition for loosely coupled systems.

Finding an appropriate threshold value also deserves further attention. In
particular, a method to adjust the threshold value at run-time, would be useful,
so as to allow an agent to relax its goals as gracefully as possible if its current
goal appears unachievable, and raise the bar when circumstances improve.

Lastly, the use soft constraints for autonomous agents is also being researched
in a parallel line of work [25], which employs rewriting logic. Since rewriting logic
is backed by powerful tools like Maude, with support for soft constraints [28], we
aim to reconcile the automata-based perspective with rewriting logic.

References

1. Arbab, F., Santini, F.: Preference and Similarity-Based Behavioral Discovery of
Services. In: Proc. Web Services and Formal Methods (WS-FM). pp. 118–133 (2012)

2. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and
verification of systems with exogenous coordination using Vereofy. In: Proc. Int.
Symp. on Leveraging Applications (ISoLA). pp. 97–111 (2010)

3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)

4. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming, LNCS, vol.
2962. Springer (2004)

5. Bistarelli, S., Montanari, U., Rossi, F.: Constraint solving over semirings. In: Proc.
Int. Joint Conference on Artificial Intelligence (IJCAI). pp. 624–630 (1995)

6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

7. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Logic, Methodology and Philosophy of Science. pp. 1–11. Stanford Univ. Press,
Stanford, Calif. (1962)

8. Casanova, P., Garlan, D., Schmerl, B.R., Abreu, R.: Diagnosing unobserved compo-
nents in self-adaptive systems. In: Proc. Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). pp. 75–84 (2014)

9. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols
for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems
10(1-2), 33–86 (2000)

10. Gadducci, F., Hölzl, M.M., Monreale, G.V., Wirsing, M.: Soft constraints for
lexicographic orders. In: Proc. Mexican Int. Conference on Artificial Intelligence,
MICAI. pp. 68–79 (2013)

11. Goessler, G., Astefanoaei, L.: Blaming in component-based real-time systems. In:
Proc. Embedded Software (EMSOFT). pp. 7:1–7:10 (2014)

12. Gößler, G., Stefani, J.: Fault ascription in concurrent systems. In: Proc. Trustworthy
Global Computing (TGC). pp. 79–94 (2015)

13. Hölzl, M.M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? Electr.
Notes Theor. Comput. Sci. 238(3), 189–205 (2009)

14. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In:
Proc. Symp. on Logical Foundations of Computer Science. pp. 163–180 (1989)

15. Jongmans, S.T., Kappé, T., Arbab, F.: Constraint automata with memory cells
and their composition. Sci. Comput. Program. 146, 50–86 (2017)

16. Kappé, T.: Logic for Soft Component Automata. Master’s thesis, Leiden Uni-
versity, Leiden, The Netherlands (2016), http://liacs.leidenuniv.nl/assets/
Masterscripties/CS-studiejaar-2015-2016/Tobias-Kappe.pdf

17. Kappé, T., Arbab, F., Talcott, C.: A component-oriented framework for autonomous
agents (2017), https://arxiv.org/abs/1708.00072

18. Kappé, T., Arbab, F., Talcott, C.L.: A compositional framework for preference-
aware agents. In: Proc. Workshop on Verification and Validation of Cyber-Physical
Systems (V2CPS). pp. 21–35 (2016)

19. Koehler, C., Clarke, D.: Decomposing port automata. In: Proc. ACM Symp. on
Applied Computing (SAC). pp. 1369–1373 (2009)

20. Mason, I.A., Nigam, V., Talcott, C., Brito, A.: A framework for analyzing adaptive
autonomous aerial vehicles. In: Proc. Workshop on Formal Co-Simulation of Cyber-
Physical Systems (CoSim) (2017)

21. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak Alternating Automata Give a Simple
Explanation of Why Most Temporal and Dynamic Logics are Decidable in Expo-
nential Time. In: Proc. Symp. on Logic in Computer Science (LICS). pp. 422–427
(1988)

22. Neidig, J., Lunze, J.: Decentralised diagnosis of automata networks. IFAC Proceed-
ings Volumes 38(1), 400–405 (2005)

23. Rutten, J.J.M.M.: A coinductive calculus of streams. Mathematical Structures in
Computer Science 15(1), 93–147 (2005)

24. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Failure diagnosis using discrete-event models. IEEE Trans. Contr. Sys. Techn. 4(2),
105–124 (1996)

25. Talcott, C.L., Arbab, F., Yadav, M.: Soft agents: Exploring soft constraints to model
robust adaptive distributed cyber-physical agent systems. In: Software, Services, and
Systems — Essays Dedicated to Martin Wirsing on the Occasion of His Retirement
from the Chair of Programming and Software Engineering. pp. 273–290 (2015)

26. Talcott, C.L., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis
of robust adaptive distributed cyber-physical systems. In: Formal Methods for the
Quantitative Evaluation of Collective Adaptive Systems - Int. School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM
2016. pp. 1–35 (2016)

27. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Proc.
Logics for Concurrency - Structure versus Automata (Banff Higher Order Workshop).
pp. 238–266 (1995)

28. Wirsing, M., Denker, G., Talcott, C.L., Poggio, A., Briesemeister, L.: A rewriting
logic framework for soft constraints. Electr. Notes Theor. Comput. Sci. 176(4),
181–197 (2007)

http://liacs.leidenuniv.nl/assets/Masterscripties/CS- studiejaar-2015-2016/Tobias-Kappe.pdf
http://liacs.leidenuniv.nl/assets/Masterscripties/CS- studiejaar-2015-2016/Tobias-Kappe.pdf
https://arxiv.org/abs/1708.00072

	A Component-oriented Framework for Autonomous Agents

