
Certi�cation of Work�ows in a Component-Based

Cloud of High Performance Computing Services

A. B. de Oliveira Dantas1, F. H. de Carvalho Junior1, and L. S. Barbosa2

1 MDCC, Universidade Federal do Ceará
Campus do Pici, Fortaleza, Brazil

{allberson,heron}@lia.ufc.br
2 HASLab INESC TEC & Universidade do Minho

Campus de Gualtar, Braga, Portugal
lsb@di.uminho.pt

Abstract. The orchestration of high performance computing (HPC)
services to build scienti�c applications is based on complex work�ows. A
challenging task consists of improving the reliability of such work�ows,
avoiding faulty behaviors that can lead to bad consequences in practice.
This paper introduces a certi�er component for certifying scienti�c work-
�ows in a certi�cation framework proposed for HPC Shelf, a cloud-based
platform for HPC in which di�erent kinds of users can design, deploy
and execute scienti�c applications. This component is able to inspect
the work�ow description of a parallel computing system of HPC Shelf

and check its consistency with respect to a number of safety and liveness
properties speci�ed by application designers and component developers.

1 Introduction

Contrariwise to other engineering disciplines, reliability is often disregarded in
current software development. Actually, testing and a posteriori empirical er-
ror detection dominate the practice of software industry, compared to formal
veri�cation and correct-by-construction techniques.

The problem is that software and computational systems are inherently com-
plex. Each line of code is a potential source of errors, and programs often exhibit
a huge number of potential states, making it di�cult to predict their behavior
and verify their properties in a rigorous way. This di�culty is more evident in
emerging heterogeneous computing environments in High Performance Comput-
ing (HPC), where concurrent programs are omnipresent.

Scienti�c Work�ow Management Systems (SWfMS) have been largely ap-
plied by scientists and engineers for the design, execution and monitoring of
reusable data processing task pipelines in scienti�c discovery and data analysis
[24]. In these systems, work�ows are commonly represented by components that
absorb all the orchestration logic required to solve a speci�c problem. Applica-
tions emerge by composition of work�ows and di�erent sorts of computational
components, usually provided in generic or tailored libraries. Increasing the relia-
bility of the available work�ows is considered a challenging task in the sense that

deadlocks must be avoided, crucial operations must be e�ectively executed, and
no faulty behaviors should be induced as a result of badly designed work�ows.

HPC Shelf is a proposal of a component-oriented platform to provide cloud-
based HPC services. It o�ers an environment to develop applications matching
the needs of specialists (i.e. experts on the relevant scienti�c or engineering
domain) who are supposed to deal with domain-speci�c, heavy computational
problems by orchestrating a set of parallel components tuned to classes of parallel
computing platforms. Orchestrations in HPC Shelf are driven by a SWfMS called
SAFe (Shelf Application Framework) [9]. Parallel computing systems implement
applications in HPC Shelf by composing components that address functional and
non-functional concerns, representing both hardware and software elements.

In such a scenario, this paper approaches the problem of certifying scienti�c
work�ows through the veri�cation of typical behavioral properties (e. g. safety
and liveness) they are expected to exhibit, therefore increasing their con�dence
levels. We are interested not only in discovering design errors on work�ows, but
also on improving their speci�cations based on the veri�cation results. This work
is based on a certi�cation framework [10] previously proposed by the authors for
HPC Shelf. Such a framework is basically a VaaS (Veri�cation-as-a-Service) plat-
form, where certi�er components can be created and connected to other (certi-
�able) components within a parallel computing system under design. Certi�er
components orchestrate a set of tactical components in certi�cation tasks. The
latter, on the other hand, encapsulate the functionalities of one or more exist-
ing veri�cation infrastructures, commonly composed of provers, model checkers
and other elements, and run on parallel computing platforms of HPC Shelf, for
accelerating the certi�cation process.

This paper proposes a new kind of certi�er components, designated by SWC2
(Scienti�c Work�ow Component Certi�er), for statically certifying work�ows of
parallel computing systems over the parallel computing infrastructure of HPC
Shelf. Some of the main patterns found in this class of work�ows and their veri-
�cation are discussed. The proposed approach is further illustrated by resorting
to a speci�c SWC2 component and a related tactical component, which encap-
sulates the mCRL2 veri�cation toolset.

Related work. Several studies on the formalization and veri�cation of busi-
ness work�ows have been proposed in literature. These include Event-Condition-
Action rules (triggers) [6, 14, 18], logic-based methods [3, 5, 23], Petri Nets [2, 1,
25] and State Charts [27]. The approach proposed here, however, is innovative
in the sense that no initiatives were found regarding the formalization and veri-
�cation of scienti�c work�ow patterns.

Paper structure. HPC Shelf is succinctly presented in Section 2. Section 3
presents an overview of the certi�cation framework. Section 4 introduces work-
�ow certi�ers. Section 5, in turn, discusses the way work�ows in HPC Shelf are
translated to behavioral models in mCRL2. The approach is illustrated with a
case study in Section 6. Finally, Section 7 concludes the paper.

2

2 HPC Shelf

HPC Shelf is a cloud computing platform for cloud-based HPC applications. It
receives problem speci�cations from specialist users and build computational so-
lutions for them. For that, the platform o�ers, to application providers, tools for
building parallel computing systems by orchestrating components that comply
to Hash, a model of intrinsically parallel components [7], representing both com-
putations (software) developed by component developers, and parallel computing
platforms (hardware) o�ered by platform maintainers. Specialists, providers, de-
velopers and maintainers are the stakeholders of HPC Shelf.

2.1 Component Kinds in HPC Shelf

HPC Shelf de�nes di�erent kinds of components: virtual platforms, representing
distributed-memory parallel computing platforms; computations, implement-
ing parallel algorithms by exploiting the features of a class of virtual platforms;
data sources, storing data that may interest to computations; connectors,
which couple a set of computations and data sources placed in distinct virtual
platforms; and bindings, for connecting service and action ports exported by
components for communication and synchronization of tasks, respectively.

A service binding connects a user to a provider port, allowing a component
to consume a service o�ered by another component. In turn, action bindings
connect a set of action ports that export the same set of action names. Two
actions of the same name whose action ports are connected in two components
execute when both components make them active at the same time (rendezvous).
Figure 1 depicts a scenario illustrating components and their bindings.

Fig. 1: Components in a hypothetical parallel computing system.

Components have a prede�ned action port, called LifeCycle which respond
to a number of actions for life-cycle control. Action resolve selects a component
implementation and a virtual platform for it, according to a system of contextual

3

contracts (see below). Action deploy deploys a selected component in a paral-
lel computing platform. Action instantiate instantiates a deployed component,
which becomes ready for communication with other components through service
and action ports. Finally, action release releases a component from the platform
on which it is instantiated, when it is no longer useful.

2.2 Architecture

The architecture of HPC Shelf is structured around three main elements, Front-
End, Core and Back-End, as described below.

The Front-End is SAFe (Shelf Application Framework) [9], a collection of Java
or C# classes and design patterns that providers use for deriving applications.
They use SAFe Scienti�c Work�ow Language (SAFeSWL) for specifying parallel
computing systems, divided into an architectural and an orchestration subsets.
The former is used to specify solution components and their bindings. The later
orchestrates them. The work�ow component of a parallel computing system is a
special connector that runs in SAFe for performing the SAFeSWL orchestration.

The Coremanages the life-cycle of components, o�ering services for developers
and maintainers register components and their contracts. For that, the Core
implements an underlying component resolution mechanism based on contextual
contracts. Applications access the services of the Core for resolving contracts and
deploying the components of their parallel computing systems.

The Back-End is a service o�ered by a maintainer to the Core for the deploy-
ment of virtual platforms. Once deployed, virtual platforms may communicate
directly with the Core for instantiating components, which become ready for
direct communication with applications through service and action bindings.

2.3 Contextual Contracts

HPC Shelf employs a system of contextual contracts [8] that separates interface
and implementation of components (abstract and concrete components, respec-
tively), so that one or more concrete components may exist in the Core's catalog
for a given abstract component. Di�erent components will meet di�erent as-
sumptions on the requirements of the host application and the features of the
parallel computing platforms where they can be instantiated (execution context).
For that, an abstract component has a contextual signature, composed of a set
of context parameters. In turn, a concrete component must be associated with
a type, i.e. a contextual contract, de�ned by an abstract component and a set
of context arguments that valuate its context parameters. During orchestration,
when the action resolve of a component is activated, a resolution procedure is
triggered to choose a concrete component matching the corresponding contract.

3 The Certi�cation Framework

We have proposed a certi�cation framework for components in HPC Shelf [10],
which introduced the kind of certi�er components. The connection between

4

a certi�er and a certi�able component is called certi�cation binding. It also in-
troduced the auxiliary kind of tactical components, for encapsulating proof
infrastructures orchestrated by certi�ers in veri�cation tasks.

3.1 Parallel Certi�cation Systems

A parallel certi�cation system is like a parallel computing system for performing
the certi�cation procedure of a certi�er component. It comprises a set of tactical
components, deployed in virtual platforms where the required veri�cation in-
frastructures are deployed; a certi�er component, which orchestrates the tactical
components through a work�ow written in TCOL (Tactical Component Orches-
tration Language); a set of certi�able components, linked to the certi�er through
certi�cation bindings. The certi�er runs on SAFe, like the work�ow component.

For a certi�able component to be certi�ed, one or more certi�er components
whose certi�cation ports are compatible to the certi�cation port of the certi�-
able component must be chosen from the catalog and connected to it through
certi�cation bindings. When the work�ow activates the new action certify in the
life-cycle port of the certi�able component, the parallel certi�cation system of
each certi�er performs its certi�cation procedure to certify it.

The certi�cation of a component with respect to a certi�er component is
idempotent, that is, it is executed once, even though certify is activated multiple
times in one or more applications. Each certi�er distinguish which properties it
may verify are either mandatory or optional. At the end of the certi�cation
process, the component is considered to be certi�ed with respect to the certi�er
component if all mandatory properties have been proven. If so, the component
receives a certi�cate with respect to the certi�er, which is registered in the catalog
of components in an unforgeable format. Finally, the certi�cation of a certi�able
component is a pre-requisite for running it in an application.

By supporting the association of multiple certi�able components to the same
certi�er, SAFe makes application providers able to optimize resources, by instan-
tiating a single parallel certi�cation system for all of them, instead of one for each
one of them. This is an important feature in a cloud computing environment.

3.2 Tactical Components

A tactical component represents a proof infrastructure, integrating a set of ver-
i�cation tools. It can perform a �ow of execution that includes receiving a code
written in the language it understands, execute validations, conversions and, �-
nally, verify properties on such a code. Tactical components are able to exploit
the parallelism features of their virtual platforms for accelerating veri�cations.

Besides the LifeCycle port, a tactical component has two other ports. Firstly,
it has a user service port, with the following operations: receiving the code of the
certi�able component from the certi�er component, possibly previously trans-
lated by the certi�er component into the language that the tactical component
understands; receiving from the certi�er component formal properties to be ver-
i�ed on that code; allowing the certi�er component to monitor the progress of

5

the veri�cation of properties; and returning to the certi�er the result of the ver-
i�cation process. Secondly, it has an action port called Verify, containing the
actions verify_perform, verify_conclusive and verify_inconclusive.

When verify_perform is activated, the tactical component starts the veri�ca-
tion process of the formal properties assigned to it. When this process �nishes,
it activates verify_conclusive, if the veri�cation result was conclusive for all
properties (true or false), or verify_inconclusive, meaning that the veri�cation
of one or more properties was inconclusive (null). The veri�cation of a property
is inconclusive when the tactical component is prevented in some way from ap-
plying its veri�cation technique to prove or refute the property. Such a situation
may occur when there is some infrastructure failure on the virtual platform that
places the tactical component, when the property is written in a format that
is not understood by the tactical component, or when the veri�cation timeout
of the veri�cation tool is reached. In such a case, the certi�er may restart the
veri�cation process for the failed tactical component.

4 The SWC2 Certi�er

If HPC Shelf can accommodate di�erent types of component certi�ers, it makes
sense to consider a speci�c type of certi�er addressing the veri�cation of proper-
ties of the application work�ow itself, rather than the functional properties of its
individual components. This section introduces such a certi�er � designated by
SWC2 (from Scienti�c Work�ow Certi�er Component). Its purpose is to certify
SAFeSWL work�ows through the veri�cation of a set of behavioural properties,
currently resorting to a single proof infrastructure � the mCRL2 tool.

But what are the relevant properties a scienti�c work�ow is expected to
comply? The question is addressed below, based on our own experience with
SAFe speci�cations and a recent state-of-the-art survey [9]. Other SWfMS, such
as Askalon [21], BPEL Sedna [26], Kepler [20], Pegasus [12], Taverna [28] and
Triana [17], were also investigated.

Firstly, scienti�c work�ows are typically coarse-grained, due to the sort of
specialized algorithms they perform. Such algorithms demand for intensive cal-
culations, possibly taking advantage of HPC techniques and infrastructures.
Coarse-grained components encapsulate most of the computational complexity
of scienti�c work�ows. Thus, orchestration languages aimed at the creation of
these work�ows generally o�er few constructors, often limited to plain versions
of sequencing, branching, iteration, parallelism and asynchronism.

On the other hand, scienti�c work�ows are usually represented by compo-
nents and execution dependencies among them, abstracting away from the com-
puting platforms on which they run. However, during the execution of a com-
ponent in a work�ow, resolution procedures may be applied to �nd out which
computing platform best �ts its requirements. Thus, it may be interesting to
verify statically if the computational actions of components are always activated
after the computing platforms where they are placed have been resolved.

6

Scienti�c work�ows usually adopt abstract descriptions of components, i.e.
they �x only interfaces exposing available operations, without associating the
component to a speci�c implementation. At an appropriate time of the work�ow
execution, a resolution procedure may be triggered for discovering an appropriate
component implementation. Thus, it is relevant to ensure that the activation of
computational actions of components is made after their e�ective resolution.

In order to minimize the waste of computational resources, the computing
platform where a component is placed may be instantiated only when the compo-
nent is strictly necessary and released when it is no longer needed. This pattern
introduces three operations in the life-cycle of components: deployment, which
installs the component implementation and possibly required libraries in the
target computing platform; instantiation, comprising the allocation of necessary
resources and con�guration of the runtime environment; and, �nally, releasing,
when resources assigned to the components are deallocated. The consistency of
the activation order of these operations may be statically veri�ed. Finally, note
that consistency checking of the life-cycle of components is supported by the
concrete work�ow certi�er SWC2Impl described in Section 4.1.

But other types of work�ows are also to be considered. Actually, in addition
to the work�ow component, which exogenously activates actions of the relevant
components, each of those has an internal work�ow that synchronizes with the
work�ow component for activating its computational operations. The composi-
tion of the application work�ow with the internal work�ows extracted from the
components' code may re�ne the veri�cation process, making possible to check
more specialized, useful properties.

Component internal work�ows recognized by HPC Shelf are those which en-
able/disable its actions. Each component work�ow of a component C consists of
a set of rules of the form:

C ::= act1 → act2↓ | > → act2↓ | act1 → act2 8 (component rule)

Let ActC be the set of all action names of any action port of a component C,
and let act1, act2 ∈ ActC . Rule act1 → act2↓ says that when act1 completes,
act1 is disabled and act2 enabled. In turn, the rule > → act2↓ means that act2 is
always enabled. Finally, rule act1 → act2 8 indicates that, on completion of act1,
act1 and act2 become disabled. Examples of component work�ows are presented
in the case study.

The orchestration of �ne-grained components is considered too expensive in
scienti�c work�ows. In general, the time required to make the component ready
(component resolution, deployment and instantiation) may exceed its e�ective
computation time. Thus, �ne-grained components with similar characteristics
may be grouped into a coarse-grained component, called a cluster component.
The activation of an action of a cluster component translates to the activation of
a work�ow responsible for activating each of the �ne-grained components. This
behavior may be incorporated into the work�ow veri�cation model for generating
a more accurate speci�cation of the computational system. Note that cluster
components in HPC Shelf are parallel ones, i.e. an activation of an action of a
cluster component is in fact a parallel activation of all corresponding actions in

7

the related �ne-grained components. An example of cluster component in the
case study below.

4.1 Formal Properties and Contextual Contracts

In general, properties can be divided in three classes: default, application and ad
hoc. Default properties are common to any work�ow. Typically, they include ab-
sence of deadlocks and in�nite loops, and life-cycle consistency. Their veri�cation
is enabled through the following contextual signature:

SWC2 [deadlock_absence = D : DAType,in�nite_loop_absence = I : ILAType,
life_cycle_veri�cation = L : LCVType, ad_hoc_properties = A : AHType]

Context parameters deadlock_absence , in�nite_loop_absence and
life_cycle_veri�cation determines which sort of property is to be veri�ed.
Note that ad hoc properties are speci�ed by the user resorting to the formal
language supported by the certi�er and stored in the work�ow. The parameter
ad_hoc_properties determines whether these properties are accepted.

From the contextual signature of SWC2, a contextual contract can be de-
rived for concrete certi�ers. An example is the following contract of the concrete
certi�er SWC2Impl:

SWC2Impl : SWC2 [deadlock_absence = DeadlockAbsence,
in�nite_loop_absence = InfiniteLoopAbsence,
life_cycle_veri�cation = LifeCycleVerification,
ad_hoc_properties = AdHocProperties]

This means that SWC2Impl veri�es deadlock absence, in�nite loop absence
and life-cycle consistency, and accepts ad hoc properties. To accomplish this it
currently orchestrates a single tactical component, mCRL2, which extends the
contextual signature Tactical with a parameter version specifying a version
of the mCRL2 toolset:

Tactical [message_passing_interface = M : MPIType,
number_of_nodes = N : Integer, number_of_cores = C : Integer]

mCRL2 [version = V : VersionType, message_passing_interface = M : MPIType,
number_of_nodes = N : Integer, number_of_cores = C : Integer]
extends Tactical [message_passing_interface = M ,

number_of_nodes = N ,number_of_cores = C]

The parametermessage_passing_interface con�gures the message pass-
ing library used by the tactical component (e.g. MPI [13]). In turn, num-
ber_of_nodes and number_of_cores speci�es the (minimum) number of
processing nodes and cores per node that will be required for execution of the
tactical component. The orchestration performed by SWC2Impl is governed by
the TCOL fragment depicted in Figure 2.

Finally, mCRL2Impl is declared as a concrete tactical component encapsulat-
ing version 201409.1 of the mCRL2 toolset, implemented through the MPICH2
library 3 and resorting to at least four cores per processing node:

3 http://www.mpich.org/

8

0 <sequence>
1 <perform action="resolve" id_port="mCRL2-life-cycle"/>
2 <perform action="deploy" id_port="mCRL2-life-cycle"/>
3 <perform action="instantiate" id_port="mCRL2-life-cycle"/>
4 <perform action="verify_perform" id_port="mCRL2-verify"/>
5 <perform action="release" id_port="mCRL2-life-cycle"/>
6 </sequence>

Fig. 2: The orchestration code of the certi�er SWC2Impl in TCOL.

mCRL2Impl : mCRL2 [version = 201409.1,
message_passing_interface = MPICH2, number_of_cores = 4]

In SWC2Impl, the contextual contract of the inner mCRL2 tactical compo-
nent makes mCRL2Impl a possible candidate, since it only requires MPI:

mCRL2 [message_passing_interface = MPI]

For certifying a work�ow, the provider must create, using the architectural
subset of SAFeSWL, a certi�cation binding between the work�ow component
and a SWC2 component, represented by a contract like

SWC2 [deadlock_absence = DeadlockAbsence, ad_hoc_properties = AdHocProperties]

This contract declares that the provider looks for a certi�er that veri�es dead-
lock absence and accepts ad hoc properties. Clearly, SWC2Impl is a candidate.

The certi�er component determines which default and application properties
are either optional or mandatory, and providers determine this for ad hoc ones.

5 Translating SAFeSWL to mCRL2

The veri�cation of a SAFeSWL work�ow requires its translation to the speci�c
notation of the tactical component which will take care of it. As explained above,
mCRL2 [15, 16] was chosen here to support work�ow veri�cation. System behav-
iors in mCRL2 are speci�ed in a process algebra reminiscent of ACP [4]. Processes
are built from a set of user-declared actions and a small number of combina-
tors including multi-action synchronization, sequential, alternative and parallel
composition, and abstraction operators (namely, action relabeling, hiding and
restriction). Actions can be parameterized by data and conditional constructs,
giving support to conditional, or data-dependent, systems' behaviors. Data is
de�ned in terms of abstract, equational data types [22]; behaviors, on the other
hand, are given operationally resorting to labeled transition systems.

mCRL2 provides a modal logic with �xed points, extending Kozen's propo-
sitional modal µ-calculus [19] with data variables and quanti�cation over data
domains. The �exibility attained by nesting least and greatest �xpoint operators
with modal combinators allows for the speci�cation of complex properties. For
simplifying formulas, mCRL2 allows the use of regular expressions over the set of
actions as possible labels of both necessity and eventuality modalities. The use
of regular expressions provides a set of macros for property speci�cation which
are enough in practical situations.

9

T ::= L | G | T1;T2 | T1||T2 | repeat T (task)

L ::= act | break | continue | start(h, act) | wait(h) | cancel(h) (literal)

G ::= act↓T | act↓T + G (guarded tasks)

Fig. 3: Formal Grammar of the Orchestration Subset of SAFeSWL.

(big-step)

state
x−→ state′′ state′′

xs
=⇒ state′

state
x·xs
==⇒ state′

(action)
a ∈ E

〈a, T, E, L, S, F 〉 a−→ 〈T, stop, E, L, S, F 〉

(parallel-left)

〈T1, stop, E, L, S, F 〉 xs
=⇒

〈
T ′1, R1, E

′, L′, S′, F ′
〉

〈T1||T2, T, E, L, S, F 〉
xs
=⇒

〈
(T ′1;R1||T2, T, E′, L′, S′, F ′

〉 (stop-par-left)
〈stop||T2, T, E, L, S, F 〉
−→ 〈T2, T, E, L, S, F 〉

(select-left)
a ∈ E

〈a↓T1 + G, T2, E, L, S, F 〉
−→ 〈T1, T2, E, L, S, F 〉

(select-right)
a /∈ E 〈G, T2, E, L, S, F 〉 −→ 〈T3, T2, E, L, S, F 〉

〈a↓T1 + G, T2, E, L, S, F 〉
−→ 〈T3, T2, E, L, S, F 〉

(sequence)
〈(T1;T2), T, E, L, S, F 〉
−→ 〈T1, (T2;T), E, L, S, F 〉

(repeat)
〈repeat T1, T2, E, L, S, F 〉
−→ 〈T1, stop, E, (T1, T2) · L, S, F 〉

(continue)
〈continue, T, E, (Ti, Tf) · L, S, F 〉
−→ 〈Ti, T, E, (Ti, Tf) · L, S, F 〉

[2mm] (break)
〈break, T, E, (Ti, Tf) · L, S, F 〉
−→ 〈Tf , stop, E, L, S, F 〉

(start)
a ∈ E fresh(h)

〈start(a, h), T, E, L, S, F 〉
start(a,h)−−−−−−−→ 〈T, stop, E, L, S ∪ {(a, h)}, F 〉

(wait)
h ∈ F

〈wait(h), T, E, L, S, F 〉
−→ 〈T, stop, E, L, S, F 〉

(�nish)
(a, h) ∈ S

〈T1, T2, E, L, S, F 〉
(a,h)−−−−→ 〈T1, T2, E, L, S − {(a, h)}, F ∪ {h}〉

(cancel)
(a, h) ∈ S

〈cancel(h), T, E, L, S, F 〉
−→ 〈T, stop, E, L, S − {(a, h)}, F 〉

Note: rules (parallel-right) and (stop-par-right) are omitted in this �gure, since they are
symmetric to (parallel-left) and (stop-par-left), respectively.

Fig. 4: Operational semantics of the orchestration subset of SAFeSWL.

10

5.1 The Translation Process

The translation process follows directly the operational rules (Figure 4) de�ned
for a formal version of the orchestration subset of SAFeSWL (Figure 3).

Let W be the work�ow component of a parallel computing system. In such
a grammar, c ranges over component identi�ers, h ranges over naturals and
act ∈ ActW . For each component, we assume a minimal set of work�ow actions,
including life cycle ones ({resolvec, deployc, instantiatec, releasec} ⊆ ActW).

The semantics of W consists of a task TW , given by the rules in Figure 4,
and initial state 〈TW , stop, ∅, ∅, ∅, ∅〉. The symbol stop denotes task completion.
Each execution state consists of a tuple 〈T1, T2, E, L, S, F 〉, where T1 is the next
task to be evolved; T2 is the following task to be evolved; E are the actions
enabled in the components; L is a stack of pairs with the beginning and the end
of the repeat blocks scoping the current task; S is a set of pairs with actions
asynchronously activated that have not yet been �nished and their handles; and
F is a set of handles associated to �nished asynchronous actions.

For simplicity, the behavior imposed by the internal work�ows of components
is omitted, which enable/disable their actions and directly manipulate E.

Rule big-step denotes a big-step transition relation between execution states.
Rule action states that a state containing the activation of an enabled action
causes the system to observe the action and go to the state in which the next
task is evaluated. Rule sequence indicates sequential evaluation of tasks. Rule
(parallel-left) states that if a stateX with a task T1 leads to any state Y in any
number of steps, the parallelization of T1 with a task T2, starting from X, leads
to Y , however propagating the parallelism to the next task. Rule stop-par-left
denotes parallel termination (join). Rule select-left indicates that the acti-
vated action must be enabled. Rule select-right states that a disabled action
may not be activated. Rule repeat performs a task T1 and stores in L the iter-
ation beginning and end tasks, which are performed, respectively, through rules
continue and break. Rule start says that an enabled action and a handle not
yet used can be associated and added to S, emitting an action to the system
(start(A, h)). Rule finish indicates that an action asynchronously activated can
actually occur, having its handle registered in F and emitting an action to the
system ((a,h)). Rule wait states that waiting for a �nished asynchronous action
has no e�ect. Finally, rule cancel cancels an asynchronous action.

We may now brie�y present an informal description of the translation pro-
cess. Rule (action) states that every SAFeSWL action is an observable mCRL2
action. Rule (sequence) states that a sequence of two tasks in SAFeSWL is trans-
lated by the sequential composition of the corresponding translations. Rules
(parallel-left) and (parallel-right) mean that the translation of a set of
parallel tasks takes place by the creation of mCRL2 processes in a fork-join
paradigm. Rules (select-left) and (select-right) indicate the need for the
creation of mCRL2 processes that control the state (enabled/disabled) of ac-
tions. Rules (repeat), (continue) and (break) indicate, respectively, the need
for the creation of a mCRL2 process that manages a repetition task in order
to detect the need for a new iteration, the return back to the beginning of the

11

iteration, or the end of the iteration. Rule (start) states the need for the cre-
ation of an asynchronous mCRL2 process that will eventually perform the action.
Moreover, it is also needed to create a manager process that stores the state of
all actions started asynchronously (pending or �nished). Finally, rules (wait)
and (cancel) indicate the need for the communication with such a manager to,
depending on the state of the asynchronous action, block the calling process or
cancel the asynchronous process launched for the action.

5.2 Default Properties in mCRL2

The �rst default property is deadlock absence, speci�ed as DA : [true∗]〈true〉true,
i. e. there is always a possible next action at every point in the work�ow.

A work�ow that contains a repeat task may perform an in�nite loop when
a break is not reachable within its scope. We may check in�nite loop absence
(ILA) by verifying if all mCRL2 break(i) actions can occur from a certain point
on, where i is the index of the related repeat task, using the following formula:

ILA : ∀i : Nat .[true∗]〈true ∗ .break(i)〉true
The remaining properties express life-cycle restrictions in terms of precedence

relations speci�ed by formulas like

LC1 : ∀c : Nat .[!resolve(c) ∗ .deploy(c)]false

&& 〈true ∗ .resolve(c).!release(c) ∗ .deploy(c)〉true
This formula is applied to each component c, restricted to orchestrated com-

ponents in order to reduce the model checking search space. The �rst part of
the conjunction states that a deploy may not be performed before a resolve.
Note that ! stands for set complement, thus the expression [!a] false states that
all evolutions by an action di�erent from a are forbidden. The second part states
that a deploy may be performed, since a resolve has been performed before and
there is not a release between resolve and deploy. Similar restrictions may be
speci�ed for di�erent pairs of life-cycle actions using a similar pattern, such as:

LC2 : ∀c : Nat.[!deploy(c) ∗ .instantiate(c)]false
&& 〈true ∗ .deploy(c).!release(c) ∗ .instantiate(c)〉true

LC3 : ∀c, a : Nat.[!instantiate(c) ∗ .compute(c, a)]false
&& 〈true ∗ .instantiate(c).!release(c) ∗ .compute(c, a)〉true

LC4 : ∀c : Nat.[!instantiate(c) ∗ .release(c)]false
&& 〈true ∗ .instantiate(c).!release(c) ∗ .release(c)〉true

Here, compute(c, a) represents the computational action a of a component c,
declared in the architectural description of the work�ow.

6 A Case Study

MapReduce is a programming model implemented by a number of large-scale data
parallel processing frameworks, �rstly proposed by Google Inc. [11]. A user must
specify: a map function, which is applied by a set of parallel mapper processes

12

to each element of an input list of key/value pairs (KV-pairs), returning a set
of elements in an intermediary list of KV-pairs; and a reduce function, which is
applied by a set of parallel reducer processes to all intermediate values associated
with the same key across all mappers, yielding a list of output pairs.

Figure 5 depicts a simple example of MapReduce for processing a text con-
taining lines of words green, yellow, blue and pink. At the end of the processing,
the expected output is the number of occurrences of each color in the text.

Fig. 5: A classic example of word counting with MapReduce.

We have designed a framework of components for MapReduce computations
in HPC Shelf, comprising the following components: DataSource, a data source
that stores the input data structure; Mapper, a computation that implements
a set of parallel mapping agents; Reducer, a computation that implements a
set of parallel reducing agents; DataSink, a data source that stores the output
data structure, generated from the output pairs produced by the reducing agents;
Splitter, a connector that takes the list of input pairs from the data source
(�rst iteration) and outputs pairs generated by the reducing agents (produced
in the previous iteration) and either distributes them to the mapping agents
(to start a new iteration) or sends them to the data sink (to end the process);
and Shuffler is a connector that groups intermediate keys produced by the
mapping agents and redistributes them among the reducing agents.

Figure 6 depicts the architecture of a simple iterative MapReduce parallel
computing system. Each computation/connector has three ports: a user and
provider service port, from which they input KV-pairs and output KV-pairs, re-
spectively; and a single action port, called TaskChunk, for orchestrating tasks.
KV-pairs are transmitted (between splitter and shu�er) and processed (by map-
per and reducer) incrementally for optimizing communication granularity and
overlapping mapping and reducing phases in the same iteration.

TaskChunk has the three action names: chunk_ready, for signaling that a
new chunk of KV-pairs is available; read_chunk, for inputing KV-pairs from
the next chunk; perform, for processing the KV-pairs read from a chunk.

For our purposes, the contextual signatures of the abstract components and
the contextual contracts of the concrete components, whose instances were pre-
sented, can be omitted. The SAFeSWL work�ow script will be not shown here,
but it is available from http://www.lia.ufc.br/~allberson/swc2.

13

Fig. 6: The MapReduce architecture.

6.1 Internal Work�ows of MapReduce Components

The following simpli�ed version of the internal work�ows of MapReduce compo-
nents is enough for proving all properties relevant to this case study:

shuffler = mapper = reducer = combiner =

{> → resolve↓,> → deploy↓,> → instantiate↓,
> → read_chunk↓,> → perform↓, perform→ chunk_ready↓}

splitter = shuffler ∪ {> → read_source↓,> → write_sink↓,
perform → terminate↓}

6.2 Certi�cation of the MapReduce Work�ow

Consider the certi�cation architecture depicted in Figure 7. It contains a cer-
ti�cation binding linking the MapReduce work�ow to SWC2, containing the
valuation described in Section 4.1, which aims to choose SWC2Impl. When the
application is started by SAFe, a parallel certi�cation system is automatically
instantiated and executed. During the certi�cation process, SWC2Impl was cho-
sen, with mCRL2Impl, also described in Section 4.1, as its tactical component,
over a virtual platform containing 4 processing nodes. The result of the trans-
lation of the MapReduce work�ow into mCRL2 is available at www.lia.ufc.br/
~allberson/swc2.

6.3 MapReduce Ad Hoc Properties

The MapReduce ad hoc properties include a safety and a liveness group. The
former describes precedences of execution between two distinct components or
component actions. Two examples, among a list of 11, are shown for illustrative

14

Fig. 7: Certi�cation architecture for the MapReduce work�ow.

purposes. Note that the numbers in the formulas correspond to speci�c compo-
nent and action identi�ers, as they appear in the original SAFeSWL code.

SbM : [!compute(3, 352) ∗ .compute(5, 551)]false
MbC : [true ∗ .compute(5, 551).!compute(3, 352) ∗ .

compute(5, 551)]false

Property SbM states that the action read_chunk (551), of mapper (5), must be
preceded by the action perform (352), of splitter (3). On its turn, the second
property expresses that the action perform (352), of splitter (3), must occur
between two executions of the action read_chunk (551), of mapper (5).

The liveness group includes a broader ontology of properties. For example,

LIV1 : 〈true ∗ .guard(3, 342)〉 true
LIV2 : ∀c : Nat, a : Nat. νX.µY.[compute(c, a)]Y && [!compute(c, a)]X

LIV3 : [true∗](∀c : Nat, a : Nat => µY.([!compute(c, a)]Y && < true > true))

Property LIV1 ensures the existence of work�ow traces including the execution
of a particular action (terminate (342), of splitter (3)). The second property
expresses the fact that an action can only be executed along non consecutive
periods. Finally, LIV3 is a non starvation condition, that is, for every reachable
state it is possible to execute compute(c, a), for any possible value of c and a.
Note the quanti�cation over the work�ow components and actions.

The 20 formal properties (both default and ad hoc) veri�ed were distributed
among the 4 units of the tactical component, and proven. Figure 8 depicts the
average times for the certi�cation of the MapReduce work�ow, by varying the
number of processing nodes and processing cores per node. As expected a judi-
cious use of parallelism can cut the execution time in half in most cases.

15

Fig. 8: MapReduce work�ow certi�cation times.

7 Conclusions and Future Work

In the previous sections, we have made a case for the introduction, within a
platform for orchestrating parallel components, of a speci�c component whose
purpose is to verify behavioral properties of work�ow that link di�erent compo-
nents which make up an application. This has a re�exive character: a component
that contributes to certify the emergent orchestrated behavior in an application.

This idea was made concrete in the context of the HPC Shelf platform, in
which we characterized SWC2 � a scienti�c work�ow certi�er. The role of SWC2
within an application is clear: it increases the con�dence on the underlying work-
�ow speci�cation and may avoid anomalous or erroneous behaviours introduced
by design errors. Moreover, a relevant characteristic of the architecture proposed
for the certi�cation process resides in the fact that new tactical components
and work�ow certi�ers can be smoothly added, to deal with the veri�cation
of di�erent classes of properties. For example, the development of new tactical
components for SWC2, encapsulating other veri�cation tools, such as Uppaal or
Interactive Markov Chains, to deal with time constraints or probabilistic behav-
ior, respectively, is part of our current work.

The work�ow certi�er in HPC Shelf, as well as the underlying certi�ca-
tion framework, is still an ongoing project. However, an initial prototype was
developed in C#/MPI and validated through a number of benchmark exam-
ples in the development of scienti�c computing applications. The example dis-
cussed in this paper � MapReduce, available from github.com/UFC-MDCC-HPC/
HPC-Shelf-Certification � provides an interesting illustration.

In any case, the relevant message is conceptual, going beyond its concrete
implementation in the HPC Shelf platform. Actually, we believe that the notions
of work�ow certi�er, tactical component and parallel certi�cation system can be
successfully employed in the certi�cation of work�ows in widespread SWfMS,
such as Pegasus or Taverna.

16

References

1. Wil M. P. Van der Aalst. Veri�cation of work�ow nets. In Proceedings of the 18th
International Conference on Application and Theory of Petri Nets, pages 407�426.
Springer-Verlag, 1997.

2. Nabil R. Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling and anal-
ysis of work�ows using petri nets. Journal of Intelligent Information Systems,
10(2):131�158, 1998.

3. Paul Attie, Munindar Singh, Amit P. Sheth, and Marek Rusinkiewicz. Specifying
and enforcing intertask dependencies. In 19th International Conference on Very
Large Data Bases, August 24-27, 1993, Dublin, Ireland, Proceedings., pages 134�
145, 1993.

4. J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational
theories of communicating processes. Cambridge Tracts in Theoretical Computer
Science (50). Cambridge University Press, 2010.

5. Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Logic based modeling and analysis of work�ows. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 25�33. ACM, 1998.

6. Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. Organizing long-running activ-
ities with triggers and transactions. In ACM SIGMOD Record, volume 19, pages
204�214. ACM, 1990.

7. F. H. de Carvalho Junior, R.D Lins, R. C. Correa, and G. A. Araújo. Towards
an Architecture for Component-Oriented Parallel Programming. Concurrency and
Computation: Practice and Experience, 19(5):697�719, 2007.

8. Francisco Heron de Carvalho Junior, C. A. Rezende, J. C. Silva, and W. G. Al
Alam. Contextual abstraction in a type system for component-based high perfor-
mance computing platforms. Science of Computer Programming, 2016.

9. J. de Carvalho Silva and F. H. C. de Carvalho Junior. A platform of scienti�c
work�ows for orchestration of parallel components in a cloud of high performance
computing applications. In Programming Languages - 20th Brazilian Symposium,
SBLP 2016, Maringá, Brazil, September 22-23, 2016, Proceedings, pages 156�170,
2016.

10. A. B. de Oliveira Dantas, F. H. de Carvalho Junior, and L. Soares Barbosa. A
framework for certi�cation of large-scale component-based parallel computing sys-
tems in a cloud computing platform for hpc services. In Proceedings of the 7th
International Conference on Cloud Computing and Services Science - Volume 1:
CLOSER, pages 229�240. ScitePress, 2017.

11. Je�rey Dean and Sanjay Ghemawat. Mapreduce: simpli�ed data processing on
large clusters. Communications of the ACM, 51(1):107�113, 2008.

12. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, et al.
Pegasus: A framework for mapping complex scienti�c work�ows onto distributed
systems. Scienti�c Programming, 13(3):219�237, 2005.

13. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. An Introduction to the MPI
Standard. Technical Report CS-95-274, University of Tennessee, January 1995.

14. Xiang Fu, Tev�k Bultan, Richard Hull, and Jianwen Su. Veri�cation of vortex
work�ows. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, 7th International Conference, TACAS 2001, Genova, Italy, April 2-6, 2001,
Proceedings, pages 143�157, 2001.

17

15. J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerdenburg. The
formal speci�cation language mcrl2. In Methods for Modelling Software Systems:
Dagstuhl Seminar 06351, 2007.

16. J. F. Groote and M. R.. Mousavi. Modeling and Analysis of Communicating Sys-
tems. MIT Press, 2014.

17. Andrew Harrison, Ian Taylor, Ian Wang, and Matthew Shields. Ws-rf work�ow
in triana. International Journal of High Performance Computing Applications,
22(3):268�283, 2008.

18. Richard Hull, Francois Llirbat, Eric Siman, Jianwen Su, Guozhu Dong, Bharat
Kumar, and Gang Zhou. Declarative work�ows that support easy modi�cation
and dynamic browsing. ACM SIGSOFT Software Engineering Notes, 24(2):69�78,
1999.

19. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
(27):333�354, 1983.

20. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scienti�c work�ow
management and the kepler system. Concurrency and Computation: Practice and
Experience, 18(10):1039�1065, 2006.

21. Jun Qin, Thomas Fahringer, and Sabri Pllana. Uml based grid work�ow modeling
under askalon. In Proceedings of the Distributed and Parallel Systems: From Cluster
to Grid Computing (DAPSYS 2006). Springer, September 2006.

22. D. Sannella and A. Tarlecki. Foundations of Algebraic Speci�cations and Formal
Program Development. Cambridge University Press, 2011.

23. Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework for
scheduling work�ows under resource allocation constraints. In Proceedings of the
28th international conference on Very Large Data Bases, pages 694�705. VLDB
Endowment, 2002.

24. Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields. Work�ows
for e-Science: Scienti�c Work�ows for Grids. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

25. Wil M. P. Van der Aalst. The application of petri nets to work�ow management.
Journal of circuits, systems, and computers, 8(01):21�66, 1998.

26. Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick Cameron, Liang
Chen, and Jignesh Patel. Sedna: A BPEL-Based Environment for Visual Scienti�c
Work�ow Modeling, pages 428�449. Springer London, London, 2007.

27. Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed work�ow
execution based on state charts. In International Conference on Database Theory,
pages 230�246. Springer, 1997.

28. Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, et al. The Taverna work�ow suite: designing and executing work-
�ows of web services on the desktop, web or in the cloud. Nucleic Acids Research,
41(W1):W557, 2013.

18

