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Abstract. We introduce a novel framework for runtime enforcement of
safe executions in component-based systems with multi-party interac-
tions modeled using BIP. Our technique frames runtime enforcement as
a sequential decision making problem and presents two alternatives for
learning optimal strategies that ensure fairness between correct traces.
We target both finite and infinite state-spaces. In the finite case, we guar-
antee that the system avoids bad-states by casting the learning process
as a one of determining a fixed point solution that converges to the opti-
mal strategy. Though successful, this technique fails to generalize to the
infinite case due to need for building a dictionary, which quantifies the
performance of each state-interaction pair. As such, we further contribute
by generalizing our framework to support the infinite setting. Here, we
adapt ideas from function approximators and machine learning to encode
each state-interaction pairs’ performance. In essence, we autonomously
learn to abstract similar performing states in a relevant continuous space
through the usage of deep learning. We assess our method empirically
by presenting a fully implemented tool, so called RERL. Particularly, we
use RERL to: 1) enforce deadlock freedom on a dining philosophers bench-
mark, and 2) allow for pair-wise synchronized robots to autonomously
achieve consensus within a cooperative multi-agent setting.

1 Introduction

Building correct and efficient software systems in a timely manner is still a very
challenging task despite the existence of a plethora of techniques and meth-
ods. For instance, correctness can be ensured using static analysis such as model
checking [5,6,19] or dynamic analysis such as runtime verification [8]. Static anal-
ysis mainly suffers from state-space explosion whereas dynamic analysis suffers
from its accuracy (reachability cover) and efficiency. To overcome the problem
of state-space explosion, abstraction techniques [9] can be used, however, it has
the effect of false negatives. Moreover, software synthesis, correct-by-design, was
introduced to automatically generate implementation from high-level designs.
However, correct-by-design was proven to be NP-hard [17] in some cases and
undecidabile [18] in some main classical automatic synthesis problems. On the
other hand, developing implementations that are compliant with their specifica-
tions require a careful attention from designers and developers. Can we relax the



development process by giving the option to over-approximate the behaviors of
the implementations, i.e., introduce additional behaviors w.r.t. the given spec-
ification? This relaxation would drastically simplify the development process,
though it may introduce errors.

In this paper, we introduce a new runtime enforcement technique that takes
a software system with extra behaviors (w.r.t. a specification) and uses static
and dynamic techniques with the help of machine learning to synthesize more
accurate and precise behavior, i.e., remove the extra ones w.r.t. the given spec-
ification. We apply our method to component-based systems with multi-party
interactions modeled using BIP [1]. BIP (Behavior, Interaction and Priority)
allows to build complex systems by coordinating the behavior of atomic com-
ponents. BIP has a rigorous operational semantics: the behavior of a composite
component is formally described as the composition of the behaviors of its atomic
components. From a given state of the components, the operational semantics
define the next allowed interactions and their corresponding next states. D-
Finder [2] is used to verify the correctness of BIP systems. While D-Finder uses
compositional and abstraction techniques, it suffers from state-space explosion
and producing false negatives. Dynamic analysis techniques [7,4] are also pro-
posed for BIP systems. However, they only support a limited level of recovery.
A detailed comparison is discussed in the related work.

Our technique frames runtime enforcement as a sequential decision making
problem and presents two alternatives for learning optimal strategies that ensure
fairness between correct traces. That is, the policy should not avoid correct traces
from execution. We target both finite and infinite state-spaces. In the finite case,
we guarantee that the system avoids bad-states by casting the learning process
as a one of determining a fixed point solution that converges to the optimal
strategy. Though successful, this technique fails to generalize to the infinite case
due to need for building a dictionary, which quantifies the performance of each
state-interaction pair, i.e., reduce the non-determinism by only allowing interac-
tions leading to states that conform with the specifications. As such, we further
contribute by generalizing our framework to support the infinite setting. Here,
we adapt ideas from function approximators and machine learning to encode
each state-interaction pairs’ performance. In essence, we autonomously learn to
abstract similar performing states in a relevant continuous space through the
usage of deep learning. We assess our method empirically by presenting a fully
implemented version called RERL. Particularly, we use RERL to: 1) enforce dead-
lock freedom on a dining philosophers benchmark, and 2) allow for pair-wise
synchronized robots to autonomously achieve a consensus within a cooperative
multi-agent setting.

The remainder of this paper is structured as follows. Section 2 discusses
related work. Section 3 recall the necessary concepts of the BIP framework.
Section 4 presents our main contribution, a runtime enforcement framework for
component-based systems (finite and infinite state-space) using machine learn-
ing. Section 5 describes RERL, a full implementation of our framework and its



evaluation using two benchmarks. Section 6 draws some conclusions and per-
spectives.

2 Related work

Runtime enforcement of component-based systems has been introduced in [4] to
ensure the correct runtime behavior (w.r.t. a formal specification) of a system.
The authors define series of transformations to instrument a component-based
system described in the BIP framework. The instrumented system allows to ob-
serve and avoid any error in the behavior of the system. The proposed method
was fully implemented in RE-BIP. Although, contrarily to our method, the pro-
posed method is sound (i.e., it always avoids bad states), it mainly suffers from
two limitations. First, it only considers a 1-step recovery. That is, if the sys-
tem enters a correct state from which all the reachable states are bad states,
the method fails. Second, the instrumented system introduces a huge overhead
w.r.t. original behavior. This overhead would be drastically increased to support
more than 1-step recovery.

In [15,16], the authors introduced a predictive runtime enforcement frame-
work that allows to build an enforcement monitor with or without a-priori knowl-
edge of the system. The enforcement monitor ensures that the system complies
with a certain property, by delaying or modifying events. The proposed method
is theoretical and cannot be applied to real software systems as delaying or
modifying events would require an infinite memory and also is not practical in
software systems.

In [10], the authors proposed a game-theoretic method for synthesizing con-
trol strategies to maximize the resilience of software systems. The method al-
lows the system to not take transition leading to bad states using game-theoretic
method. Consequently, similar to RE-BIP, the proposed approach only allows a
1-step recovery. In other words, they need to do a back propagation from the
bad states to re-label all good states as bad states when all their corresponding
traces would lead to bad states, which is not feasible in case of infinite-state
system.

Recent work [14,11,13] establishes techniques to synthesize code using genetic
programming. In particular, the method randomly generates an initial popula-
tion of programs based on a given configuration and then they apply mutation
functions to optimize a given fitness function (w.r.t. specification). Nonetheless,
the method was applied to communication protocols without reporting success
rates. Moreover, deep learning is much more expressive than genetic program-
ming, which failed to learn complex structures. Moreover, it is not clear how to
automatically derive a fitness function from a given specification.

3 Behavior, Interaction and Priority (BIP)

We recall the necessary concepts of the BIP framework [1]. BIP allows to con-
struct systems by superposing three layers of design: Behavior, Interaction, and



Priority. The behavior layer consists of a set of atomic components represented
by transition systems. The interaction layer provides the collaboration between
components. Interactions are described using sets of ports. The priority layer is
used to specify scheduling policies applied to the interaction layer, given by a
strict partial order on interactions.

3.1 Atomic Components

We define atomic components as transition systems with a set of ports labeling
individual transitions. These ports are used for communication between different
components.

Definition 1 (Atomic Component). An atomic component B is a labeled
transition system represented by a triple (Q,P,→) where Q is a set of states, P
is a set of communication ports, →⊆ Q×P ×Q is a set of possible transitions,
each labeled by some port.

For any pair of states q, q′ ∈ Q and a port p ∈ P , we write q
p→ q′, iff

(q, p, q′) ∈→. When the communication port is irrelevant, we simply write q →
q′. Similarly, q

p→ means that there exists q′ ∈ Q such that q
p→ q′. In this case,

we say that p is enabled in state q.
In practice, atomic components are extended with variables. Each variable

may be bound to a port and modified through interactions involving this port.
We also associate a guard and an update function (i.e., action) to each transition.
A guard is a predicate on variables that must be true to allow the execution of the
transition. An update function is a local computation triggered by the transition
that modifies the variables.

Figure 1(a) shows an atomic component P that corresponds to the behavior
of a philosopher in the dining-philosopher problem, where Q = {e, h} denotes
eating and hungry, P = {rel , get} denotes releasing and getting of forks, and

→= {e rel→ h, h
get→ e}.

3.2 Composition Component

For a given system built from a set of n atomic components {Bi = (Qi, Pi,→i

)}ni=1, we assume that their respective sets of ports are pairwise disjoint, i.e.,
for any two i 6= j from {1..n}, we have Pi ∩ Pj = ∅. We can therefore define
the set P =

⋃n
i=1 Pi of all ports in the system. An interaction is a set a ⊆ P

of ports. When we write a = {pi}i∈I , we suppose that for i ∈ I, pi ∈ Pi, where
I ⊆ {1..n}.

Similar to atomic components, BIP extends interactions by associating a
guard and a transfer function to each of them. Both the guard and the function
are defined over the variables that are bound to the ports of the interaction. The
guard must be true to allow the interaction. When the interaction takes place,
the associated transfer function is called and modifies the variables.
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Fig. 1. Dining philosophers.

Definition 2 (Composite Component). A composite
component (or simply component) is defined by a composition operator

parameterized by a set of interactions Γ ⊆ 2P . B
def
= Γ (B1, . . . , Bn), is a

transition system (Q,Γ,→), where Q =
⊗n

i=1Qi and → is the least set of
transitions satisfying the following rule:

a = {pi}i∈I ∈ Γ ∀i ∈ I : qi
pi→i q

′
i ∀i 6∈ I : qi = q′i

q = (q1, . . . , qn)
a→ q′ = (q′1, . . . , q

′
n)

The inference rule says that a composite component B = Γ (B1, . . . , Bn) can
execute an interaction a ∈ Γ , iff for each port pi ∈ a, the corresponding atomic
component Bi can execute a transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged.

Figure 1(b) illustrates a composite component
Γ (P0, P1, P2, P3, F0, F1, F2, F3), where each Pi (resp. Fi) is identi-
cal to component P (resp. F ) in Figure 1(a) and Γ = Γget ∪ Γrel ,

where Γget =
⋃3
i=0{Pi.get , Fi.usel, F(i+1)%4.user} and Γrel =⋃3

i=0{Pi.rel , Fi.freel, F(i+1)%4.freer}.
Notice that several distinct interactions can be enabled at the same time, thus

introducing non-determinism in the product behavior. One can add priorities to
reduce non-determinism. In this case, one of the interactions with the highest
priority is chosen non-deterministically.



Definition 3 (Priority). Let C = (Q,Γ,→) be the behavior of the composite
component Γ ({B1, . . . , Bn}). A priority model ≺ is a strict partial order on the
set of interactions Γ . Given a priority model ≺, we abbreviate (a, a′) ∈ ≺ by
a ≺ a′. Adding the priority model ≺ over Γ ({B1, . . . , Bn}) defines a new com-
posite component B = ≺

(
Γ ({B1, . . . , Bn})

)
noted prio(C) and whose behavior

is defined by (Q,Γ,→≺), where →≺ is the least set of transitions satisfying the
following rule:

q
a→ q′ ¬

(
∃a′ ∈ Γ,∃q′′ ∈ Q : a ≺ a′ ∧ q a′→ q′′

)
q

a→≺ q′

An interaction a is enabled in prio(C) whenever a is enabled in C and a is
maximal according to prio among the active interactions in C.

BIP provides both centralized and distributed implementations. In the cen-
tralized implementation, a centralized engine guarantees to execute only one
interaction at a time, and thus conforms to the operational semantics of the
BIP. The main loop of the BIP engine consists of the following steps: (1) Each
atomic component sends to the engine its current location; (2) The engine enu-
merates the list of interactions in the system, selects the enabled ones based on
the current location of the atomic components and eliminates the ones with low
priority; (3) The engine non-deterministically selects an interaction out of the en-
abled interactions; (4) Finally, the engine notifies the corresponding components
and schedules their transitions for execution.

Alternatively, BIP allows the generation of distributed implementations [3]
where non-conflicting interactions can be simultaneously executed.

Definition 4 (BIP system). A BIP system is a tuple (B, q0), where q0 is
the initial state with q0 ∈

⊗n
i=1Qi being the tuple of initial states of atomic

components.

For the rest of the paper, we fix an arbitrary BIP-system (B, q0), where
B = ≺

(
Γ ({B1, . . . , Bn})

)
with semantics C = (Q,Γ,→).

We abstract the execution of a BIP system as a trace.

Definition 5 (BIP trace). A BIP trace ρ = (q0 · a0 · q1 · a1 · · · qi−1 · ai−1 · qi)
is an alternating sequence of states of Q and interactions in Γ ; where qk

ak−→
qk+1 ∈→, for k ∈ [0, i− 1].

Given a trace ρ = (q0 ·a0 ·q1 ·a1 · · · qi−1 ·ai−1 ·qi), ρqi (resp. ρai ) denotes the
ith state (resp. interaction) of the trace, i.e., qi (resp. ai). Also, ρ(C) denotes
the set of all the traces of an LTS C.

4 Problem Definition & Methodology

We frame the problem of run time enforcement as a sequential decision making
(SDM) one, by which the BIP engine has to be guided to select the set of



interactions over extended execution traces that maximize a cumulative return.
We formalize SDMs as the following five-tuple

〈
Q, Q̃, Γ,→, R+, R−, γ

〉
. Here, Q

represents the set of all possible states, Q̃ ⊆ Q the set of “bad” states that need
to be avoided, Γ the set of allowed interactions, and→ represents the transition
model. R+ and R− are two positive and negative scalar parameters, which allow
us to define the reward function quantifying the selection of the engine. Clearly,
the engine gets rewarded when in a state q /∈ Q̃, while penalized if q ∈ Q̃. Using
this intuition, one can define a reward function of the states written as:

R(q) =

{
R+ : q /∈ Q̃
R− : q ∈ Q̃.

Given the above reward definition, we finally introduce γ ∈ [0, 1) to denote
the discount factor specifying the degree to which rewards are discounted over
time as the engine interacts with each of the components.

At each time step t, the engine observes a state qt ∈ Q and must choose
an interaction at ∈ Aqt ⊆ Γ , transitioning it to a new state qt

at→ qt+1 as
given by → and yielding a reward R (qt+1), where Aqt denotes all enabled

interactions from state qt, i.e., Aqt = {a | ∃q′ : qt
a→ q′ ∈→}. We filter the

choice of the allowed interactions, i.e., Aqt , at each time-step by an interaction-
selection rule, which we refer to as the policy π. We extend the sequential decision
making literature by defining policies that map between the set of states, Q,
and any combination of the allowed interactions, i.e., π : Q→ 2Γ , where for all
q ∈ Q : π(q) ⊆ Aq. Consequently, the new behavior of the composite component,
guided by the policy π, is defined by Cπ = (Q,Γ,→π), where→π is the least set
of transitions satisfying the following rule:

q
a→ q′ a ∈ π(q)

q
a→π q

′

The goal now is to find an optimal policy π? that maximizes the expected total
sum of the rewards it receives in the long run, while starting from an initial
state q0 ∈ Q. We will evaluate the performance of a policy π by: eval(π|q0) =

Eρ(Cπ)
[∑T

t=0 γ
tR(qt+1)

]
, where Eρ(Cπ) denotes the expectation under all the

sets of all the allowed (by the policy π) possible traces, and T is the length of the
trace. Notice that we index the value of the state by the policy π to explicitly
reflect the dependency of the value on the policy being followed from a state
qt. Interestingly, the definition of the evaluator asserts that the value of a state
qt is the expected instantaneous reward plus the expected discounted value of
the next state. Clearly, we are interested in determining the optimal policy π?,
which upon its usage yields maximized values for any qt ∈ Q. As such our goal
is to determine a policy π that solves: π? ≡ maxπ eval(π|q0).

Finally, being in a state q, we quantify the performance of the state-
interaction pairs using the function P : Q × Γ → R. Given such a performance
measure P, the engine can follow the policy π, defined as follows:



π(q) = arg max
a
{P(q, a) | a ∈ A(q)}. (1)

In other words, given a state q, policy π selects the enabled interaction that
has maximum evaluation from that state. Clearly, an interaction must have a
maximum evaluation when it is guaranteed that its execution will not lead to a
bad state.

In what comes next, we define two methods capable of computing such per-
formance measures, i.e., P, (consequently policies) in finite as well as infinite
state-space.

4.1 Finite State-Space - Value Iteration

Due to the number of possible policies at each time step, it is a challenge to
compute the value for all possible options. Instead, we propose the application
of a dynamic programming algorithm known as value iteration, summarized in
Algorithm 1 to find the optimal policy efficiently.

In essence, Algorithm 1 is iteratively updating the performance measures of
all the state-interaction pairs (until either (1) we reach a predefined bound, i.e.,
bound; or (2) the values are within a predefined ε), by choosing these interac-
tions that maximize the instantaneous rewards, as well as the future informa-
tion encoded through V (q′). Contrary to state-space-exploration algorithms, our
method remedies the need to construct the full labeled transition system as we
only require the knowledge of the successor state from a given state-interaction
pair with no regard to its reachability properties. Notice also that though line 4
in Algorithm 1 requires a loop over all states computational time can be highly
reduced by following a sampling-based procedure, where fractions of the state-
space are considered. Notice, however, the successfulness of the attained policy
comes hand-in-hand with the fraction of the state space sampled. In other words,
the higher the fraction, the closer to optimality is the policy and vice versa.

Algorithm 1 Value Iteration Finite State Space

1: Input: Initialization of V (q) for all q ∈ Q, precision parameter ε
2: error = ε+ 1

3: while k < bound ∧ error ≥ ε do
4: for each q ∈ Q do
5: for each a ∈ Aq do
6: tmp = R(q′) + γV (q′), where q

a→ q′

7: error = max(error , |tmp− P(q, a)|)
8: P(q, a) = tmp

9: end for
10: V (q) = maxa∈Aq P(q, a)
11: end for
12: k = k + 1

13: end while



4.2 Infinite State-Space - Deep Value Iteration

The methodology detailed so-far suffers when considering infinite state-spaces as
it requires exact representation of performance measures and policies. In general,
an exact representation can only be achieved by storing distinct estimates of the
return for every state-interaction pair. When states are continuous (i.e., com-
ponents with variables or large state-space), such exact representations are no
longer possible and performance measures need to be represented approximately.

Approximation in the continuous setting is not only a problem of represen-
tation. Two additional types of approximation are needed. Firstly, sample-based
approximation is necessary in any of these frameworks. Secondly, the algorithm
must repeatedly solve a difficult minimization problem. To clarify, consider Al-
gorithm 1, where every iteration necessitates a loop over every state-interaction
pair. When state space contains an infinite number of elements, it is impossible
to loop over all pairs in finite time. Instead, a sample-based update that only
considers a finite number of such pairs has to be used.

In this section, our goal is to develop an algorithm capable of avoiding the
problems above. This ultimately leads us to a method for run-time enforcement
operating in continuous state spaces. To commence, we introduce a function
approximator, encoded through a neural network (NN), to represent a good
approximation of performance measures of all state-interaction pairs. The goal
of this approximator is to autonomously generalize over the state-space, such
that similarly behaving states cluster together. Before commencing with our
algorithm, we next introduce a concise introduction to NNs, accompanied with
its generalization to the deep setting.

4.3 Neural Networks (NNs)

In an artificial NN, a neuron is a logistic unit, which is fed inputs through
input wires. This unit can perform computations resulting in outputs that are
transmitted through the output wires.

An artificial NN is simply a set of these logistic units strung together as shown
in Figure 2. Each two layers are connected together using weight parameters. As
such, the NN in Figure 2 possesses two weighting matrices, Θ(1) and Θ(2). Here,
we used Θ(l) to denote the weights connecting layers l and l+ 1. Definitely, the
dimensionality of Θ(l) depends on the number of units in each of the two layers1.

For example, in our case, the dimension of the input layer is equal to the
number of components (each input receives the current state of a component),
and the dimension of the output layer is equal to the number of interactions.
The number of hidden layers and the number of neurons per hidden layer can
be configured depending on the functions to be learnt.

1 In practice, a bias term is added to increase the expressiveness of the functions
learnt by the NN.
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Feed Forward. Given the notation introduced above, we are now ready to discuss
the computations that are performed by a NN. Intuitively, between every two
layers the inputs from the previous layer are, first, linearly (through the weight
matrices) propagated forward and then nonlinearly transformed (through the
sigmoids) to produce an output on the successor layer. Recursing this process,
which we refer to as forward propagation, over the total layers of the network
will produce an output on the final layer L.

Training & Backward Propagation. Having described feed forward propagation,
the next step is to detail the strategy by which NNs determine the model pa-
rameters (i.e., the Θ(l) matrices – denoted by Θ, i.e., Θ = {Θ(1), . . . ,Θ(L)}).
In standard regression or classification problems, back-propagation is the al-
gorithm adopted. Given an input data point, back-propagation commences as
follows. First, forward propagation is executed and the network is made to out-
put a value. This value is then compared to the real output from the data set
producing an error. This error is then propagated backwards to every other layer
and used to update connecting weights. Such updates typically involve gradient-
based methods (e.g., stochastic gradients).

Unfortunately, the direct application of NNs in our context is challenging
since the performance measures P has to build, through sampling, a labeled data
set (with states being inputs and state-interaction values as outputs) to train
on. The goal now is to determine at compile-time a good approximation of P
through exploring an infinite state-space.



4.4 Deep Value Iteration – Infinite State Space

In Algorithm 2, we present a solution for approximating the performance mea-
sures PΘ2 of all the state-interaction pairs in case of infinite state-space.

Algorithm 2 Deep-Value Iteration Infinite State Space

1: Initialize replay memory D to capacity N , and the NN weights randomly, K
2: for episode = 1 to M do
3: Set initial state to q0
4: for t = 1 to T do
5: With some probability ε select a random interaction at
6: With a probability 1− ε select interaction at = arg maxa∈Aqt

PΘ(qt, a)
7: Execute interaction at and observe reward, rt+1, and successor state qt+1

8: Store transition (qt, at, rt+1, qt+1) on replay memory D
9: Sample random minibatch of transitions (qj , aj , rj+1, qj+1) of size N2 from

D and create output label by

yj =

{
rj+1 if qj+1 is a bad state
rj+1 + γmaxa∈Aqj+1

PΘ−(qj+1, a) if qj+1 is a correct state

10: end for
11: Retrain network on the N2 data points with yj being the labels.
12: Update Θ− to Θ every K episodes.
13: end for

In particular, we use an NN that takes a BIP state as input, encoded as a
vector of size n, where n is the number of atomic components (i.e., the ith input
encodes the local state of atomic component Bi). The output of the NN encodes
the performance measures P for each interaction. As such, the ith output of the
NN encodes the safety of executing interaction ai.

On a high-level, the algorithm operates in two loops. The first is episode-
based, while the second runs for a horizon T . At each episode, the goal is to
collect relevant labeled data, encoding a trace of the system, to improve the
approximation – encoded through the NN – of the performance measure, as
summarized in lines 5-10 in the algorithm.

A trace is selected as follows. First, the algorithm selects an allowed inter-
action either randomly (line 5) with a probability ε (i.e., exploration) or by
exploiting (line 6) the current estimate of the performance measure. In other
words, given the current state q, forward propagation is first executed to pro-
duce PΘ(q, ai). As such, the enabled interaction that has a maximum perfor-
mance measure is selected, i.e., arg maxa∈Aq PΘ(q, a). Next, the engine exe-
cutes the interaction and stores both the dynamical transition and its usefulness
(i.e., reward) in a replay memory data set, D. We use a technique known as
experience replay [12] where we store the transitions executed at each step,

2 Note that P is indexed by Θ as its output depends on Θ.



(qt, at, rt+1, qt+1) in a replay memory D. By using memory replay the behavior
distribution is averaged over many of its previous transitions, smoothing out
learning and avoiding oscillations or divergence in the parameters.

To ensure that the learning algorithm takes learning memory into account,
we sample a set of size N2, with the help of alternative NN (with weight matrices
Θ−). This is due to the fact that the backward propagation (used for training)
discussed previously operates successfully for relatively “shallow” networks, i.e.,
networks with low number of hidden layers. As the number of these layers in-
creases (i.e., deep NN), propagating gradients backward becomes increasingly
challenging leading to convergence to local minima. To circumvent the above
problems, we adapt a solution by which gradient updates are not performed
at each iteration of the training algorithm. In particular, we assume additional
knowledge modelled via an alternative NN that encodes previously experienced
traces. This NN is used as a reference that we update after a preset number of
iterations. As such, old knowledge encountered by the agent is not hindered by
novel observations.

Consequently, we form a data set D (line 8) in preparation to retrain the
original NN, while taking the history of traces into account. The process by
which we generate these labels is in essence similar to finite value iterator. The
main difference, however, is the usage of sample-based transitions to train a NN.

4.5 Fairness

Deep value iteration allows to compute Θ, and hence PΘ for all state-interaction
pairs. As defined in Equation 1, the policy then can be defined using P. For this,
as we are dealing with real numbers, the same trace would be selected all the
time by engine, which is running that policy. As such, other correct traces will
not be reachable in the obtained system. For instance, given a global state, a
policy would select the interaction leading to a state with maximum performance
measure value, even though there exist other interactions leading to other correct
traces. To remedy this, we define a fair policy that is allowed to deviate from
the optimal policy with a degree of fairness. The fair policy is defined as follows.

π(q) = {a | a ∈ Aq ∧ PΘ(q, a) ≥ maxq − fair}, (2)

where, maxq = maxa∈Aq PΘ(q, a). fair is the tolerance against the optimal
policy. The value of fair depends on (1) the value of good and bad rewards,
and (2) the horizon used in deep value iteration algorithm. Clearly, the more
fairness the more deviation from the optimal policy we get.

5 Experimental results

In this section, we present RERL an implementation of our proposed approach and
its evaluation in terms of (1) accuracy of avoiding bad states and, (2) compilation
and runtime efficiency.
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Fig. 3. Dining philosophers with possible deadlock.

5.1 Implementation

RERL is an implementation (developed in Java) of our method with several
modules. The implementation is available at http://staff.aub.edu.lb/˜mj54/rerl.
RERL is equipped with a command line interface that accepts a set of config-
uration options. It takes the name of the input BIP file, a file containing the
bad states (explicitly or symbolically) to be avoided, and optional flags (e.g.,
discount factor, number of episodes, horizon length), and it automatically gen-
erates a C++ implementation of the input BIP system embedded with a policy
to avoid bad states.

> java -jar RERL.jar [options] input.bip output.cpp badStates.txt

5.2 Evaluation

Dining philosophers. Figure 3 shows an example of dining philosophers modeled
in BIP that may deadlock. A deadlock will arise when philosopher P0 allocates its
right fork F0, then philosopher P1 allocates its right fork F1. That is, a deadlock
state is defined as the concatenation when all the philosophers allocate their right
forks. We used RERL to enforce deadlock freedom on this example. We vary the
number of philosophers from 2 to 47 increasing by 5. The total number of states
is equal to 6n, where n is the number of philosophers. Clearly, value iteration
method would explode when the number of philosophers is greater than 12. As
for the deep value iteration, we ran it with 50 epochs3, 50 hidden neuron4 units
and 5 as degree of fairness. The degree of fairness was chosen to be consistent
with the good (+1) and bad reward (−1). Then, we run the system until it
executes 105 iterations. The normal implementation always enters the deadlock
state whereas when we apply deep value iteration the obtained implementation
always avoid the deadlock state. We also evaluated the runtime overhead induced
by the policy, which at every computation step needs to do a forward propagation
on the trained neural network to select the best next interactions. Moreover, we
compare this overhead against RE-BIP, a tool-set to enforce properties in BIP
systems, but which is limited to only a one-step recovery. In this example, one-
step recovery is sufficient to avoid deadlock, however, as we will see later it fails

3 One epoch consists of one full training cycle on the training set.
4 We use fine-tuning technique to select these parameters.

http://staff.aub.edu.lb/~mj54/rerl


in the second benchmark as a k step recovery is needed. Table 1 summarizes
the runtime execution times in case of infinite (while varying number of hidden
neuron units), i.e., deep value iteration, finite, i.e., value iteration, and RE-
BIP. Clearly, the infinite-based implementation drastically outperforms RE-BIP,
when the number of hidden neuron units is less than 100. Although the finite-
based outperforms RE-BIP and guarantees to enforce correct execution, it fails
when the size of the system becomes large.

Table 1. Execution times (in seconds).

Nb of
Infinite

Finite RE-BIP
Philo. 10 50 100 500 1000

2 0.7 2.8 5.5 27 55 1.2 29

7 1.4 6 11.3 58 130 12.2 72

12 2.3 9 17.5 90 186 43 122

17 3 11.8 23.2 121 251 NA 173

22 3.9 15.6 29.3 154 322 NA 269

27 5.5 18.7 35 190 405 NA 301

32 5.9 22.5 41.8 229 491 NA 407

37 7.1 25 48.5 279 567 NA 450

42 7.7 28.2 54.9 325 648 NA 566

47 9.7 32.6 60.5 396 764 NA 652

Pair-wise synchronized robots. In this benchmark, we model a set of robots
placed on a map of size n × n. Initially, all robots are placed at position (0, 0).
We consider that robots can only move up or to the right, that is, cannot go
back after taking a move. Moreover, robot i must synchronize with either robot

Fig. 4. Map of pair-wise synchronizing robots

i − 1 or i + 1 (modulo the number of robots) in order to move and both must



Table 2. Evaluation of two robots with different grid sizes.

Grid
Infinite Finite Standard

Size Succ. % Conv. (s) Succ. % Conv. (it.) Succ. %

5 96.8 0.85 100 7 61.7

9 98.6 0.98 100 9 63.3

13 98.5 1.09 100 26 61.6

17 99.4 1.13 100 34 58.4

21 99.3 1.29 100 42 63.2

25 99.9 1.4 100 50 59.2

29 99.6 1.5 100 58 61.8

move with the same direction. Clearly, this would require to create controllers to
allow robots to follow that specification. The state of each robot can be modeled
by two integers denoting the current position of the robot. We also assume the
grid has mines (i.e., bad states) at the top row and the top half most left of the
map (i.e., red places in Figure 4). Bottom half most left places are considered
safe. Also, we assume that the green location has an exit, which allows the robot
to safely exit the map.

We have modeled robots and their pair-wise synchronization using BIP by
allowing them to move to any border locations. Then, we define bad states (i.e.,
red location) and the goal is to generate a policy that allows robots not go to
a bad state. Notice that RE-BIP cannot be used to avoid states as if a robot
enters a location on the top half of the map, then 1-step recovery would try all
the possible next actions and then fail. For instance, the robot (black circle) on
the top has two choices, either moves right or up. The two choices lead the robot
to go to a correct state. However, if the robot would take the move up action,
it will enter a region where 1-step recovery will fail. We have tested RERL using
value iteration and deep value iteration by varying the size of the map and the
number of robots. Tables 2, 3, 4 depict (1) the success rate when using deep value
iteration, value iteration and standard implementation, (2) the time needed to
converge in case of deep value iteration, and (3) the number of iterations needed
to converge in case of finite value iteration. We ran each configuration 10000
times to compute the success rate. We notice that the value iteration provides a
success rate of 100%, however, it fails when the size of the system increases. As
for the deep value iteration, the system is learning to avoid bad states or states
that could lead to bad states and it achieves a high success rate. For instance,
if we take a map with 29× 29 grid size and 8 robots (i.e., 8418 possible states),
the standard implementation has 15.1% success rate whereas when using deep
value iteration we reach 95.6% success rate. As the state space in this example
has a well-defined structure, we only needed 10 hidden neuron units to train
our network by using deep value iteration algorithm. For this, we notice the
efficiency of the compile time, e.g., only 3.6 seconds are needed to train a system
consisting of 8418 states and to reach a 95.6% success rate.



Table 3. Evaluation of four robots with different grid sizes.

Grid
Infinite Finite Standard

Size Succ. % Conv. (s) Succ. % Conv. (it.) Succ. %

5 95.5 0.9 100 7 30.5

9 93.9 1.08 NA NA 30.7

13 94.7 1.23 NA NA 30.6

17 97.8 1.52 NA NA 28.6

21 97.9 1.82 NA NA 29.8

25 98.1 2.2 NA NA 30.1

29 97.8 2.5 NA NA 30.1

Table 4. Evaluation of eight robots with different grid sizes.

Grid
Infinite Finite Standard

Size Succ. % Conv. (s) Succ. % Conv. (it.) Succ. %

5 92.9 1.1 NA NA 12.2

9 93.9 1.5 NA NA 13.8

13 97.4 1.6 NA NA 15.1

17 95.3 2.2 NA NA 13.8

21 94.9 3.0 NA NA 17.1

25 94.8 3.3 NA NA 14.2

29 95.6 3.6 NA NA 15.1

6 Conclusions and perspectives

In this paper, we introduced a new technique that combines static analysis and
dynamic analysis with the help of machine learning techniques, in order to op-
timally ensure the correct execution of software systems. Experimental results
show that it is possible to learn reachability of bad behaviors by only exploring
part of the system. For future work, we consider several directions. First, we
plan to study more expressive properties (e.g., liveness). Second, we consider to
generate a partial state semantics, and hence, allow to automatically generate
multi-threaded implementations. Third, we consider to generate decentralized
policies to facilitate the generation of efficient distributed implementations.
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