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Abstract. Rewriting modulo SMT is a novel symbolic technique to model and
analyze infinite-state systems that interact with a nondeterministic environment.
It seamlessly combines rewriting modulo equational theories, SMT solving, and
model checking. One of the main challenges of this technique is to cope with
the symbolic state-space explosion problem. This paper presents guarded terms,
an approach to deal with this problem for rewriting modulo SMT. Guarded terms
can encode many symbolic states into one by using SMT constraints as part of the
term structure. This approach enables the reduction of the symbolic state space
by limiting branching due to concurrent computation, and the complexity and
size of constraints by distributing them in the term structure. A case study of an
unbounded and symbolic priority queue illustrates the approach.

1 Introduction

The specification and verification effort in component-based software engineering can
be improved using symbolic approaches. They can make available symbolic analysis
techniques and tools with the promise of taming the many complexities involved in
component-based systems, including real-time and cyber-physical systems. Symbolic
techniques can be used to verify the functionality offered by software components for
any possible input and communication interleaving. Rewriting modulo SMT [19] is a
novel symbolic technique to model and analyze infinite-state systems that interact with
a nondeterministic environment. It is a symbolic specification and verification method
for rewriting logic [14], a general logical framework in which many component-based
systems, such as AADL [3] and Ptolemy II [4], can be naturally specified [15].

Rewriting modulo SMT seamlessly combines rewriting modulo equational theories,
SMT solving, and model checking. In rewriting modulo SMT, states are represented as
symbolic constrained terms (t ; φ) with t a term with variables ranging over the built-ins
(the sorts handled by the SMT solver) and φ a SMT-solvable formula. State transitions
are symbolic rewrite steps between constrained terms. In one rewrite step from (t1 ; φ1)
to (t2 ; φ2), possibly infinitely many instances of t1 can be rewritten to instances of t2;
namely, those ground instances of t1 that satisfy the constraint φ1 result in a ground
instance of t2 satisfying the constraint φ2. In general, a n-step symbolic rewrite from
(t1 ; φ1) to (tn ; φn) captures all possible traces with n transitions from ground instances
of t1 satisfying φ1 to all ground instances of tn satisfying φn. By being complete, the
symbolic rewrite relation will capture any ground trace satisfying these conditions, if
any exists. This is one of the reasons why rewriting modulo SMT is well-suited for
symbolically proving (or disproving) safety properties of rewrite theories.
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Rewriting modulo SMT can be used to analyze existential reachability properties
of infinite-state systems such as invariant and deadlock freedom properties. Moreover,
it can be efficiently implemented by performing matching (instead of the more costly
unification) for the term t and querying the SMT solver for the satisfiability of φ, for
a given symbolic state (t ; φ) at each rewrite step. However, the effective application of
this technique comes with new challenges in terms of scalability: namely, the symbolic
state-space explosion problem. For instance, the symbolic semantics of PLEXIL [18,
19] – a synchronous language developed by NASA to support autonomous spacecraft
operations –, which uses rewriting modulo SMT, is nondeterministic despite the fact
that its ground counterpart is deterministic [12]. Therefore, in the symbolic rewriting
logic semantics of PLEXIL, the state space can grow very large and the constraints
become complex, making the formal analysis task time-consuming or unfeasible.

This paper presents guarded terms, a technique with the potential to reduce the
symbolic state space and the complexity of constraints in the rewriting modulo SMT
approach. A guarded term can be seen as a choice operator that is part of the term
structure in a constrained term. Guarded terms generalize constrained terms by allowing
t in a symbolic state (t ; φ) to have, e.g., a guarded term u1|ψ ∨ u2|¬ψ as a subterm.
This means that when the constraint φ ∧ ψ is satisfiable, (t ; φ) represents those ground
instances of t in which the subterm u1|ψ ∨ u2|¬ψ is replaced by u1. Analogously, when
φ ∧ ¬ψ is satisfiable, (t ; φ) represents those ground instances of t in which the subterm
u1|ψ ∨ u2|¬ψ is replaced by u2. Therefore, the guarded term can actually encode both
alternatives without the need for two constrained terms. The greater potential of guarded
terms can better be seen when they are composed in parallel or nested, thus enabling
the succinct encoding of several constrained terms into one guarded term.

Guarded terms are particularly useful in rewriting modulo SMT in many situations
for reducing: (i) the symbolic state space by implicitly encoding branching in the term
structure, and (ii) the complexity and size of constraints by distributing them in several
parts of the term structure. The effectiveness of the approach is illustrated with a case
study of an unbounded and symbolic priority queue that, with the help of guarded terms,
enables automatic reachability analysis of the CASH scheduling algorithm [7].

The rest of the paper is organized as follows. Section 2 overviews rewriting logic
and rewriting modulo SMT. Section 3 presents guarded terms and their main properties.
Section 4 introduces the case study on the CASH algorithm. Finally, Section 5 discusses
related work and presents some concluding remarks. The examples used throughout the
paper, and the proofs omitted in Section 3 can be found in [5].

2 Rewriting Logic and Rewriting Modulo SMT in a Nutshell

This section briefly explains order-sorted rewriting logic and rewriting modulo SMT,
summarizing Sections 2–5 in [19]. Rewriting logic [14] is a semantic framework that
unifies a wide range of models of concurrency. Maude [11] is a language and tool to
support the formal specification and analysis of concurrent systems in rewriting logic.
Rewriting modulo SMT [19] is a symbolic technique to model and analyze reachability
properties of infinite-state systems in rewriting logic, that can be executed in Maude by
querying decision procedures available from SMT technology.
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2.1 Order-Sorted Rewrite Theories

An order-sorted signature Σ is a tuple Σ=(S ,≤, F) with a finite poset of sorts (S ,≤)
and set of function symbols F typed with sorts in S , which can be subsort-overloaded.
The set of function symbols of sort w ∈ S ∗ in Σ is denoted by Σw. The binary relation
≡≤ denotes the equivalence relation (≤ ∪ ≥)+ generated by ≤ on S and its point-wise
extension to strings in S ∗. The expression [s] denotes the connected component of s,
that is, [s] = [s]≡≤ . A top sort in Σ is a sort s ∈ S such that for all s′ ∈ [s], s′ ≤ s.

For X = {Xs}s∈S an S -indexed family of disjoint variable sets with each Xs countably
infinite, the set of terms of sort s and the set of ground terms of sort s are denoted,
respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X) and TΣ denote, respectively, the set
of terms and the set of ground terms.

A substitution is an S -indexed mapping θ : X −→ TΣ(X) that is different from the
identity only for a finite subset of X, and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for any
x ∈ X and s ∈ S . A substitution θ is called ground if and only if θ(x) ∈ TΣ or θ(x) = x
for any x ∈ X. The application of a substitution θ to a term t is denoted by θt and the
composition (in diagrammatic order) of two substitutions θ1 and θ2 is denoted by θ1θ2,
so that θ1θ2t denotes θ1(θ2t).

A rewrite theory is a tuple R = (Σ, E ] B,R) with: (i) (Σ, E ] B) an order-sorted
equational theory with signature Σ, E a set of equations over TΣ , and B a set of structural
axioms – disjoint from the set of equations E – over TΣ for which there is a finitary
matching algorithm (e.g., associativity, commutativity, and identity, or combinations of
them); and (ii) R a finite set of rewrite rules over TΣ .

Intuitively, R specifies a concurrent system whose states are elements of the set
TΣ/E]B of Σ-terms modulo E ] B and whose concurrent transitions are axiomatized
by the rules R according to the inference rules of rewriting logic [6]. In particular, for
t, u ∈ TΣ representing states of the concurrent system described by R, a transition from
t to u is captured by a formula of the form t →R u; the symbol→R denotes the binary
rewrite relation induced by R over TΣ/E]B and TR = (TΣ/E]B,→R) denotes the initial
reachability model of R. The expressions TΣ/E]B and =E]B denote, respectively, the
initial algebra of (Σ, E ] B) and the congruence induced by (Σ, E ] B) on Σ-terms.

Example 1. Consider a system with states in the top sort Conf of the form C1 ‖ C2, with
C1 and C2 multisets of integer numbers. Each state has sort Conf, an integer has sort Int,
and a multiset of integers has sort Channel. Multiset union is denoted by juxtaposition,
and it is associative, commutative, and has identity none (which denotes the empty
collection). Integer number addition and the “less-than” total order relation on integers
are denoted with the usual function symbols.

The symbol n
= represents the “modulo n congruence” binary relation over integers

(i.e., a shorthand for x ≡ y mod n). The system consists of the following three rewrite
rules, where I1, I2 range over integers and C1,C2 over multisets of integers:

I1 I2 C1 ‖ C2 → I1 C1 ‖ (I1 + I2 + 1) C2 if 0 < I1 ∧ 0 < I2 ∧ (I1 + I2
3
= 0)

I1 I2 C1 ‖ C2 → I1 C1 ‖ C2 if 0 < I1 ∧ 0 < I2 ∧ ¬(I1 + I2
3
= 0)

I1 ‖ I2 C2 → none ‖ I2 C2 if 0 < I1 ∧ 0 < I2 ∧ (I1 + I2
17
= 0)
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In this system, integers move from the left channel to the right channel. By the first rule,
an intenger I2 is removed from the left channel and the integer I1 + I2 + 1 is added to
the right channel, for any I1 and I2 in the left channel, whenever I1 and I2 are at least
1, and I1 + I2 is a multiple of 3. By the second rule, an integer I2 is removed from the
left channel, for any I1 and I2 in the left channel, whenever I1 and I2 are at least 1, and
I1 + I2 is not a multiple of 3. By the third rule, an integer I1 is removed from the left
channel, for any I1 in the left channel and I2 in the right channel, whenever I1 is the
only number in the left channel, I1 and I2 are at least 1, and I1 + I2 is a multiple of 17.

This system can be executed by rewriting in Maude as follows. Given a rewrite rule
l → r if cond, with l, r ∈ TΣ(X)Conf, a ground term t ∈ TΣ,Conf rewrites to a ground
term u ∈ TΣ,Conf (i.e., t →R u) if and only if there is a ground substitution σ such that
t and u are respectively substitution instances of l and r modulo =E]B (i.e., σl =E]B t
and σr =E]B u), and the condition σcond holds. For example, by the first rule and
σ = {I1 7→ 1, I2 7→ 2,C1 7→ 3 4,C2 7→ none}, follows 1 2 3 4 ‖ none→R 1 3 4 ‖ 4.

By being executable in Maude, automatic state-space search capabilities can be
used, e.g., to identify potential deadlocks in this system. A Maude search command
searches for states that are reachable from a ground initial state and match the search
pattern and satisfy the search condition. Starting from the initial state 1 2 3 4 ‖ none,
the following search command checks if there is a deadlock state with a nonempty left
channel that can not be further rewritten (and this command finds no solution):

search [1] 1 2 3 4 || none =>! C1 || C2 such that C1 =/= none .

In this command, [1] specifies the maximum number (in this case, 1) of solutions that
the command should return, and =>! means that only non-reducible states with respect
to→R are to be considered as solutions to the query.

2.2 Rewriting Modulo SMT

Rewriting modulo SMT is illustrated using a symbolic version of Example 1. In this
version, a symbolic state is given by a constrained term (t ; φ), with t ∈ TΣ(X0)Conf and
φ ∈ QFΣ0

(X0), where X0 ⊆ X denotes the set of variables ranging over the built-ins,
Σ0 ⊆ Σ denotes the signature of the built-in sorts, and QFΣ0

(X0) denotes the set of
quantifier-free formulas over Σ0 with variables in X0.

Example 2. In the symbolic version of the system, the built-in sorts are Bool and Int,
and the non-built-in sorts are Channel and Conf. There are three rewrite rules with
variables I1, I2 of sort Int, variables C1,C2 of sort Channel, and φ1, φ2 of sort Bool:

(I1 I2 C1 ‖ C2 ; φ1) → (I1 C1 ‖ (I1 + I2 + 1) C2 ; φ1 ∧ φ2)

if φ2 := 0 < I1 ∧ 0 < I2 ∧ (I1 + I2
3
= 0) ∧ sat(φ1 ∧ φ2)

(I1 I2 C1 ‖ C2 ; φ1) → (I1 C1 ‖ C2 ; φ1 ∧ φ2)

if φ2 := 0 < I1 ∧ 0 < I2 ∧ ¬(I1 + I2
3
= 0) ∧ sat(φ1 ∧ φ2)

(I1 ‖ I2 C2 ; φ1) → (none ‖ I2 C2 ; φ2)

if φ2 := 0 < I1 ∧ 0 < I2 ∧ (I1 + I2
17
= 0) ∧ sat(φ1 ∧ φ2)
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These rules are similar to the ones in Example 1. The key observation in this version is
that conditions are treated as constraints, accumulated in the system state, and queried
for satisfiability with the help of the function sat (an interface to the SMT-solver to
check whether φ is satisfiable or not). A matching condition [11] of the form t := u is
a syntactic variant of the equational condition t = u mathematically interpreted as an
ordinary equation. Operationally, a matching condition behaves like a ‘let’ construct in
functional programming languages so that t := u introduces t in the rule as the result of
reducing u to canonical form with the oriented equations modulo the axioms.

Definition 1. Given a rewrite rule (l ; φl) → (r ; φr) if φ, with l, r ∈ TΣ(X)Conf and
φ ∈ QFΣ0

(X0), a constrained term (t ; φt) ∈ TΣ(X0)Conf×QFΣ0
(X0) symbolically rewrites

to a constrained term (u ; φu) ∈ TΣ(X0)Conf × QFΣ0
(X0) (denoted by (t ; φt) R (u ; φu))

if and only if there is a substitution θ such that:

(a) θl =E]B t and θr =E]B u,
(b) TΣ/E]B |= (φl ∧ θφ)⇔ φu, and
(c) φu is TΣ/E]B-satisfiable.

The symbolic relation R is defined as a topmost rewrite relation, where all rewrites
take place at the top of the term, induced by R modulo E ] B on TΣ(X0) with extra
bookkeeping of constraints.

Condition (a) can be solved by matching as in the definition of→R above. Condition
(b) can be met by setting φu to be φl∧θφ, as in the above matching conditions. However,
Condition (c) cannot – in general – be dealt with by rewriting. The reason is that such a
condition can be an inductive theorem of TΣ/E]B. Instead, these conditions are checked
with the help of decision procedures available from an SMT solver via the function
sat. Observe that, up to the choice of the semantically equivalent ϕu for which a fixed
strategy such as the one suggested above can be assumed, the symbolic relation R is
deterministic in the sense of being determined by the rule and the substitution θ (here it
is assumed that variables in the rules are disjoint from the ones in the target terms). The
reader is referred to [19] for details about rewriting modulo SMT.

Example 3. Consider the constrained term (A B C D ‖ none ; true), with four variables
A, B,C,D ∈ XInt. Notice that (A B C D ‖ none ; true) symbolically rewrites in one step
to (A C D ‖ A + B + 1; 0 < A ∧ 0 < B ∧ (A + B 3

= 0)).

Rewriting modulo SMT can be used for solving existential reachability goals in
the initial model TR of a rewrite theory R modulo built-ins E0. In general, for any
constrained term (t ; φ) where t is a state term with sort Conf and φ is a constraint, ~t�φ
is the denotation of (t ; φ) consisting of all ground instances of t that satisfy φ; formally
~t�φ =

{
t′ ∈ TΣ,Conf | (∃σ : X −→ TΣ) t′ = σt ∧ TΣ/E]B |= σφ

}
. The type of existential

reachability question that rewriting modulo SMT can solve can now be formulated: are
there some states in ~t�φ from which is possible to reach some state in ~u�ψ? Answering
this question can be especially useful for symbolically proving or disproving safety
properties of R, such as inductive invariants or deadlock freedom of TR: when ~u�ψ is
a set of bad states, the idea is to know whether reaching a state in ~u�ψ is possible.
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Consider the following existential query, where R is the rewrite theory presented in
Example 1 (i.e., the one without symbolic constraints):

TR |= (∃ I,C1,C2) I (I + 1) (I + 2) (I + 3) ‖ none →∗R C1 ‖ C2 ∧ I > 0
∧ C1 , none ∧ “C1 ‖ C2 is→R-irreducible”.

This query asks if it is possible to find an initial state consisting of four consecutive
positive integers in the left channel and no number on the right channel that leads to an
irreducible state where there are still numbers in the left channel. This is the same type
of deadlock freedom property discussed before, namely, the one in which bad states are
those irreducible ones in which the channel has at least one number.

Answering this query in the negative proves that R is deadlock free for any initial
state satisfying the initial pattern. Since I ranges over an infinite domain, this question
cannot be solved directly via rewriting and would require, e.g., inductive reasoning over
→R. However, the following Maude search command can be issued in Maude to find a
proof (or a counterexample) for the symbolic rewrite relation R:

search [1] { I I+1 I+2 I+3 || none , I > 0 }
=>! { C1 || C2, Phi } such that C1 =/= none .

Executed as it is, this command times out after 5 minutes. As shown in the next section,
with the help of guarded terms, the exact same search command terminates in less than
1 second without finding a witness, therefore proving the deadlock freedom of TR from
states satisfying the pattern I (I + 1) (I + 2) (I + 3) ‖ none.

3 Guarded Terms

Guarded terms generalize constrained terms with heterogeneous patterns and nested
structures. Guarded terms succinctly represent various terms by choices of subterms
that are guarded by a constraint. These subterms represent possible realizations, namely,
those instances in which the constraints are true. The proofs of lemmas and theorems
presented in this section can be found in [5].

3.1 Syntax

Consider the constrained terms (t1 ; φ1) , . . . , (tn ; φn) with the terms t1, . . . , tn of the
same sort. First, a guarded term can be built by combining these constrained terms
in parallel as (t1 ; φ1) ∨ · · · ∨ (tn ; φn), semantically representing the union of the sets
~t1�φ1 , . . . , ~tn�φn of ground terms. Second, guarded terms can be nested so that the
terms ti may include guarded terms as subterms. For example, if f and g are unary and
binary function symbols, respectively, then the term f ((t1 ; φ1)∨ ( f (g((t3 ; φ3) , t4)) ; φ2))
is a guarded term. The guarded subterm g((t3 ; φ3) , t4) encodes the ground instances
θg(t3, t4) in which θφ3 is true, for any ground substitution θ.

In order to avoid confusion between the syntax of constrained terms and guarded
terms, (t ; φ) will be written as t|φ. With this convention, the above-mentioned guarded
terms can be written as t1|φ1 ∨ · · · ∨ tn|φn and f (t1|φ1 ∨ f (g(t3|φ3 , t4))|φ2 ). The syntax of
guarded terms is formally presented in Definition 2.
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Definition 2. Given a signature Σ, the set of guarded terms of sort s is the smallest set
TΣ(X)s satisfying the following conditions:

– TΣ(X)s ⊆ TΣ(X)s;
– f (t1, . . . , tn) ∈ TΣ(X)s, if f ∈ Σs1...sn,s and ti ∈ TΣ(X)si for 1 ≤ i ≤ n;
– t|φ ∈ TΣ(X)s, if t ∈ TΣ(X)s and φ is a constraint; and
– t1 ∨ t2 ∈ TΣ(X)s for guarded terms t1, t2 ∈ TΣ(X)s of sort s.

A signature G(Σ) for guarded terms can be built by adding new sorts and function
symbols to the underlying signature Σ as follows:

– a new sort g(s) with a subsort relation s < g(s) for each sort s;
– an operator f : g(s1) · · · g(sm) −→ g(s) for each operator f : s1 · · · sm −→ s;
– a guard operator _|_ : g(s) × Bool −→ g(s) for each sort s; and
– an union operator _∨_ : g(s) × g(s) −→ g(s) for each sort s,

where constraints have sort Bool (in the built-in subsignature Σ0 ⊆ Σ) and sort g(s1)
is a subsort of g(s2) whenever s1 is a subsort of s2. By construction, a guarded term
u ∈ TΣ(X)s of sort s is a G(Σ)-term of sort g(s).

Lemma 1. Given an order-sorted signature Σ, a guarded term u of sort s in TΣ(X) is a
term of sort g(s) in TG(Σ)(X), and vice versa.

Example 4. In the example in Section 2, a term I + J + 1 is added to the right-hand side
of the first rule if the condition I + J 3

= 0 holds. A one-step symbolic rewrite step with
this rule involves two cases: either I+J 3

= 0 holds or not. Thus, n-rewrite steps with this
rule can yield 2n different symbolic states. For example, from the term A B C ‖ none,
where A, B, C are integer variables, symbolic rewriting up to three steps generates:

A B C ‖ none A B C ‖ (A + B + 1) (B + C + 1)
A B C ‖ (A + B + 1) A B C ‖ (A + B + 1) (C + A + 1)
A B C ‖ (B + C + 1) A B C ‖ (B + C + 1) (C + A + 1)
A B C ‖ (C + A + 1) A B C ‖ (A + B + 1) (B + C + 1) (C + A + 1).

A set of terms can be succinctly encoded as a guarded term. Consider guarded terms
of the form elm(I, J) defined as elm(I, J) = I + J + 1|I+J 3

= 0 ∨ ∅|I+J
3
, 0. The guarded

term elm(I1, J1) elm(I2, J2) · · · elm(IN , JN) can encode the 2n symbolic states that can be
reached in n-rewrite steps with respect to the satisfaction of the n conditions Ii + Ji

3
= 0,

for 1 ≤ i ≤ N. For example, the set of terms reachable from A B C ‖ none in three steps
can be encoded as: A B C ‖ elm(A, B) elm(B,C) elm(C, A).

3.2 Semantics

A guarded term u represents a (possibly infinite) set of ground terms, denoted by ~u�.
Intuitively, ~u|φ� is the set of all ground instances of u that satisfy the constraint φ, and
~u1 ∨ u2� is the union of the sets ~u1� ∪ ~u2�.



8 Kyungmin Bae and Camilo Rocha

To formally define the semantics of guarded terms, ground guarded terms are first
considered. The ground semantics in Definition 3 is straightforward, because the con-
straints in ground guarded terms can be determined as either true or false in the under-
lying built-in algebra TE0 . Specifically, a ground guarded term u|φ represents either ~u�
if φ is satisfiable in TE0 or the empty set if φ is not satisfiable in TE0 .

Definition 3. Given a ground guarded term u ∈ TΣ , the set ~u� ⊆ TΣ of ground terms
represented by u is inductively defined as follows:

~t� = {t′ ∈ TΣ | t′ =E t} if t ∈ TΣ ,

~ f (u1, . . . , un)� = {t ∈ ~ f (t1, . . . , tn)� | ti ∈ ~ui�, 1 ≤ i ≤ n},

~u|φ� =

~u� if TE0 |= φ

∅ if TE0 6|= φ,

~u1 ∨ u2� = ~u1� ∪ ~u2�.

Example 5. Recall the guarded terms in Example 4. The ground guarded term

u = (3 + 1 + 1|
3+1 3

= 0
∨ ∅|

3+1
3
, 0

) (5 + 4 + 1|
5+4 3

= 0
∨ ∅|

5+4
3
, 0

)

represents the set ~u� = {t′ | t′ =E ∅ (5 + 4 + 1)}, because 3 + 1
3

, 0 and 5 + 4 3
= 0.

Note that 5 + 4 + 1 ∈ ~u�, since 5 + 4 + 1 =E ∅ (5 + 4 + 1).

The semantics of guarded terms in general, introduced by Definition 4, is based on
the semantics of ground guarded terms. Each ground instance θu of a guarded term u
under a ground substitution θ defines the set ~θu� of ground terms. The set ~u� is the
union of all the sets given by the ground instances of the guarded term u.

Definition 4. Given a guarded term u ∈ TΣ(X), the set of all ground terms represented
by u is defined as ~u� = {t ∈ TΣ | (∃θ : X −→ TΣ) t ∈ ~θu�}.

It is worth noting that the semantics of non-ground guarded terms cannot be de-
fined in the same way as the case of ground guarded terms. Specifically, the second
condition ~ f (u1, . . . , un)� = {t ∈ ~ f (t1, . . . , tn)� | ti ∈ ~ui�, 1 ≤ i ≤ n} in Definition 3
for ground guarded terms is generally not applicable to non-ground guarded terms. For
example, consider an unsorted signature Σ with two different constants c and d. Notice
that ~ f (x|x,y, y|x=y)� = ∅, but ~x|x,y� = {c, d} and ~y|x=y� = {c, d}.

Example 6. Consider the nested guarded terms in Example 4. The guarded term

(I1 + J1 + 1|
I1+J1

3
= 0
∨ ∅|

I1+J1
3
, 0

) (I2 + J2 + 1|
I2+J2

3
= 0
∨ ∅|

I2+J2
3
, 0

)

represents the set of terms for ground substitution {Ii 7→ xi, Ji 7→ yi | i = 1, 2} as follows:

~(x1 + y1 + 1) (x2 + y2 + 1)� if x1 + y1
3
= 0 ∧ x2 + y2

3
= 0,

~∅ (x2 + y2 + 1)� if x1 + y1
3
, 0 ∧ x2 + y2

3
= 0,

~(x1 + y1 + 1) ∅� if x1 + y1
3
= 0 ∧ x2 + y2

3
, 0,

~∅ ∅� if x1 + y1
3
, 0 ∧ x2 + y2

3
, 0.
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Each one of these cases includes an infinite number of ground terms because there are
an infinite number of ground substitutions that satisfy each guard. It can be easily seen
that the number of cases increases exponentially: if the number of elements is n, the
number of different cases is 2n.

The notion of constrained terms in Section 2 can be seen as a special case of guarded
terms since the denotation ~t�φ of (t ; φ) coincides with the semantics of t|φ.

Lemma 2. Given a Σ-term t ∈ TΣ(X) and a constraint φ, ~t�φ = ~t|φ� holds.

3.3 Equivalence

Guarded terms u1 and u2 are called equivalent, written u1 ≡ u2, if they represent the
same set of ground terms, that is, ~u1� = ~u2�. For example, guarded terms that are
identical up to variable renaming are equivalent, since they have the same set of ground
instances. Guarded terms are called ground equivalent, written u1 ≡g u2, if their ground
instances by the same substitution are equivalent. The ground equivalence u1 ≡g u2
implies u1 ≡ u2, but the converse may not hold.3

Definition 5. Let u1, u2 ∈ TΣ(X):

1. u1 ≡ u2 iff ~u1� = ~u2�.
2. u1 ≡g u2 iff ~θu1� = ~θu2�, for every ground substitution θ : X −→ TΣ .

The semantics of ∨ is associative and commutative with respect to ground equiv-
alence, because its is defined as a set union operation. From now on, the expression
u1 ∨ · · · ∨ un will be written without parentheses using this fact.

Corollary 1 (Associativity and Commutativity of ∨). If u1, u2, u3 ∈ TΣ(X), then

1. u1 ∨ u2 ≡g u2 ∨ u1.
2. (u1 ∨ u2) ∨ u3 ≡g u1 ∨ (u2 ∨ u3).

The ground equivalence ≡g between guarded terms is a congruence as shown in
Lemma 3. On the contrary, the equivalence ≡ violates the congruence rules. Specifically,
u and its variable renaming σu satisfy u ≡ σu, but u|φ and (σu)|φ are not equivalent.4

Lemma 3 (Congruence of Ground Equivalence). If u, v ∈ TΣ(X) and u ≡g v, then:

– σu ≡g σv for a substitution σ : X −→ TΣ(X).
– f (u1, . . . , u, . . . , un) ≡g f (u1, . . . , v, . . . , un).
– u|φ ≡g v|φ.
– u1 ∨ · · · ∨ u ∨ · · · ∨ un ≡g u1 ∨ · · · ∨ v ∨ · · · ∨ un.

3 As an example, 0|x=0 ≡ 0|x=1, because ~0|x=0� = ~0|x=1� = {0}. But 0|x=0 .g 0x=1, because
~θ(0|x=0)� = {0} and ~θ(0|x=1)� = ∅ for θ = {x 7→ 0}, provided that 0 , 1.

4 For example, 0|x=0 ≡ 0y=0 but (0|x=0)|x=1 . (0|y=0)|x=1, because ~(0|x=0)|x=1� = ∅ and
~(0|y=0)|x=1� = {0}, provided that 0 and 1 are different.
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Guarded terms with different syntactic structures can be ground equivalent (and thus
they are also equivalent by definition). Lemma 4 identifies some properties of ground
equivalence between guarded terms.

Lemma 4 (Ground Equivalence Rules).

–
(∨n

i=1 ui
)
|φ ≡g

∨n
i=1(ui|φ)

– f (u1, . . .
(∨n

i=1 ui
j
)
. . . , un) ≡g

∨n
i=1 f (u1, . . . ui

j . . . , un)
–

(
u|ϕ

)
|φ ≡g u|ϕ∧φ

– f (u1, . . . u j|φ . . . , un) ≡g f (u1, . . . u j . . . , un)|φ

Guarded terms can be simplified using these equivalence rules. For example,

f (u1 ∨ u2, v1 ∨ v2) ≡g f (u1, v1 ∨ v2) ∨ f (u2, v1 ∨ v2) ≡g
∨

i, j∈{1,2} f (ui, v j),
f (u|φ, v|ψ) ≡g f (u, v)|φ|ψ ≡g f (u, v)|φ∧ψ.

By repeatedly applying the equivalences in Lemma 4, a (ground) equivalent guarded
term that is a combination of normal constrained terms can be obtained.

Theorem 1 (Standard Form). Every u ∈ TΣ(X) is ground equivalent to a guarded
term in standard form t1|φ1 ∨ t2|φ2 ∨ · · · ∨ tn|φn , with terms t1, . . . , tn ∈ TΣ(X).

A guarded term in standard form has a flat structure in which parallel combinations
∨ and constraints φ appear only at the top. However, a nested guarded term can be
exponentially smaller than an equivalent one in the standard form. For example, a nested
guarded term f (u1 ∨ v1, . . . , un ∨ vn) of size O(n) is equivalent to its standard form∨

wi∈{ui,vi}
f (w1, . . . ,wn) of size O(2n). This explains why guarded terms are very useful

for succinctly representing the symbolic state space.

Example 7. Consider the nested guarded term in Example 6. The guarded term

(I1 + J1 + 1|
I1+J1

3
= 0
∨ ∅|

I1+J1
3
, 0

) (I2 + J2 + 1|
I2+J2

3
= 0
∨ ∅|

I2+J2
3
, 0

)

is equivalent to the following guarded term in the standard form:

(I1 + J1 + 1) (I2 + J2 + 1)|
I1+J1

3
= 0 ∧ I2+J2

3
= 0
∨ ∅ (I2 + J2 + 1)|

I1+J1
3
, 0 ∧ I2+J2

3
= 0
∨

(I1 + J1 + 1) ∅|
I1+J1

3
= 0 ∧ I2+J2

3
, 0
∨ ∅ ∅|

I1+J1
3
, 0 ∧ I2+J2

3
, 0
,

where each case is expressed as a single disjunct. As explained in Example 6, since the
number of cases increases exponentially, the size of the standard form also increases
exponentially with respect to the size of the original one.

3.4 Rewriting with Guarded Terms

In principle, one-step rewrite u→ u′ between guarded terms u and u′ represents a one-
step rewrite t → t′ between the corresponding terms t ∈ ~u� and t′ ∈ ~u′�. The next task
is to consider guarded rewrite rules of the form l → r if φ, where l and r are guarded
terms, in order to define rewriting between guarded terms. Using Lemma 1, it can be
assumed that l and r are G(Σ)-terms in the extended signature G(Σ). Also, following
the ideas of rewriting modulo SMT, rewriting with guarded terms is topmost.
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Definition 6. A guarded rewrite rule is a triple l → r if φ with two guarded terms
l, r ∈ TG(Σ)(X)g(State) of top sort State and a constraint φ.

As usual, rewriting by guarded rules happens modulo a set of equations E. To be
semantically correct regarding guarded terms, a set of equations E should preserve the
semantics of guarded terms (i.e., if u =E θl, then u ≡ θl), which is generally not true.5

But structural axioms meet this condition as stated in Lemma 5. These structural axioms
are very useful to specify component-based systems [11]; e.g., the formal specification
of the case study in Section 4 frequently uses these axioms. From this point on it is
assumed that E only includes structural axioms.

Lemma 5. Given a set of equations B that only includes identity, associativity, and
commutativity, u =B v implies u ≡g v for guarded terms u, v, ∈ TG(Σ)(X).

Definition 7 introduces the ground rewrite relation→R for guarded rewrite rules. A
ground rewrite relation u →R u′ holds by a guarded rule l → r if φ, whenever u is an
instance of l, u′ is an instance of r|φ, and both ~u� and ~u′� are not empty.

Definition 7. For ground guarded terms u, u′ ∈ TG(Σ),g(State), a ground rewrite relation
u →R u′ holds if and only if for a guarded rule l → r if φ and a ground substitution
θ : X −→ TG(Σ), it holds that: u =E θl, u′ =E θr|θφ, ~u� , ∅, and ~u′� , ∅.

The symbolic rewrite relation R by guarded rules is introduced in Definition 8.
The last condition in this definition states that there is at least one ground instance
θu→R θu′ and also implies that TE0 |= σφ holds (because u′ =E σr|σφ includes σφ).

Definition 8. A symbolic rewrite relation u  R u′ holds for u, u′ ∈ TG(Σ)(X) if and
only if for a guarded rule l → r if φ and a substitution σ : X −→ TG(Σ)(X): u =E σl,
u′ =E σr|σφ, and (∃θ : X → TG(Σ)) ~θu� , ∅ ∧ ~θu′� , ∅.

Consider a ground rewrite u →R u′, which is ground equivalent to its standard
expansion u1 ∨ · · · ∨ un →R u′1 ∨ · · · ∨ u′m, where u’s standard form is u1 ∨ · · · ∨ un and
u′’s standard form is u′1 ∨ · · · ∨ u′m. This intuitively represents a set of ground rewrite
relations {ui → u′j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. This idea can be used to define a standard
expansion of a guarded rewrite rule.

Definition 9 (Standard Expansion). Consider a guarded rule l → r if φ such that l’s
standard form is

∨n
i=1 li|ψl

i
and r’s standard form is

∨m
j=1 r j|ψr

j
. A standard expansion of

l→ r if φ is a collection of ordinary rewrite rules

S (l→ r if φ) = {li → r j if φ ∧ ψl
i ∧ ψr

j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

A guarded rewrite rule l → r if φ is related to its standard expansion (in terms
of simulation). For each ground rewrite by a guarded rewrite rule, there exists a corre-
sponding ground rewrite by its standard expansion. This means that reachability analy-
sis can be effectively performed using guarded rewrite rules.

5 Consider a set of equations E that replace any constraint in a guarded term by its negation.
Then, 0|false ≡E 0|¬false, but clearly ~0|false� , ~0|¬false�.
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Theorem 2 (Simulation of Standard Expansion). Consider a set R of guarded rewrite
rules and its standard expansion R̂ =

⋃
l→r if φ∈R S (l → r if φ). For ground guarded

terms u, u′ ∈ TG(Σ), u→R u′ =⇒ t →R̂ t′ holds for any t ∈ ~u� and t′ ∈ ~u′�.

However, ground rewriting by a guarded rule may not capture all of ground rewrit-
ing by its standard expansion. Consider a guarded term f (0)∨g(0) and a guarded rewrite
rule f (x) ∨ g(s(x)) → f (x) if x < 1. Clearly, f (0) ∨ g(0) cannot be rewritten since it
is not equal to any ground instance of f (x) ∨ g(s(x)). But a ground instance of the
rule f (0) ∨ g(s(0)) → f (0) if 0 < 1 suggests that f (0) →R f (0) holds. The notion of
admissible guarded terms with respect to a guarded rewrite rule is introduced.

Definition 10. A guarded term u ∈ TG(Σ)(X) is admissible for a rule l → r if φ if and
only if ~u� ∩ ~l� , ∅ ⇐⇒ u =E σl for a substitution σ : X −→ TΣ(X).

The admissibility requirements can be checked by using the standard form of guarded
terms. In order to check ~u� ∩ ~l� , ∅, u’s standard form

∨
i ui|φi and l’s standard form∨

j l j|ψ j can be both computed, and then check if θui =E θl j for a ground substitution
θ such that TE0 |= θφi ∧ θψ j. If no such substitution exists, then clearly ~u� ∩ ~l� = ∅.
This problem can be determined by E-unification. If ~u� ∩ ~l� , ∅, it suffices to check
if u =E σl for a substitution σ, which can be determined by E-matching.

For admissible guarded terms, a symbolic rewrite relation exactly captures a ground
rewrite relation as stated in Theorem 3. First, the notion of admissible terms is extended
to guarded rewrite rules. A guarded rewrite rule l → r if φ is admissible for a set R of
guarded rewrite rules if and only if the right side r is admissible for every rule in R. A
set R of guarded rewrite rules is admissible if and only if every guarded rewrite rule in
R is admissible for every rule in R.

Theorem 3 (Symbolic Guarded Rewriting). Let R be a set of admissible guarded
rules, θ : X −→ TG(Σ) be a ground substitution, and u, u′ ∈ TG(Σ)(X) be admissible
guarded terms. Then: (i) If u R u′, then θu→R θu′ whenever ~θu� , ∅ and ~θu′� , ∅.
(ii) If θu→R w′ for w′ ∈ TG(Σ), then u R u′ and ~w′� ⊆ ~u′� for some u′.

Example 8. Consider the following guarded rewrite rules:

I1 I2 C1 ‖ C2 → I1 C1 ‖ (I1 + I2 + 1|
(I1+I2)3

=0
∨ ∅|

(I1+I2)
3
,0

) C2 if 0 < I1 ∧ 0 < I2

I1 ‖ (I2|B ∨C1|¬B) C2 → ∅ ‖ (I2|B ∨C1|¬B) C2 if B ∧ 0 < I1 ∧ 0 < I2 ∧ I1 + I2
17
= 0.

These rules are admissible, because each state is a pair D1 ‖ D2, constraints only appear
in D2, and the left-hand side of each rule defines the most general pattern for D2. By
Theorem 2, these rules are related to the standard expansion:

I1 I2 C1 ‖ C2 → I1 C1 ‖ I1 + I2 + 1 C2 if 0 < I1 ∧ 0 < I2 ∧ (I1 + I2) 3
= 0

I1 I2 C1 ‖ C2 → I1 C1 ‖ ∅ C2 if 0 < I1 ∧ 0 < I2 ∧ (I1 + I2)
3
, 0

I1 ‖ I2 C2 → ∅ ‖ I2 C2 if B ∧ 0 < I1 ∧ 0 < I2 ∧ I1 + I2
17
= 0 ∧ B

I1 ‖ C1 C2 → ∅ ‖ C1 C2 if B ∧ 0 < I1 ∧ 0 < I2 ∧ I1 + I2
17
= 0 ∧ ¬B

The last rule can be discarded because its condition is always unsatisfiable (containing
both B and ¬B). Thanks to theorems 2 and 3, the above guarded rewrite rules can be
used to perform reachability analysis from an admissible symbolic state.
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The use of guarded terms for the symbolic specification in Section 2.2 results in the
search command proving the deadlock-freedom property that had previously timed-out:

search [1] { I I+1 I+2 I+3 || none, I > 0 }
=>! { C1 | C2, Phi } such that C1 =/= none = true .

No solution.
states: 265 rewrites: 37516 in 702ms cpu (704ms real)

This means that for any collection of 4 consecutive positive integers in the left channel,
the system will eventually reach a state without numbers in this channel.

4 A Case Study

This section shows how the number of symbolic states can be dramatically reduced
by slightly introducing guarded terms in the existing symbolic specification of CASH
in [19]. The CASH algorithm was first formally specified and analyzed in Real-Time
Maude using explicit-state methods [17], and symbolically analyzed using rewriting
modulo SMT to deal with an infinite number of states [19]. Due to the symbolic state
space explosion problem and the complexity of the accumulated constraints, some
reachability properties of interest were previously beyond the reach of rewriting modulo
SMT in [19], but can now be analyzed using guarded terms.

4.1 Symbolic States Using Guarded Terms

In CASH, each task has a given period and a given worst-case execution time. When
an instance of a task is completed before its worst-case execution time, the unused
processor time is added to a global queue of unused budgets. Another task can then
use these unused execution times as well as its own execution budget, instead of just
wasting them. In addition to capacity sharing, tasks are scheduled according to standard
preemptive EDF scheduling: the task with the shortest time remaining until its deadline
has the priority and can preempt the currently executing task. The reader is referred
to [7, 17] for details about the CASH algorithm.

In rewriting logic specification, an object of class C is represented as a term < O :
C | att1 : v1, ..., attn : vn > of sort Object, where O is the identifier, and v1, . . . , vn

are the values of the attributes att1, . . . , attn [11]. A system state, called a configuration,
is declared as a multiset of these objects. Multiset union for configurations is given by a
juxtaposition operator that is associative and commutative and having the nonemultiset
as its identity element.

In the CASH specification, the configuration consists of a number of servers (i.e.,
tasks) and a global queue. A server state consists of six attributes: the maximum budget,
period, internal state (idle, waiting, or executing), time executed, budget time used,
and time to deadline. These variables are modeled as nonnegative integers. Specifically,
for internal states, 0 denotes idle, 1 denotes waiting, and 2 denotes executing. A
server object with name O is modeled as a term of sort Object and has the form

< O : server | maxBudget : m, period : p, state : s,
timeExecuted : e, usedOfBudget : u, timeToDeadline : d >
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A global object contains the global queue of unused budgets, the availability of the
processor, and a flag to denote whether any deadline has been missed. Both availability
and deadline missed flags are modeled as Boolean values. A global object with name G
is modeled as a term of sort Object and has the form

< G : global | cq : queue, available : a, deadline-miss : b >

A global queue is a priority queue of unused budgets. Each item in a queue is a pair
(deadline: i budget: i′) of deadline i and budget i′. An item with the smallest
deadline has the highest priority. In [17, 19], a global queue is specified as a sorted list.
Instead, in this work the queue is modeled as a multiset of items in order to symbolically
define queue operations using only SMT constraints. For example, consider a queue

cq ≡ (deadline: i1 budget: i′1) . . . (deadline: in budget: i′n)

with n items. The operation to peek the highest-priority element is defined by:

peek(cq) = (deadline: ik budget: i′k) ⇐⇒
∧n

j=1 ik ≤ i j.

Guarded terms are used in the new symbolic specification in a number of ways.
First, each variable in a server state or a global object can be guarded by constraints.
For example, the guarded term 0φ ∨ 1¬φ denotes an internal state of a server which is
either 0, if the condition φ holds, or 1, otherwise. Second, each item in a server state
can be guarded by constraints. In a similar way to the example in Section 2, the guarded
term (deadline: i budget: i′)|φ ∨ emptyQueue|¬φ denotes an item which is either
present if the condition φ is satisfiable, or absent otherwise.

Some syntactic sugar is defined to succinctly write these guarded terms as follows:
φ ? i : j denotes the guarded term iφ ∨ j¬φ, for i, j ∈ Z, and (e const: φ) denotes the
guarded term e|φ∨e|¬φ, for each item e in the priority queue. For example, the following
expression includes both types of guarded terms:

(deadline: I3 >= 1 ? I3 - 1 : 0 budget: I2 >= 1 ? 1 : 0 const: I2 > 1).

4.2 Symbolic Transitions Using Guarded Rewrite Rules

The symbolic transitions of the CASH algorithm are specified by 13 conditional rewrite
rules in [19], which are adapted from the Real-Time Maude specification in [17]. The
rule conditions specify constraints solvable by the SMT decision procedure, together
with some extra conditions to generate constraints by rewriting. This section highlights
some of the rules to explain how to remove symbolic branching using guarded terms.
The reader is referred to [5] for the full description of all (guarded) rewrite rules.

Rule stopExecuting1. This rule specifies when one server completes execution while
another server is waiting. The waiting server with the least time remaining until its
deadline starts executing, and any budget left is added to the global queue. Previously,
this behavior was specified by two rewrite rules in [19], depending on whether any
budget remains. However, with guarded terms only one rewrite rule is needed:
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{< G : global | cq : CQ, AtSG >
< O : server | state : St, usedOfBudget : T,

maxBudget : NZT, timeToDeadline : T1,
timeExecuted : NZT1, period : NZT2, AtS >

< O’ : server | state : St’, timeToDeadline : T2, AtS’ > REST}
=> {< G : global | cq : (deadline: T1 budget: (NZT monus T)

const: (NZT > T)) CQ, AtSG >
< O : server | state : idle, usedOfBudget : NZT,

maxBudget : NZT, timeToDeadline : T1,
timeExecuted : NZT1, period : NZT2, AtS >

< O’ : server | state : executing, timeToDeadline : T2, AtS’ > REST}
if ALL6 := ... /\ (St === executing) /\ (St’ === waiting) /\ (NZT > 0)
/\ (NZT1 > 0) /\ (NZT2 > 0) /\ (T >= 0) /\ ((NZT monus T) <= T1)7

/\ (T1 >= 0) /\ (T2 >= 0) /\ nextDeadlineWaiting(ALL,O,T2)8

The guarded term (deadline: T1 budget: (NZT monus T) const: (NZT > T)),
which is only present in the priority queue if the condition NZT > T is satisfiable, is
written in the global object in the right hand side of the rewrite rule. Unlike [19], no
constraints are yet added regarding the “position” of the newly added item in the queue,
because: (i) the item may be absent if its constraint is not satisfiable, and (ii) the priority
queue is specified as a multiset with symbolic constraints.

Rule tickExecutingSpareCapacity. This rule models time elapse when a server is
executing a spare capacity, specified as one guarded rewrite rule below.9 The left hand
side of the rule contains the guarded term (deadline: I1 budget: I2 const: iB).
The condition iB in the rule condition specifies that the item is present in the queue.
The condition aboveOrEqualDeadline(I1,CQ) states that all deadlines in CQ are at least
I1, that is, that the item is indeed the one with the highest priority.

{< G : global | cq : (deadline: I1 budget: I2 const: iB) CQ, AtSG >
< O : server | state : St,

timeExecuted : T1, timeToDeadline : T2, AtS > REST}
=> { delta-global( < G : global | cq : (deadline: I1 budget: (I2 + (- 1))

const: (iB and (I2 > 1))) CQ, AtSG >, 1)
delta-servers(< O : server | state : executing, timeExecuted : T1,

timeToDeadline : T2, AtS > REST, 1, false)}
if ALL := ... /\ (St === executing) /\ (T1 >= 0) /\ (T2 >= 0)
/\ iB /\ (I1 >= 1) /\ (I2 >= 1) /\ (T2 >= 1) /\ (I1 <= T2)
/\ mte-server(ALL,O,1) /\ noDeadlineMiss(ALL)
/\ aboveOrEqualDeadline(I1,CQ)

6 The specification of ALL has been omitted in the rule. ALL representsthe entire configuration
in the left hand side.

7 The monus operator is defined by: a monus b = max(a − b, 0).
8 The function nextDeadlineWaiting(ALL,O,T2) returns a constraint stating that the
timeToDeadlineof all servers, except O, is at least T2.

9 The functions delta-global and delta-servers model the time lapse; that is, variables in
servers and the queue are accordingly increased or decreased (by 1) based on the current state.
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4.3 Symbolic Reachability Analysis

The goal is to symbolically analyze if missed deadlines exist for variant of) the CASH
algorithm from an infinite set of initial configurations containing two servers s1 and s2.
Suppose that server si (for i = 1, 2) has maximum budget bi and period pi such that
0 ≤ bi < pi. No deadline misses are guaranteed only when the processor utilization is
less than or equal to 100% (i.e., b1/p1 +b2/p2 ≤ 1) [7]. A counterexample exists if there
is no constraint on the initial configurations. Indeed, the previous work [19] can find a
symbolic counterexample that violates this constraint using rewriting module SMT.

A more interesting problem is to check the existence of missed deadlines of the
variant of the CASH algorithm [17], that uses a different scheduling strategy, when
b1/p1 + b2/p2 ≤ 1 is satisfied. Using explicit-state model checking, it is shown in [17]
that the variant can have a counterexample, even though b1/p1 + b2/p2 ≤ 1 is satisfied.
Since this constraint is non-linear, it is beyond the capabilities of state-of-the-art SMT
solvers. But by fixing p1 and p2, say p1 = 5 and p2 = 7, the constraint becomes linear
and symbolic analysis can be performed using existing SMT solvers.

Here an infinite set of initial configurations with two servers s1 and s2 is considered.
Server si (for i = 1, 2) has maximum budget bi and period pi such that 0 ≤ bi < pi,
and has the constraint b1/p1 + b2/p2 ≤ 1. A symbolic state can be modeled as term
init(b1,p1,b2,p2). The previous work in [19] cannot deal with this problem due to the
symbolic state space explosion; it generates nearly one billion symbolic states and does
not terminate for a few days. On the other hand, the new specification using guarded
terms can successfully find a counterexample from init(b1,5,b2,7):

search [1] init(I0,5,I2,7)
=>* {B:Bool , < g : global | deadline-miss : true, AtS > Cnf} .

Solution 1 (state 590751)
states: 590752 rewrites: 1910935222 in 5513748ms cpu (5513848ms real)
B --> not I0 < 0 and not I2 + -5 < 0 and not 1 + - I0 < 0 and not 7 + -
I2 < 0 and not 35 + - (I2 * 5) + - (I0 * 7) < 0 and (not 7 + - I2 < 0 or
I2 + -1 < 0) and (not 12 + - I2 < 0 or I2 < 0) and (not 17 + - I2 < 0 or
I2 < 0) and - I0 < 0 and I2 + -7 < 0 and I0 + -5 < 0 and 4 + - I2 < 0
Cnf --> < s1 : server | maxBudget : I0, period : 5, state : 2,

usedOfBudget : 0, timeToDeadline : 0, timeExecuted : 5 >
< s2 : server | maxBudget : I2, period : 7, state : 0,

usedOfBudget : I2, timeToDeadline : 7, timeExecuted : 2 >
AtS --> cq : deadline: 7 budget: not I2 < 0 ? I2 + -5 : -5

const: (not I2 < 0 and 5 + - I2 < 0), available : false

The counterexample is found at search depth 23, which could not be reached without
guarded terms. A sequence of symbolic rewrites to reach this counterexample can be
obtained by Maude’s show path command. In the counterexample, B represents the
accumulated constraint whose satisfiable assignment gives a concrete counterexample.
The queue cq has the single item if the constraint (not I2 < 0 and 5 + - I2 < 0) is
satisfied; otherwise, cq is empty. For example, B has the satisfiable assignment I0 = 1
and I2 = 5, which is found by an SMT solver, and in this case the queue cq is empty.
An explicit search with these concrete values in the ground rewriting logic semantics
of CASH gives an expected result as follows:
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search [1] init(1,5,5,7)
=>* {true, < g : global | deadline-miss : true, AtS > Cnf} .

Solution 1 (state 107393)
states: 107394 rewrites: 36507422 in 29543ms cpu (29699ms real)
Cnf --> < s1 : server | maxBudget : 1, period : 5, state : 2,

usedOfBudget : 0, timeToDeadline : 0, timeExecuted : 5 >
< s2 : server | maxBudget : 5, period : 7, state : 0,

usedOfBudget : 5, timeToDeadline : 7, timeExecuted : 2 >
AtS --> cq : emptyQueue, available : false

5 Related Work and Concluding Remarks

SMT-based reachability analysis has been used in software component testing and ver-
ification of infinite-state systems [9]. SMT-CBMC [1] and Corral [13] use bounded
model checking, with unbounded types represented by built-in variables. KLEE [8] is
used for symbolic execution and constraint solving, finding possible inputs that will
cause a programming artifact to crash. The IC3 SMT-based model checker [10] uses
over- and under-approximation techniques to efficiently handle symbolic transitions on
infinite sets of states. What all these approaches have in common is the effort in develop-
ing advanced techniques and tools to speed up the reachability analysis process based
on SMT-solving. Guarded terms are a technique to speed up and often attain conver-
gence of the reachability analysis process for rewriting modulo SMT. It complements
narrowing-based reachability analysis [2, 16], another symbolic technique combining
narrowing modulo theories and model checking.

This paper presented guarded terms, a technique with the potential to reduce the
symbolic state space and the complexity of constraints in the rewriting modulo SMT
approach. Rewriting modulo SMT [19] is a novel symbolic technique to model and an-
alyze reachability properties of infinite-state systems. This is a technique in the realm of
rewriting logic that can greatly improve the specification and verification of reachabil-
ity properties of open systems such as real-time and cyber-physical systems. Guarded
terms generalize the constrained terms of rewriting modulo SMT by allowing a term in a
symbolic state to have constrained subterms: these subterms can be seen as a choice op-
erator that is part of the term structure. They can be composed in parallel and be nested,
thus enabling the succinct encoding of several constrained terms into one guarded term.
The potential of guarded terms for reducing the symbolic state-space, and the complex-
ity and size of constraints has been illustrated by a running example and a case study.
The latter is an improvement of a previously developed case study where guarded terms
enable the analysis of reachability properties of the CASH scheduling algorithm [7].

As future work, the plan is to explore the use of guarded terms in improving the
symbolic rewriting logic semantics of PLEXIL [18,19], and in specifying the symbolic
rewriting logic semantics of other real-time and cyber-physical systems. Other SMT
techniques, including state subsumption, backwards reachability, k-induction, and in-
terpolants, should certainly be studied for rewriting modulo SMT. Another perspective
is to use guarded terms for improving narrowing-based reachability analysis.
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