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Abstract. The performance of software running on parallel or distributed ar-
chitectures can be severely affected by the location of data. On shared mem-
ory multicore architectures, data movement between caches and main memory is
driven by tasks executing in parallel on different cores and by a protocol to ensure
cache coherence, such as MSI. This paper integrates MSI in a formal model to
capture such data movement from an application perspective. We develop an exe-
cutable model which integrates cache coherent data movement between different
cache levels and main memory, for software described by task-level data access
patterns. The proposed model is generic in the number of cache levels and cores,
and abstracts from the concrete communication medium. We show that the model
guarantees expected correctness properties for the MSI protocol, in particular data
consistency. This paper further presents a proof of concept implementation of the
proposed model in rewriting logic, which allows different choices for a program’s
underlying hardware architecture to be specified and compared.

1 Introduction

Multicore architectures enhance the performance of software applications by executing
programs in parallel on multiple cores, and by exploiting a hierarchy of cache mem-
ory which allows quick access to recently used data, but comes at a price of managing
multiple co-existing copies of the same data. The cost of accessing data from a core de-
pends on where the data is located and how it is used by tasks executing on other cores.
To fully benefit from multicore architectures, it is essential to understand how software
applications interact with these architectures at runtime; i.e., we need to understand
multicore architectures from the programmers’ perspective. For example, the benefits
from developing lock-free algorithms may be severely reduced by bad data locality and
unexpected cache misses [18].

Software developers targeting multicore architectures need to answer questions about
data locality, data access, and data movement: Is the data organized in the most conve-
nient way to allow efficient data access for the application? Are the organization and
ordering of tasks optimal with respect to a given data layout? How does a given data
layout fit with the target cache hierarchy? These questions are important for software
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quality, but they are difficult to answer in an intuitive and straightforward way. Formal
models of program execution may help answer such questions, but models of paral-
lel programs today generally abstract from caches in multicore architectures and only
assume single copies of data in shared memory [9, 14, 16, 34] (i.e., they assume that
threads have direct access to memory). On the other hand, formal models of hardware
architecture and consistency protocols, such as cache coherence, focus on low-level
correctness, but completely abstract from the programming level [11, 12, 21, 32, 33].
Consequently, neither programming nor hardware models provide much guidance for
software developers in making efficient use of cache memory. In the context of shared
memory multicore computing, it seems interesting to integrate models of parallel pro-
gram execution with models of hardware architecture. Such an integration opens for
reasoning about data movement when parallel applications access data from shared
memory multicore architectures.

To address the problem described above, our aim for this paper is to develop a for-
mal model of parallel programs executing on shared memory multicore architectures
with multilevel caches. For simplicity, we focus on programs specified in terms of their
data access patterns, rather than on the programs themselves. These data access pat-
terns describe how tasks running on a core interact with memory in terms of read and
write accesses. The formalization is inspired by programming language semantics; we
develop an operational semantics of parallel computation for these data access patterns,
which accounts for data movement and data consistency in an architecture with many
cores and associated multilevel caches.

The purpose of this work is not to evaluate the specifics of a concrete hardware ar-
chitecture, but rather to formally describe program execution in a setting with multiple
and consistent copies of the same data in shared memory and in caches. Consequently,
we integrate a cache coherence protocol directly into the operational semantics of our
formal model, while abstracting from the concrete communication medium (e.g., a bus
or a ring). This protocol acts as an orchestrator between parallel executions on different
cores, by restricting data access to the memory components of the shared memory archi-
tecture to ensure consistency. Cache coherence is orthogonal to weak memory models
and associated program reordering [1]; in fact, most cache coherence protocols guar-
antee sequential consistency. Whereas work on weak memory models (e.g., [2]) focus
on the possible values of program variables, our work completely abstracts from the
data being manipulated. The presented model of multicore architecture with multilevel
caches guarantees desirable properties for the program, such as the preservation of the
program order for the data access patterns, the absence of data races, and that cores
always access the most recent data value. The technical contributions of this paper are

1. a formal, operational model of execution on multicore architectures with multilevel
caches for tasks describing data access patterns with loops, choice and spawn;

2. correctness properties for this formal model, expressed as invariants over an arbi-
trary number of cores and an arbitrary number of multilevel caches; and

3. a proof of concept implementation of the model in the rewriting tool Maude [8].

This work is part of a line of research by the authors. Whereas previous work [3, 4]
studied the much simpler setting of statically given, purely sequential data access pat-
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terns and single-level caches, this paper addresses data access patterns with dynamically
spawned tasks with loops and branching, and multilevel caches.

Paper overview. Sect. 2 briefly reviews background concepts on shared memory
multicore architectures, Sect. 3 presents our abstract formal model of multicore archi-
tecture with multilevel caches and shared memory, Sect. 4 summarizes the proven cor-
rectness properties of this model, Sect. 5 presents a proof of concept implementation
and an example, Sect. 6 discusses the related work, and Sect. 7 concludes the paper.

2 An Overview of Shared Memory Multicore Architectures

We briefly discuss basic concepts of multicore architectures, for further details see,
e.g., [10, 15, 28, 35]. The components of multicore architectures are parallel processing
units called cores for executing tasks, a main memory for data storage, and memory
units called caches which give the cores rapid access to recently used data. Each core
has a hierarchically structured memory system, organized in terms of size, speed, and
distance: the L1 cache is the smallest, fastest, and closest to the core and the Lm cache is
the slowest, largest, and furthest away. The memory systems of the cores are connected
via a communication medium for inter-core communication with a given topology such
bus, ring, or mesh. A cache hit expresses that data required by the core is found in its
caches, a cache miss that the data needs to be fetched from main memory. The hierarchy
can be generalized to architectures in which caches may be shared between cores.

Data is stored in main memory as words, each with a unique reference. Multiple
continuous words constitute a block, which has a distinct memory address. Cache mem-
ory is organized in cache lines, which store memory blocks. During program execution,
cores access data in memory as a word using its reference, but the cache fetches the en-
tire memory block containing the required word and stores it in a cache line. Blocks in
cache lines may need to be evicted to give space for newly fetched blocks. The choice of
which block to evict depends on the cache line organization, the so-called associativity,
and the replacement policy. In k-way set associative caches, cache memory is organized
as sets of k-cache lines and a memory block can go anywhere in a particular set. Fully
associative caches treat the entire cache memory as a single set. A direct mapped cache
consists of singleton sets; thus, a particular block can only go to one specific cache line.
If the set in which a new block should be placed is full, a block is evicted to free space
using a replacement policy such as random, FIFO or LRU (Least Recently Used).

Multilevel caches can be organized in several ways. For inclusive caches, blocks in
level i cache are also included in all lower level caches j ( j > i). Consequently, the last-
level cache contains blocks in all other caches in the hierarchy. For exclusive caches, it
is guaranteed that data exists in at most one of the caches in the hierarchy. With NINE
(non-inclusive non-exclusive), neither inclusive nor exclusive policy is enforced; i.e.,
memory blocks in a cache may or may not be in the corresponding lower-level caches.

A memory consistency model [1] for cache-based architectures combines a (weak
or strong) local memory model with a cache coherence protocol. Cache coherence pro-
tocols ensure the consistency of data between the caches of different cores. The lo-
cal memory model and the cache coherence protocol are traditionally completely or-
thogonal: a weak memory model may be built on top of a cache coherence protocol
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which (normally) guarantees sequential consistency between caches. The cost of se-
quential consistency is that writing to non-exclusive cache lines need to be broadcast.
Invalidation-based protocols inform other affected caches when a core performs a write
operation. The most common invalidation-based protocols are MSI and its extensions
(e.g., MESI and MOESI). In MSI, a cache line can be in one of three states: modified,
shared or invalid. A modified state indicates that the block in that cache line has the
most recently updated data and that all other copies are invalid (including the copy in
main memory), while a shared state indicates that all copies of the block have consistent
data (including the copy in main memory). These protocols broadcast messages in the
communication medium. Following the standard nomenclature, messages of the form
Rd request read access to a memory block while messages of the form RdX request ex-
clusive read access to a memory block (for writing purposes), and thereby invalidating
other copies of the same block in other caches.

3 A Formal Model of Execution
on Shared Memory Multicore Architectures

This section presents our formal model of program execution on shared memory mul-
ticore architectures with multilevel caches. We first discuss the abstractions introduced
in the model, then its syntax, and finally the operational semantics of the formal model.

3.1 Abstractions in the Formal Model

We consider a model of multicore architectures with a communication medium that
abstracts from concrete topologies but ensures cache coherency using the MSI protocol.
The architecture is illustrated in Fig. 1a. A node consists of a core and its hierarchy of
private caches. Each core in the model executes tasks scheduled from a shared task pool,
which can easily be extended to a more advanced scheduler. To communicate with the
other components, the node broadcasts request messages !Rd(n) and !RdX(n) via the
medium to read or write to a block with address n, respectively.

The structure of a single node comprises a core with multiple levels of exclusive
caches L1,L2, · · · ,Lm, as illustrated by Fig. 1b. Each cache Li has a data instruction
queue Di for flush and fetch instructions, which move blocks of data from or to main
memory or between caches. Red lines capture messages broadcast by the node to the
others via the medium, blue lines capture messages received by main memory and by
components in each node, and green lines capture data transfer between components.

To read data from a block n, the core looks for n by traversing its local caches in
the hierarchical order (i.e., from the first level L1 to the last level, here Lm). If we get a
cache miss, the last-level cache broadcasts a read request !Rd(n) via the communication
medium to the other nodes and main memory. The last-level cache fetches the block
when it is available in main memory. Eviction is required if the last-level cache is full.
From a cache Li, block n is propagated to the first level L1 through intermediate caches.
The block is transferred from Li to Li−1 if the cache has free space; otherwise a block is
selected from Li−1 and swapped with n in Li. Writing to a block n is only allowed if it is
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(a) Overview of the model.
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(b) Intra-node interactions.

Fig. 1: The structure of the formal model of multicore architectures.

in shared or modified state in the first-level cache, which then broadcasts an invalidation
request !RdX(m) through the medium to all other nodes, to obtain exclusive access.

Let ?Rd(n) and ?RdX(n) denote the reception of read and invalidation requests by
a cache or by main memory (the blue lines in Fig. 1b); they are the duals of the broad-
cast requests discussed above. If a cache receives a read request ?Rd(n) and it has the
block in modified state, the cache flushes the block to main memory (the green lines
in Fig. 1b); if the cache receives an invalidation request ?RdX(n) and it has the block
in shared state, the cache line will be invalidated; the requests are discarded otherwise.
For simplicity, we abstract from the actual data stored in memory blocks, let blocks
transfer between nodes via the main memory, and without compromising the validity of
the model, we assume that a cache line has the same size as a memory block. We model
read and invalidation requests in the communication medium to be instantaneous; this
is justified by message transfer being an order of magnitude faster than data transfer,
and by the focus of the work is on data movement. We can then match dual labels in
a labelled transition system to coordinate messages in a transition, as commonly done
in process algebra, abstracting from the concrete communication medium. By lifting
this matching of dual labels to sets of labels, we capture a true concurrency execution
model for an arbitrary number of cores in the proposed operational semantics.

3.2 The Syntax of Data Access Patterns and Runtime Configurations

The syntax of the formal model is shown in Fig. 2. A configuration Config consists of
a main memory M, shared between multiple nodes with cores CR and caches Ca, and a
set of tasks T to be executed. A core CR with identifier Cid has runtime statements rst
to be executed. A cache Ca has a memory M, an identifier Lev, and a sequence of data
instructions dst to be performed. In a cache identifier lev(Cid,Lid,flag), Cid indicates
to which core the cache belongs, Lid ∈ N+ the level of the cache, and flag whether it is
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Syntactic
categories.
Lid ∈ Int
Cid ∈ CoreId
n ∈ Address
T ∈ TaskId
M ∈Memory
Tb ∈ TaskTable

Definitions.
Config ::= M ◦T ◦Ca◦CR

CR ∈ Core ::=Cid • rst
Ca ∈ Cache ::= Lev•M •dst

Lev ∈ CacheId ::= lev(Cid,Lid,flag)
st ∈ Status ::= {mo,sh, inv}

rst ∈ RuntimeLang ::= dap | rst;rst | readBl(r) | writeBl(r)
dap ∈ AccessPatterns ::= ε | dap;dap | read(r) | write(r) | commit(r)

| commit | dapudap | dap∗ | skip | spawn(T )
dst ∈ DataLang ::= ε | dst;dst | fetch(n) | flush(n) | fetchBl(n)

| flush

Fig. 2: Syntax for the formal model of multicore architectures, where over-bar denotes
sets (e.g., CR), n represents memory addresses and r references.

at the last level in the node. Lid is unique within each node. A memory M : n ⇀ st maps
addresses n to status tags st. The status tags mo, sh, and inv refer to the three states in
the MSI protocol, respectively. Note that blocks in main memory can only be in sh or
inv state. The task table Tb : T ⇀ dap maps task identifiers T to data access patterns
dap. These are sequences of basic operations read(r) and write(r) to read from and
write to a memory reference r, commit(r) to flush r to main memory, and control flow
statements dap1 u dap2 to select either dap1 or dap2 for execution, dap∗ to repeat the
execution of dap zero or many times, and spawn(T ) to add dap to the pool of tasks to
be scheduled, where dap is the data access pattern corresponding to task T in the task
table. To ensure data consistency, the statement commit is used at the end of each tasks
to flush the entire cache after task execution. Since the task table is statically given, we
assume it is always available and not represent it explicitly in the configurations.

The cores execute runtime statements rst, which extend dap with the additional
control statements readBl(r) and writeBl(r) to indicate that the core is blocked
due to a cache miss. Each cache performs data instructions dst, which are sequences of
fetch(n) to fetch a block n from the next level cache or from main memory, flush(n)
to flush the modified copy of n to the main memory, and flush to flush all modified
copies in the cache. The instruction fetch(n) is replaced by fetchBl(n) when the
cache is suspended, waiting for block n to arrive in the next level cache.

3.3 An Operational Semantics of Parallel Execution on Multicore Architectures

We define a parallel model of task execution, which expresses true concurrency in the
multicore setting, by means of a structural operational semantics (SOS) [29], and use
labels on transitions to synchronize read and invalidation requests. The semantics con-
sists of a local and a global level. The local level captures local transitions in main
memory, task execution in each core and intra-node communications to ensure data con-
sistency between different components. The global level captures transitions involving
data transfer between caches and main memory, broadcasting of messages, scheduling
of tasks, and enforces data consistency by restricting how labels match in the compo-
sition rules. Multiple nodes may request different memory blocks at the same time by
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(PRRD1)
first(Lev) = true Cid(Lev) = c n = addr(r) status(M,n) = sh∨ status(M,n) = mo

(Lev•M •dst)◦ (c• read(r);rst )→ (Lev•M •dst)◦ (c• rst )

(PRRD2)
first(Lev) = true Cid(Lev) = c n = addr(r) status(M,n) = inv∨n 6∈ dom(M)

(Lev• M •dst )◦ (c• read(r);rst )→ (Lev• M[n 7→⊥]•dst;fetch(n) )◦ (c• readBl(r);rst )

(PRWR2)
first(Lev) = true Cid(Lev) = c n = addr(r) status(M,n) = sh

(Lev• M •dst)◦ (c• write(r);rst )
!RdX(n)−−−−→ (Lev• M[n 7→mo] •dst)◦ (c• rst )

Fig. 3: Local semantics of task execution in a core and the first level cache

parallel instantaneous broadcast, using possibly empty sets of labels. The formal syntax
for the label mechanism is as follows:

W ::= !Rd(n) |!RdX(n) Q ::=?Rd(n) |?RdX(n)
S ::= /0 | {W} | S∪S R ::= /0 | {Q} | R∪R

where S and R represent possibly empty sets of sent and received requests, respectively.
Let Config ∗→ Config′ denote an execution starting from Config which produces

Config′ by repeatedly applying rules at the global level, which in turn apply rules at the
local level for each component. In an initial configuration, all blocks in main memory M
have status tag sh, all cores are idle (i.e., rst is ε), all caches are empty and have no
data instructions in dst, and the task pool in T names a single task, representing the
main block of a program. A configuration Config′ is reachable if there is an execution
Config ∗→ Config′ starting from an initial configuration Config. For brevity, we do not
discuss the full operational semantics here, but focus on a representative subset of the
rules; the full semantics can be found in the accompanying technical report [5].

Local Semantics. The local semantics reflects the execution of statements, the interac-
tions between caches in a node, and how the local state changes in each cache line by
following the finite state controller that enforces the MSI protocol during the execution.
A representative selection of local transition rules for a node and for main memory is
given in Figs. 3 and 4. Let the function addr(r) return the block address n containing
reference r, the predicate first(Lev) is true when Lev is the first level cache, last(Lev)
is true when Lev is at the last level, and the function status(M,n) returns the status of
block n in map M.

Fig. 3 shows a representative selection of transition steps involving a core and its
first level cache. Reading reference r succeeds in rule PRRD1 if the block containing r
is available in the first-level cache. Otherwise, rule PRRD2 adds a fetch(n) instruction
to the end of the data instructions dst of the first level cache and blocks further execution
of the core with the statement readBl(r). Execution may proceed once the block n is
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(LC-HIT1)
Cid(Levi) = Cid(Lev j) status(M j,n) = s j s j ∈ {sh,mo}

Lid(Lev j) = Lid(Levi)+1 select(Mi,n) = ni status(Mi,ni) = si

(Levi • Mi •fetch(n);dsti )◦ (Lev j • M j •dst j)→

(Levi • Mi[ni 7→ ⊥,n 7→ s j]•dsti )◦ (Lev j • M j[n 7→ ⊥,ni 7→ si] •dst j)

(LC-MISS1)
status(M j,n) = inv∨n 6∈ dom(M j) Lid(Lev j) = Lid(Levi)+1 Cid(Levi) = Cid(Lev j)

(Levi •Mi • fetch(n);dsti )◦ (Lev j • M j •dst j )→

(Levi •Mi • fetchBl(n);dsti )◦ (Lev j • M j[n 7→⊥]•dst j;fetch(n) )

(LLC-MISS)
last(Lev) = true status(M,n) = inv∨n 6∈ dom(M)

(Lev•M • fetch(n);dst )
!Rd(n)−−−→ (Lev•M[n 7→ ⊥]• fetchBl(n);dst )

(INV-ONE-LINE)
status(M,n) = sh

Lev• M •dst
?RdX(n)−−−−→ Lev• M[n 7→ inv] •dst

(FLUSH-ONE-LINE)
status(M,n) = mo

Lev•M • dst
?Rd(n)−−−−→ Lev•M • flush(n);dst

Fig. 4: Local semantics between caches in a core

copied into the cache with status sh. Repeated invalidation may occur if the cache line
gets invalidated by another core while the core is still blocked, which entails reapplying
rule PRRD2. Writing to reference r succeeds if the associated memory block has mo
status in the first-level cache. If the cache line is in shared state, the core broadcasts
!RdX(n) request, which appears as a label in rule PRWR2, to get exclusive access. If the
cache line is invalid (or the block is not in the cache), the core needs to fetch the block
from main memory and execution is blocked by the statement writeBl(r), similar to
reading in rule PRRD2. The rules for the other rst statements are standard.

Fig. 4 shows rules which are local to the cache hierarchy: rules LC-HIT1 and
LC-MISS1 capture the interactions between two adjacent levels of caches, while the
rest describes the transition steps local to a cache. Rule LC-HIT1 captures the case
where cache Levi needs to fetch block n and finds it in sh or mo state in the next level
cache. The function select(Mi,n) determines the address where the block should be
placed, based on a cache associativity and a replacement policy. If eviction is needed,
block n from Lev j will be swapped with the selected block in Levi in rule LC-HIT1.
Otherwise, n is transferred to Levi and removed from Lev j since the model considers
exclusive caches. Setting a block n to ⊥ in memory M, denoted as M[n 7→⊥], means
that n is removed from M. Rule LC-MISS1 shows how fetch instructions are propa-
gated to lower levels in the cache hierarchy. If the block cannot be found in any local
cache, we have a cache miss: execution is blocked by the instruction fetchBl(n), and
a read request !Rd(n) will be broadcast, represented by a label in rule LLC-MISS.
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(FLUSH)
status(M j,n) = mo

Mi ◦ (Lev• M j •flush(n);dst)→

Mi[n 7→sh]◦ (Lev• M j[n 7→sh] •dst)

(FETCH1)
last(Lev) = true select(M j,n) = n status(Mi,n) = sh

Mi ◦ (Lev• M j •fetchBl(n);dst)→

Mi ◦ (Lev• M j[n 7→sh] •dst)

(SYNCH1)
S 6= /0

⋂
allAddrIn(S) = /0 R = dual(S)

M R−→M′ Ca◦CR S−→ Ca′ ◦CR′

M ◦T ◦Ca◦CR S−→M′ ◦T ◦Ca′ ◦CR′

(ASYNCH)
CR =CR1]CR2]CR3 Ca = Ca1]Ca2]Ca3]Ca4

M ◦Ca1→M′ ◦Ca′1 Ca2→ Ca′2 T ◦CR2→ T ′ ◦CR′2
belongs(Ca3,CR3) Ca3 ◦CR3→ Ca′3 ◦CR′3

CR′ =CR1∪CR′2∪CR′3 Ca′ = Ca′1∪Ca′2∪Ca′3∪Ca4

M ◦T ◦Ca◦CR /0−→M′ ◦T ′ ◦Ca′ ◦CR′

(SYNCH2)
belongs(Ca1,CR1) belongs(Ca2,CR2) S = S1]S2 R1 = dual(S1) R2 = dual(S2)

Ca1 ◦CR1
S1∪R2∪R−−−−−→ Ca′1 ◦CR′1 Ca2 ◦CR2

S2∪R1∪R−−−−−→ Ca′2 ◦CR′2

Ca1 ◦CR1 ◦Ca2 ◦CR2
S∪R−−→ Ca′1 ◦CR′1 ◦Ca′2 ◦CR′2

(TASK-SPAWN)
T ′ = T ∪{T} T ′ ◦CR → T ′′ ◦CR′

T ◦CR◦ ( Cid •spawn(T );dap )→
T ′′ ◦CR′ ◦ ( Cid •dap )

(TASK-SCHEDULER)
T ′ = T\{T} dap = Tb(T ) T ′ ◦CR → T ′′ ◦CR′

T ◦CR◦ ( Cid • ε )→
T ′′ ◦CR′ ◦ ( Cid •dap;commit )

Fig. 5: Global semantics for cache coherent multicore architectures. The disjoint union
operator ] is defined as X1]X2 = X1∪X2 such that X1∩X2 = /0.

If a cache receives an invalidation request ?RdX(n) for a block n and has this block
with status sh, the cache changes the status to inv in rule INV-ONE-LINE. If a cache
receives a read request ?Rd(n) and has block n with status mo, rule FLUSH-ONE-LINE
appends a flush-instruction to dst to prioritize the flushing of the modified copy (to
avoid deadlock caused by cyclic waiting for modified data to be flushed to main mem-
ory). The received messages are ignored in all other cases. The main memory ignores
read requests, but responds to invalidate requests by changing the status of a block to

inv as in the rule INV-MAIN-MEMORY, defined as M
?RdX(n)−−−−→M[n 7→ inv] .

Global Semantics. The global semantics represents the abstract communication medium:
it captures interactions between different components in the configuration and ensures
data coherency between caches and main memory. A representative selection of global
transition rules is given in Fig. 5. Rules FLUSH and FETCH1 capture the data movement
between a cache and the main memory. A cache at any level can flush data to main
memory. Rule FLUSH updates a block in main memory with the modified copy in the
cache and sets the status to sh both in the cache and main memory. However, only the
last-level cache can fetch data from main memory. Rule FETCH1 copies the data to the
cache if no eviction is required. If eviction is needed and the block chosen by the select
function has status mo, it will be flushed before the requested block can be fetched.
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The remaining rules in Fig. 5 handle interactions between different components in
the architecture. Rule SYNCH1 captures global synchronization for a non-empty set S.
In this rule, different read and invalidation requests are being broadcast, and to main-
tain data consistency, the different components must process these requests at the same
time. Note that to apply rule SYNCH1, S must contain at most one request per address,
which is ensured by the predicate

⋂
allAddrIn(S) = /0, and the set of receiving labels R

is generated as the dual of S. For synchronization, the transition is decomposed into a
premise for main memory with labels R, and another premise for the cores with labels S.
Rule SYNCH-2 distributes labels over cores by recursively decomposing S into sets of
sending and receiving labels for sets of cores CR1 and CR2, such that each set eventually
contains at most one W label (either !Rd(n) or !RdX(n)) to match transitions in the local
rules. The predicate belongs(Ca,CR) expresses that any cache in Ca belongs to exactly
one of the cores in CR. The recursive decomposition of S repeats until the dual labels
have been generated for each single node. The rule ensures that the sender of a mes-
sage W does not receive its dual Q. Rule ASYNCH captures parallel transitions when the
label set is empty. These transitions can be local to individual nodes, parallel memory
accesses, or scheduling of new tasks. TASK-SPAWN adds a new task identifier to the
task queue and TASK-SCHEDULER looks up in the task table with the task identifier T
and schedules the corresponding task to a core. Adding the statement commit to the
end of the scheduled task ensures that all modified data is flushed before the next task
is executed on the same core. Note that parallel spawning/scheduling in one transition
is allowed by rules TASK-SPAWN and TASK-SCHEDULER.

4 Correctness of the Model

For the proposed model, we consider standard correctness properties for data consis-
tency and cache coherency, based on the literature [10, 36], including the preservation
of program order in each core, absence of data races and no access to stale data. The
preservation of these properties by our semantics ensures that the model correctly cap-
tures cache coherent data movement triggered by the underlying parallel architecture
with any number of cores and caches, using our formalization of the MSI protocol for
data consistency. For brevity, the full proofs have been omitted in this paper, and can be
found in the accompanying technical report [5].

To formulate and prove these properties, we extend the syntax of Sect. 3.2 with
monitoring information. For data consistency, the memory mapping M is extended with
version numbers k, therefore M : n ⇀ 〈k,st〉 such that k is incremented every time there
is a flush operation in n. For program order, we add local histories h to the cores,
which log all successful read and write operations executed so far by the current task;
therefore, the syntax of a core is modified to (c • rst) : h, expressing that the core with
identifier c is executing the task rst starting after history h. The history h is extended
in the semantics by the rules which correspond to successful operations. The syntax of
the global configuration is also extended with global history H as M ◦T ◦Ca◦CR : H,
where H records the concurrent executions in all cores CR in the architecture in terms of
a sequence of sets of successful operations. The monitoring extensions do not influence
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execution in the operational semantics; i.e., the applicability of the rules is not affected
by these extensions (the details are omitted for brevity, see [5]).

We now formalize the denotational meaning of the rst-statements of our syntax, in
terms of sets of local histories. Let ε denote the empty history, “;” the concatenation
operator, and � the reflexive prefix relation on histories. Let R(c,n) and W (c,n) denote
successful read and write operations to address n by core c, respectively.

Definition 1. Let c be a core identifier and let addr(r)=n. The denotational meaning
JrstKc of a task rst is defined inductively as follows:

Jread(r)Kc = {R(c,n)} Jcommit(r)Kc = {ε}
JreadBl(r)Kc = {R(c,n)} JcommitKc = {ε}
Jwrite(r)Kc = {W (c,n)} JskipKc = {ε}
JwriteBl(r)Kc = {W (c,n)} Jspawn(T )Kc = {ε}
J(dap1udap2)Kc = Jdap1Kc∪ Jdap2Kc Jdap∗Kc = Jdap;dap∗Kc∪ JskipKc
J(rst1;rst2)Kc = {τ1;τ2|τ1 ∈ Jrst1Kc,τ2 ∈ Jrst2Kc}

Intuitively, JrstKc reflects the possible program orders in terms of read and write ac-
cesses when executing rst directly on main memory. The following lemma and corollary
show that executions in a core preserve this program order.

Lemma 1. If (c• rst) : ε →∗ (c• rst′) : h, then {h;τ | τ ∈ Jrst′Kc} ⊆ JrstKc .

Proof (sketch). Starting with an empty history ε , (c• rst) : ε →∗ (c• rst′) : h describes
a core c executing rst reaches rst′ with history h by making zero or more transition
steps, where h is a sequence of successful read and write access generated during the
execution. The proof is by induction on the transition steps local in a core, partially
captured in Fig. 3. ut

Corollary 1 (Program order). If (c • rst) : h1 →∗ (c • rst′) : h1;h2, where h2 is the
sequence of events produced by the transition step(s) from rst to rst′, then h2 � h for
some h ∈ JrstKc .

Proof (sketch). Since h2 is the sequence of events produced by the transition step(s)
from rst to rst′, we get {h2;τ | τ ∈ Jrst′Kc} ⊆ JrstKc by Lemma 1. Thus, h2 � h for some
h ∈ JrstKc . ut

Corollary 1 establishes the local program order of the operations of each individ-
ual core. Hence, the model’s formalization of the MSI protocol preserves sequential
consistency [19] in the sense that the result of any execution on the proposed model
of multicore architectures is equivalent to the result of executing the operations of all
cores in some sequential order. The next lemma captures the absence of data races when
accessing a block from main memory.

Lemma 2 (No data races). Let Cax be the cache (Levx •Mx •dstx). The conjunction of
the following properties holds for all reachable configurations M ◦T ◦Ca◦CR : H :

(a) ∀n ∈ dom(M).(status(M,n) = inv ⇔∃ Cai ∈ Ca. status(Mi,n) = mo)
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(b) ∀n ∈ dom(M). (status(M,n) = inv ⇔ (∃ Cai ∈ Ca. status(Mi,n) = mo)
∧∀ Ca j ∈ Ca\Cai . (status(M j,n) = inv ∨n 6∈ dom(M j)))

(c) ∀n ∈ dom(M). status(M,n) = sh⇔∀ Cai ∈ Ca. status(Mi,n) 6= mo
(d) ∀ Cai ∈ Ca ,∀n ∈ dom(Mi). (status(Mi,n) = sh⇒ status(M,n) = sh)

Proof (sketch). The lemma can be proven by showing that these properties are invari-
ants preserved by all transition steps:

M ◦T ◦Ca◦CR : H S−→M′ ◦T ′ ◦Ca′ ◦CR′ : H ′ (1)

where S is a set of sending messages, handled by ASYNCH, SYNCH1 and SYNCH2 in
Fig. 5. Remember that the caches are exclusive in each core, and in order to apply
SYNCH1, S must contain at most one message for each block address n. The proof
proceeds by case distinction on the rules for the transition steps. ut

Lemma 2 ensures that there is at most one modified copy of a memory block among
the cores. This guarantees single write access and parallel read accesses to memory
blocks. The next lemma shows that shared copies of a memory block in different cores
always have the same version number. Let function version(M,n) return the version
number of block address n in M.

Lemma 3 (Consistent shared copies). Let M ◦T ◦Ca◦CR : H be a reachable con-
figuration and assume that status(M,n) = sh. If (Levi •Mi •dsti) ∈ Ca such that
status(Mi,n) = sh for any cache, then version(M,n) = version(Mi,n).

Proof (sketch). The invariant trivially holds for transition rules that are for two caches
residing in the same core, or local in either a single cache or the main memory as
the transitions do not modify the version number of a block address. The proof then
proceeds by cases for the transition steps dealing with fetching/flushing a memory block
from/to the main memory by a cache, e.g., the rules FLUSH and FETCH1 in Fig. 5. ut

To show that cores in our formal model never access stale values in a memory block,
we first define the most recent value of a memory block as follows:

Definition 2 (Most recent value). Let M ◦T ◦Ca◦CR : H be a global configuration, n
a memory location, and Cai ∈Ca a cache such that Cai = (Levi •Mi •dsti). Then Mi(n)
has the most recent value if the following holds:

(a) If Mi(n) = 〈k,sh〉, then M(n) = 〈k,sh〉
and ∀ (Lev j •M j •dst j) ∈ Ca\Cai. status(M j,n) = sh⇒M j(n) = 〈k,sh〉.

(b) If status(Mi,n) = mo, then status(M,n) = inv
and ∀ (Lev j •M j •dst j) ∈ Ca\Cai. status(M j,n) = inv.

With Lemma 3 and Definition 2, we can show that if a core succeeds to access a
memory block, it will always get the most recent value.

Lemma 4 (No access to stale data). Let M ◦T ◦Ca◦CR : H be a reachable configu-
ration such that CRi = (ci • rsti) : hi for CRi ∈CR, Cai = (Levi •Mi •dsti) for Cai ∈ Ca
and belongs(Cai,CRi). Consider a block address n and an event e∈{R(ci,n),W (ci,n)}.
If Cai ◦CRi : hi→ Ca′i ◦CR′i : (hi;e) or Cai ◦CRi : hi

!RdX(n)−−−−→ Ca′i ◦CR′i : (hi;e),
then Mi(n) has the most recent value.
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Proof (sketch). For the core CRi to make successful read or write accesses to block
address n in its local cache (i.e., to generate an event R(ci,n) or W (ci,n)), CRi applies
the rules which capture the interactions between the core and its first level cache. The
proof therefore proceeds by cases for these rules, a subset of which is shown in Fig. 3.

Consider, for example, the rule PRRD1, where the status of n is either mo or sh. If
status(Mi,n) = mo, it follows from Lemma 2 (a) and (b) that Mi(n) has the most recent
copy according to Definition 2 (b). If Mi(n) = 〈k,sh〉, it follows from Lemma 2 (d) that
status(M,n) = sh, and consequently from Lemma 2 (c) that ∀Ca j ∈Ca. status(M j,n) 6=
mo where Ca j = (Lev j •M j • dst j). Then we need to consider all caches Levg •Mg •
dstg ∈ Ca where status(Mg,n) = sh. From Lemma 3, we get version(Mi,n) = k =
version(M,n) = version(Mg,n), which satisfies Definition 2 (a). This concludes the
case. The other rules can be proven analogously. ut

5 Proof of Concept Implementation

To show the proposed model executable and to observe the behavior of different con-
figurations, we have developed a proof of concept implementation1 in Maude [8], a
rewriting logic system. The Maude framework allows us to build an executable im-
plementation of the operational semantics where transition rules are implemented as
conditional rewrite rules of the form crl [ label] : t −→ t ′ if cond, which transforms a term
which matches a pattern t into a term of the corresponding pattern t ′, and as conditional
equations of the form ceq t = t ′ if cond for modelling the instantaneous communication
of the label mechanism and the implementation of different auxiliary functions. The
main differences and challenges between our operational semantics and the Maude im-
plementation of the model are rather technical: while the former is not explicit with
respect to parameters (e.g., the number of cores and caches, the size of caches, cache
associativity, replacement policies and memory layout), the latter requires them to be
explicit such that the model with a particular configuration, containing an explicit par-
allel architecture and a number of parallel tasks that are specified by the user, can be
executed. This enables behavior of various configurations to be observed and compared.
Another important difference is that while our semantics captures true concurrency by
using the label mechanism, the Maude framework only allows interleaving. Therefore,
one parallel and global step in the semantics will be translated into one or more inter-
leaving steps in the Maude proof of concept implementation. Such translation does not
affect the properties discussed in Section 4.

The proof of concept implementation in Maude is complementary to the proposed
semantics because it allows specifying and comparing configurations in which the de-
sign choices for the underlying hardware architecture are different, such as the number
of cores, cache levels, the data layout in main memory, the cache associativity and re-
placement policy. Exploring such design decisions is beneficial for the development of
software for multicore systems, where hardware features and data layout influence data
movement, and consequently the performance of an application. Using a simple exam-
ple, we illustrate how to observe the impact of the number of caches and the data layout

1 The proof of concept implementation in Maude and the complete example scenarios can be
downloaded from http://folk.uio.no/shijib/multilevel.zip.
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task T1{(read(r0);read(r5);write(r10);read(r15);write(r20);read(r25);read(r30);write(r35);
read(r40);write(r45);read(r50);write(r55);write(r60);read(r65);write(r70);read(r75);
write(r80);read(r85);write(r3);read(r8);write(r13);read(r18);write(r23);write(r28);
write(r4);read(r9);write(r14);read(r19);write(r24);read(r29);read(r30);write(r85);
read(r30);write(r40);read(r30);write(r40);write(r8);read(r3);write(r8);read(r3);
write(r28); write(r23))∗}

task T2{(read(r1);read(r6);read(r11);write(r16);read(r21);write(r26);read(r31);read(r36);
write(r41);read(r46);write(r51);read(r56);read(r61);read(r66);write(r71);read(r76);
write(r81);read(r86);read(r33);write(r38);read(r43);write(r48);write(r53);read(r58);
read(r34);write(r39);read(r44);write(r49);read(r54);write(r59);read(r33);write(r38);
read(r33);write(r38);write(r53);read(r58);read(r11);write(r16);read(r11);write(r16);
write(r21);write(r26);read(r71);read(r66);write(r61);write(r16))∗}

task T3{(read(r2);write(r7);read(r12);write(r17);read(r22);read(r27);write(r32);read(r37);
write(r42);read(r47);read(r52);read(r57);read(r62);write(r67);read(r72);read(r77);
write(r82);read(r87);write(r63);read(r68);write(r73);write(r78);read(r83);write(r88);
write(r64);read(r69);write(r74);write(r79);read(r84);read(r89);write(r32);read(r37);
write(r42);read(r47);read(r52);read(r57);read(r67);read(r62);read(r67);read(r62);
read(r77);read(r82);read(r63);read(r47);read(r63);write(r87))∗}

main{spawn(T1);spawn(T2);spawn(T3)}

Fig. 6: An example of the data access patterns of a program.

on data movement, captured by weighted penalties associated with accessing data from
memory other than the first level cache.

Example: Observing the Impact of Multilevel Caches and Data Layout

Consider a program that has been abstracted into the data access patterns shown in
Fig. 6. We want to compare different scenarios for running this program, using our
proof of concept implementation. We consider three architectures with three cores C1,
C2 and C3, varying in the number of caches per core. We are going to observe a parallel
execution where C1, C2 and C3 execute the tasks T1, T2 and T3, respectively, and con-
sider nine scenarios in which for each of the three architectures, there are three different
data layouts. For simplicity, we here consider the results after running the loop of each
task a finite number of times, in this case, 20.
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read(r0)
C1

Abstract communication medium

D1

L1

C2

D1
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L2

L1

C3

D1

D2

L2

read(r5)
write(r10)
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 . 
. .

 . 
. .

 . 
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 . 
. .

 . 
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 . 
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Fig. 7: An example of a parallel architecture with 3 cores and 2 level caches.
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(a) (b) (c)

One reference 
in one memory block

Two references grouped 
in one memory block

Three references grouped 
in one memory block

Fig. 8: Different data layouts to be setup in the example.

In the first architecture, we have a single level cache L1 in each core; in the second
architecture, we have two levels of cache L1, L2, as depicted in Fig. 7; and in the third
architecture, we have three levels of cache L1, L2,L3. To easily compare the data access
in the different levels of cache and in main memory, we associate weighted penalties to
accesses from different levels of memory. For simplicity in this example, we use order
of magnitude differences and associate penalties 1,10,100, and 1000 with accesses from
L1, L2, L3 and main memory, respectively. Cache associativity has been set up as direct
mapped, 2-way associativity and 3-way associativity for L1, L2, L3, respectively. We
additionally consider three different data layouts, depicted in Fig. 8. In the first layout
(Fig. 8a) the tasks need to access different memory blocks for each reference, in the
second (Fig. 8b) we group two references together in one block, and in the third (Fig. 8c)
we group three references together.

Fig. 9: Accumulated penalties of the nine
different scenarios.

Figure 9 summarises the results
of executing the model in the Maude
proof of concept implementation, for
the nine considered scenarios. Ob-
serve that when we have spread
data, that is, the different references
reside in different memory blocks,
the scenarios where cores have a
single level of cache need to per-
form many evictions and fetch op-
erations to access data from main
memory. This increases the access
time, as reflected by the accumulated
the penalty. In the scenarios where cores have three levels of cache, the penalty is sub-
stantially lower, although the access patterns are the same as the scenarios of single
level caches. This is because it requires fewer evictions and operations for the cores
to fetch or flush data from or to main memory, although there are still penalties from
swapping data between the different cache levels. Thus, the scenarios in the example
confirm the expected behavior of the model proposed in this paper, and we can observe
the impact of data layout on data movement and the relation between data movement
and the number of caches.

6 Related Work

Work on analysis of multicore architectures typically include simulation of cache co-
herence protocols and formal techniques analyzing their correctness. Simulation tools
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for cache coherence protocols evaluate their performance and efficiency on different ar-
chitectures (e.g., gems [22] and gem5 [6]). These tools perform evaluations of, e.g., the
cache hit/miss ratio and response time, by running benchmark programs written as low-
level read and write instructions to memory. Advanced simulators such as Graphite [25]
and Sniper [7] run programs on distributed clusters to simulate executions on multicore
architectures with thousands of cores, where the simulations do not consider the data
movements in the architecture. In contrast, our work provides a formal model captur-
ing the interactions that trigger data transfer between different components, and shows
the potential impacts on such movement with respect to data layout and the number of
caches by a proof of concept implementation of the model in Maude. The worst-case
response times of concurrent programs running on multicore architectures with shared
caches can also be analyzed [20].

Both operational and axiomatic formal models have been used to capture the impact
of parallel executions on shared memory under relaxed memory models. They include
abstract calculi [9], memory models for programming languages such as Java [16], and
machine-level instruction sets for concrete processors such as POWER [21, 32] and
x86 [33], and for programs executing under total store order (TSO) architectures [14,
34]. This work on weak memory models abstracts from caches, and is as such largely
orthogonal to our work which does not consider the reordering of source-level syntax.

Cache coherence protocols have also been analyzed in the setting of automata, and
(parametrized) model checking (e.g., [11,27,30]) has been used to abstract from a spe-
cific number of cores when proving the correctness of the protocols (e.g., [12, 13, 37]).
For instance, Maude’s model checker has recently been used to verify the correctness
of configurations of the MSI and ESI protocols [23, 31]. In contrast, our work, which
also considers cache coherent movement of data, focuses on formally capturing the
movement of data as a consequence of the interaction between cores, caches and shared
memory during the parallel execution of programs, rather than on protocol verification.

7 Conclusions and Future Work

Software is increasingly designed to run on multicore architectures, where data local-
ity, data access, and data movement crucially influence the performance of the parallel
execution. We believe that formal models that capture how parallel programs interact
with memory, may help software developers understand how data access influences the
behavior of parallel tasks executing on multicore architectures with shared memory, and
thereby improve data locality and better avoid expensive cache misses. For this purpose,
we combine abstract models of parallel program execution with models of shared mem-
ory multicore architecture, to capture data movement when parallel programs access
data on such architectures. This paper develops a formal executable model of multicore
architectures with multilevel caches from a program perspective rather than a hard-
ware perspective, and addresses dynamically spawned data access patterns. The formal
model is given as an operational semantics for data access patterns executing in parallel
on different cores, and ensures data consistency by embodying the MSI cache coherence
protocol. We have shown that the model guarantees correctness properties concerning
data consistency, to ensure that we correctly capture data movement triggered by the
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cache coherence protocol. We provide a proof of concept implementation of the model,
and show by example how choices for a program’s data layout in combination with the
underlying hardware architecture affect data movement.

This work opens several interesting directions for future work, including extensions
required for richer programming languages. For data structures and dynamically al-
located memory (e.g., object creation), the model could be extended with type layouts
and alloc (e.g., [26]). We are currently considering the extraction of data access patterns
from models in ABS [17] and we are implementing a more powerful simulation tool.
Other directions of future work include shared caches and locking mechanisms which
allow atomic blocks and synchronization between data access patterns to be modeled.
Finally, models as developed in this paper could serve as a foundation to study the
effects of program specific optimizations of data layout and scheduling.
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